MATH 2121 — Linear algebra (Fall 2017) Lecture 12

1 Last time: introduction to determinants

Let n be a positive integer.

A permutation matriz is a square matrix whose entries are all 0 or 1, and which has exactly one nonzero
entry in each row and in each column. Let S,, be the set of n x n permutation matrices.

Note on terminology: If A is an n X n matrix and X € S,,, then AX has the same columns as A but in
a different order: the columns of A are “permuted” by X.

Example. The six elements of S3 are

1 00 100 01 0 010 0 0 1 0 0 1
0 1 0 0 01 1 00 0 01 100 0 1 0
0 0 1 0 10 0 01 100 010 1 00

Given X € S,, and an arbitrary n X n matrix A:

e Define II(X, A) as the product of the entries of A in the nonzero positions of X.

e Define inv(X) as the number of 2 x 2 submatrices of X equal to [ (1) (1) } .

To form a 2 x 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent or
related, and then take the 4 entries determined by those rows and columns.

Note that each 2 x 2 submatrix of a permutation matrix is

0 0 1 0 0 0 0 1 0 0 1 0 0 1
0 0]%loo]%o 1 |%[oo] 100 1|[%][1 0]
0 01 a b c
Example. II 10 01, d e f = cdh
01 0 g h i
0 0 1 1 00 0 0 1
Example. inv 1 0 0 = 2 and inv 01 0 =0 and inv 01 0 =3
01 0 0 0 1 1 0 0

Definition. The determinant an n X n matrix A is the number given by the formula

det A= Y TI(X,A)(-1)")
Xes,

This general formula simplifies to the following expressions for n = 1,2, 3 (which you should remember):

det[ a ] =aq.

det{i g}zad—bc.
a b c

det | d e f | =alei— fh)—b(di— fg) + c(dh — ef).
g h i

For n > 4, our formula det A is a sum with at least 24 terms, and so is not easy to compute by hand.
We will describe a better way of computing determinants today.

The most important properties of the determinant are described by the following theorem:
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Theorem. The determinant is the unique function det : {n x n matrices} — R with these 3 properties:

0 @k =1)

(2) If B is formed by switching two columns in an n x n matrix A, then ’ det A= —detB ‘

(3) Suppose A, B, and C are n X n matrices with columns
A:[al as ... an} and B:[bl by ... bn] and C:[cl cy ... cn].

If there is a single column ¢ where a; = xb; + yc; for z,y € R and in all other columns j we have
aj = b; = c¢; then ’ det A=z det B +ydetC‘.

Corollary. If A is a square matrix which is not invertible then det A = 0.

Corollary. If A is a permutation matrix then det A = (—1)™v(4),

Proof. Note that II(X,Y) = 0if X and Y are different n x n permutation matrices, but II(X, X) =1. O

2 DMore properties of the determinant

Recall that AT denotes the transpose of a matrix A (the matrix whose rows are the columns of A).

Lemma. If X € S, then XT € §,, and inv(X) = inv(X7T).
. . . . 0 1
Proof. Transposing a permutation matrix does not effect the # of 2x 2 submatrices equal to 1ol O

Corollary. If A is any square matrix then det A = det(AT).
Proof. If X € S,, then II(X, A) = II(XT, AT), so our formula for the determinant gives

det A=Y (X, A) (-0 = 37 m(xT, AT)(~1)mv XD,
XeS, Xes,

As X ranges over all elements of S, the transpose X* also ranges over all elements of S,,, so the last
sum is equal to Dy o TI(X, ATY(=1)(X) = det(AT). O

The following lemma is a weaker form of a statement we will prove later in the lecture.

Lemma. Let A and B be n x n matrices with det A # 0. Then det(AB) = (det A)(det B).

Proof. Define f : { n x n matrices } — R as the function f(M) = degifiw)

Then f has the defining properties of the determinant, so must be equal to det since det is the unique
function with these properties. In more detail:

AL,
[ ] We have f(In) = dcc;iti ) = gz:i = 1

e If M’ is given by swapping two columns in M, then AM’ is given by swapping the two corresponding
columns in AM, so f(M') = detd(e’?%) = —d;gt(ﬁM) = —f(M).
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e If column ¢ of M is z times column ¢ of M’ plus y times column 4 of M" and all other columns of
M, M’, and M" are equal, then the same is true of AM, AM’, and AM" so

_det(AM)  xdet(AM')+ ydet(AM")

gy = S — 8 = o f(M") +yf(M").

These properties uniquely characterise det, so f and det must be the same function.

Therefore f(B) = % = det B for any n X n matrix B, so det(AB) = (det A)(det B). O

3 Determinants of triangular and invertible matrices

An n x n matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the
diagonal positions (1,1),(2,2),(3,3),...,(n,n). Such a matrix looks like

O ¥ ¥ ¥
¥ X X ¥

O O O *
O O ¥ ¥

where the * entries can be any numbers (even 0).

An n x n matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the
diagonal positions. Such a matrix looks like

* ¥ ¥ O
* ¥ O O
* O O O

* X X KX

where the * entries can again be any numbers.
The transpose of an upper-triangular matrix is lower-triangular, and vice versa.
We say that a matrix is triangular if it is either upper- or lower-triangular.

A matrix is diagonal if it is both upper- and lower-triangular, i.e., has nonzero entries only on the
diagonal:

*x 0 0 0
0 = 0 0
0 0 = O
0 0 0 =

The diagonal entries of A are the numbers that occur in positions (1,1),(2,2),(3,3),..., (n,n).

Proposition. If A is a triangular matrix then det A is the product of the diagonal entries of A.

a 0 0
For example, we havedet | O b 0 | = abc.
0 0 ¢

Proof. Assume A is upper-triangular. If X € S,, and X # I,, then at least one nonzero entry of X is in
a position below the diagonal, in which case II(X, A) is a product of numbers which includes 0 (since all
positions below the diagonal in A contain zeros) and is therefore 0.

Hence det A =} g TI(X, A)(=1)"v(X) = TI(I,,, A) = the product of the diagonal entries of A.

If A is lower-triangular then the same result follows since det A = det(A7T). O
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Lemma. If A is an n X n matrix then det A is a nonzero multiple of det (RREF(A)).
Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough
to show that det B is a nonzero multiple of det A. There are three possibilities for B:

1. If B is formed by swapping two rows of A then B = XA for a permutation matrix X € S,,, so
det B = det(X A) = (det X)(det A) = £det A.

2. If B is formed by rescaling a row of A by a nonzero scalar A € R then B = DA where D is a
diagonal matrix of the form

1

and in this case det D = X # 0, so det B = det(DA) = (det D)(det A) = Adet A.

3. If B is formed by adding a multiple of row i of A to row j, then B = T A for a triangular matrix 7'
whose diagonal entries are all 1 and whose only other nonzero entry appears in column ¢ and row
J, so we have det B = det(TA) = (det T')(det A) = det A.

This shows that performing an elementary row operation to A multiplies det A by a nonzero number.
Since we obtain RREF(A) by performing a sequence of row operations to A, it follows that det(RREF(A))
is a sequence of nonzero numbers times det A. O

This brings us to a famous property of the determinant.
Theorem. An n X n matrix A is an invertible if and only if det A # 0.

Proof. We have already seen that if A is not invertible then det A = 0. If A is invertible then RREF(A) = I,
so det A # 0 since det A is a nonzero multiple of det(RREF(A)) = det I, = 1. O

Calculating the determinant is not a particularly efficient way of checking if a matrix is invertible. The
quickest way to compute det A involves just as much work as it takes to row reduce A to echelon form,
which would also tell us if A is invertible or not.

Now that we know that det A # 0 for all invertible matrices, we can show that the determinant is a
multiplicative function.

Lemma. Let A and B be n x n matrices. If A or B is not invertible then AB is not invertible.

Proof. Note that Col AB C Col A since if x € Col AB then = = (AB)v = A(Bwv) for some v € R".

Also note that Nul B C Nul AB since if Bv = 0 then (AB)v = A(Bv) = 0.

If A is not invertible then Col A is contained in but not equal to R™, so Col AB # R™.

If B is not invertible then Nul B contains but is not equal to {0}, so Nul AB # {0}.

In either case it follows that either Col AB # R™ or Nul AB # {0} so AB is not invertible. O

Theorem. If A and B are any n x n matrices then det(AB) = (det A)(det B).
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Proof. We already proved this in the case when det A # 0.

If det A = 0, then A is not invertible, so by the previous lemma AB is not invertible either, so
det(AB) = 0 = (det A)(det B).
O

It is very difficult to derive this theorem directly from the formula det A = Yy g TI(X, A)(—1)"v(X),
So as not to doubt this surprising property, let’s try to verify it in an example.

Example. We have det 12 =4—6=—2 and det 23 =10—-12 = -2.
3 4 4 5
1 2 2 3 10 13

On the other hand, det([ 3 4 ] [ 45 ]) det[ 99 99 } =290 — 286 = 4.

4 Computing determinants

Our proof that det A is a nonzero multiple of det(RREF(A)) can be turned into an effective algorithm for
computing the determinant.

Algorithm to compute det A.

Input: an n x n matrix A.
1. Start by setting K = 1.

2. Row reduce A to an echelon form E. (It is not necessary to bring A all the way to reduced echelon
form: we just need to row reduce A until we get an upper triangular matrix.) Each time you
perform a row operation in this process, modify the number K as follows:

(a) When you switch two rows, multiply K by —1.

(b) When you rescale a row by a nonzero factor A, multiply K by A.

(¢) When you add a multiple of a row to another row, don’t do anything to K.
The determinant of A is then given by det A = (det E)/K.
In words, det A is the product of the diagonal entries of the echelon form E divided by K.

As usual, the easiest way to understand this algorithm is through an example.

5)
—4
6

- O W

1
Example. Consider the matrix A= | 1
2
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To compute its determinant, we row reduce to echelon form which keeping track of the factor K:

1 3 )
A=1]1 0 —4 K=1
2 4 6
[ 1 3 5 ]
~|10 -3 -9 (we added a multiple of row one to row two) K =1
2 4 6|
[1 3 5]
~|10 -3 -9 (we added a multiple of row one to row three) K =1
0 -2 —4 |
[1 3 5]
~10 1 3 (we multiplied row two by —1/3) K = —1/3
0 -2 —4 |
[1 3 5
~|10 1 3 |=F (weaddeda multiple of row two to row three) K = —1/3
(0 0 2
We then get det A = (det B)/K = (1-1-2)/(—1/3) = —6.

This agrees with our earlier for the determinant of a 3-by-3 matrix, which gives

det A =1(0 — (—16)) — 3(6 — (=8)) 4+ 5(4 — 0) = 16 — 3(14) + 5(4) = 16 — 42 + 20 = —6.

Another sometimes useful algorithm to compute det A.

Given an n x n matrix A, define A7) as the (n — 1) x (n — 1) submatrix formed by removing row i and
column j from A.

a b ¢

Example. If A= | d e f | then A2 = [ d J; }
g h i g
Theorem. If A is the n X n matrix
aix aiz @iz ... Qain
21 Q22 Q23 ... Q2p
A= aszr G432 a3z ... QA2p
Gn1  QAp2  Gp3 v Gnn
then
det A = a1 det AMY — q15det AT 4+ ay3det AT — . — (=1)"ayy, det Al
and also
det A = aq; det ALY — qo1 det AR 4 g det AGD — o0 — (=1)"ay det A1)

Note that each A7) or AUD is a square matrix smaller than A, so det A7) or det AUY) can be
computed by the same formula on a smaller scale.

Proof. The second formula follows from the first formula since det A = det(AT). (Why?)
The first formula is a consequence of the formula for det A we derived last lecture. One needs to show

—(=1)arjdet AMD) = N TI(X, A)(—1)" )

xesy
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where S,(Lj ) is the set of n x n permutation matrices which have a 1 in column j of the first row. Summing
the left expression over j = 1,2,...,n gives the desired formula, while summing the right expression over
J=12,...,ngives D ycqo (X, A)(=1)v(X) = det A. O

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:

c

@ b e f d f d e . .
det | d e f adet[ no }bdet[ , }+cdet[ h } = a(ef—hi)—b(di— fg)+c(dh—eg).
g b i g i g

For anything larger than a 3-by-3 matrix, it is usually faster to compute the determinant by our first
algorithm using row reduction, however.
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