
MATH 2121 — Linear algebra (Fall 2017) Lecture 21

1 Last time: orthogonal vectors and projections

The inner product or dot product of two vectors

u =


u1

u2

...
un

 and


v1
v2
...

vn


in Rn is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = uT v = vTu = v • u.

The length of a vector v ∈ Rn is the nonnegative real number

‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

A vector with length 1 is a unit vector. Note that ‖v‖2 = v • v.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

Pythagorean Theorem. Two vectors u, v ∈ Rn are orthogonal if and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2.

In R2, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

The orthogonal complement of a subspace V ⊂ Rn is the subspace V ⊥ whose elements are the vectors
w ∈ Rn such that w • v = 0 for all v ∈ V . The only vector that is in both V and V ⊥ is the zero vector.

We have {0}⊥ = Rn and (Rn)⊥ = {0}. If A is an m × n matrix then (ColA)⊥ = Nul(AT ). We also
showed last time that that dimV ⊥ ≤ n− dimV .

A list of vectors u1, u2, . . . , up ∈ Rn is orthogonal if ui • uj = 0 whenever 1 ≤ i < j ≤ p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis
of the subspace they span.

If u1, u2, . . . , up is an orthogonal basis for a subspace V ⊂ Rn and y ∈ V , then y = c1u2+c2u2+ · · ·+cpup

where the coefficients c1, c2, . . . , cp ∈ R are defined by

ci =
y • ui

ui • ui
.

It is helpful to see work through statement for the standard orthogonal basis e1, e2, . . . , en for Rn. If

y =


y1
y2
...

yn

 = y1e1 + y2e2 + · · ·+ ynen

then y = c1e1 + c2e2 + · · ·+ cnen where ci = y•ei
ei•ei . But ei • ei = 1 and y • ei = yi, so we just have ci = yi.

Let L ⊂ Rn be a one-dimensional subspace.

Then L = R-span{u} for any nonzero vector u ∈ L.

Let y ∈ Rn. The orthogonal projection of y onto L is the vector

projL(y) =
y • u
u • u

u for any 0 6= u ∈ L.

The value of projL(y) does not dependent on the choice of the nonzero vector u.

The component of y orthogonal to L is the vector z = y − projL(y).
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Proposition. The only vector ŷ ∈ projL(y) with y − ŷ ∈ L⊥ is the orthogonal projection ŷ = projL(y).

Proof. If u ∈ L is nonzero then y − projL(y) = y − y•u
u•uu and it holds that(

y − y • u
u • u

u
)
• u = y • u− y • u

u • u
u • u = y • u− y • u = 0.

To see that projL(y) is the only vector in L with this property, suppose ŷ ∈ L is such that y − ŷ ∈ L⊥.
Then (y − ŷ) • ŷ = y • ŷ − ŷ • ŷ = 0 so y • ŷ = ŷ • ŷ. But then ŷ = y•u

u•uu = projL(y) for u = ŷ ∈ L.

Example. If y =

[
7
6

]
and L = R-span

{[
4
2

]}
then

projL(y) =

[
7
6

]
•
[

4
2

]
[

4
2

]
•
[

4
2

] [ 4
2

]
=

28 + 12

16 + 4

[
4
2

]
=

[
8
4

]
.

Check that ([
7
6

]
−
[

8
4

])
•
[

4
2

]
=

[
−1

2

]
•
[

4
2

]
= 0.

2 Orthonormal vectors

A set of vectors u1, u2, . . . , up is orthonormal if the vectors are orthogonal and each vector is a unit vector.
In other words, if ui • uj = 0 when i 6= j and ui • ui = 1 for all i.

An orthonormal basis of a subspace is a basis which is orthonormal.

Example. The standard basis e1, e2, . . . , en is an orthonormal basis for Rn.

Example. The vectors v1 = 1√
11

 3
1
1

, v2 = 1√
6

 −1
2
1

, and v3 = 1√
66

 −1
−4

7

 form another or-

thonormal basis for R3.

Theorem. Let U be an m×n matrix. The columns of U are orthonormal vectors if and only if UTU = In.
If U is square then its columns are orthonormal if and only if UT = U−1.

Proof. Suppose U =
[
u1 u2 . . . un

]
where each ui ∈ Rn. The entry in position (i, j) of UTU is

then uT
i uj = ui • uj . Therefore ui • ui = 1 and ui • uj = 0 for all i 6= j if and only if UTU is the n × n

identity matrix.

Theorem. Let U be an m× n matrix with orthonormal columns. Suppose x, y ∈ Rn.

1. ‖Ux‖ = ‖x‖.

2. (Ux) • (Uy) = x • y.

3. (Ux) • (Uy) = 0 if and only if x • y = 0.

Proof. The first and third statements are special cases of the second since ‖Ux‖ = ‖x‖ if and only if
(Ux)•(Ux) = x•x. The second statement holds since (Ux)•(Uy) = xTuTUy = xT Iny = xT y = x•y.

Somewhat confusingly, a square matrix U with orthonormal columns is called an orthogonal matrix.
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3 Orthogonal projections onto subspaces

We have already seen that if y ∈ Rn and L ⊂ Rn is a 1-dimensional subspace then y can be written
uniquely as y = ŷ + z where ŷ ∈ L and z ∈ L⊥.

This generalises to arbitrary subspaces as follows:

Theorem. Let W ⊂ Rn be any subspace. Let y ∈ Rn. Then there are unique vectors ŷ ∈ W and
z ∈W⊥ such that y = ŷ + z.

If u1, u2, . . . , up is an orthogonal basis for W then

ŷ =
y • u1

u1 • u1
u1 +

y • u2

u2 • u2
u2 + · · ·+ y • up

up • up
up and z = y − ŷ. (*)

It doesn’t matter which orthogonal basis is chosen for W ; this formula gives the same value for ŷ and z.

Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact
will be proved later in this lecture. Fix one such basis u1, u2, . . . , up ∈W .

Define ŷ by the given formula. Then ŷ ∈W and

(y − ŷ) • ui = y • ui −
y • ui

ui • ui
ui • ui = 0

for each i = 1, 2, . . . , p, so y − ŷ ∈W⊥.

To show uniqueness, suppose y = û + v where û ∈W and v ∈W⊥. Then û− ŷ = v − z. But û− ŷ is in
W while v− z is in W⊥, so both expressions must be zero as W ∩W⊥ = {0}. This means we must have
û = ŷ and v = z.

Definition. The vector ŷ, defined relative to y and W by the formula (*) in the preceding theorem, is
the orthogonal projection of y onto W . From now on we will usually write

projW (y) = ŷ

to refer to this vector.

Corollary. If W ⊂ Rn is any subspace then dimW⊥ = n− dimW .

Proof. The preceding theorem shows that W and W⊥ together span Rn. Therefore the union of any
basis for W with a basis for W⊥ also spans Rn. This size of such a union is at most dimW + dimW⊥

(since dimW and dimW⊥ are the sizes of the two bases that we are combining) and at least n (since
fewer than n vectors cannot span Rn), so n ≤ dimW + dimW⊥. This means that

dimW⊥ ≥ n− dimW.

We showed last time that dimW⊥ ≤ n− dimW , so dimW⊥ = n− dimW .

Properties of orthogonal projections onto a subspace W ⊂ Rn.

Fact. If y ∈W then projW (y) = y. If y ∈W⊥ then projW (y) = 0.

Proposition. If v ∈ W and y ∈ Rn and v 6= projW (y) then ‖y − projW (y)‖ < ‖y − v‖. In words: the
projection projW (y) is the vector in W which is closest to y.

3



MATH 2121 — Linear algebra (Fall 2017) Lecture 21

Proof. Let ŷ = projW (y). Then y − v = (y − ŷ) + (ŷ − v). The first term in parentheses is in W⊥ while
the second term is in W . Therefore by the Pythagorean theorem we have

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2 > ‖y − ŷ‖2

since ‖ŷ − v‖ > 0.

Fact. Suppose u1, u2, . . . , up is an orthonormal basis of W . Then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)yp.

If U =
[
u1 u2 . . . up

]
then projW (y) = UUT y.

4 The Gram-Schmidt process

The Gram-Schmidt process is an important algorithm which takes an arbitrary basis for some subspace
of Rn as input, and produces an orthogonal basis of the same subspace as output.

Theorem (Gram-Schmidt process). Let W ⊂ Rn be a nonzero subspace.

Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we exclude this trivial case.)

Suppose x1, x2, . . . , xp is any basis for W . Then an orthogonal basis is given by the vectors v1, v2, . . . , vp
defined by the following formulas:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.

v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

− xp • v2
v2 • v2

− · · · − xp • vp−1
vp−1 • vp−1

vp−1.

These formulas are inductive: to compute any vi, you have to have already computed v1, v2, . . . , vi−1.

More strongly, we can say the following. Let Wi = R-span{v1, v2, . . . , vi} for each i = 1, 2, . . . , p. Then
v1, v2, . . . , vi is an orthogonal basis for Wi, and vi+1 = xi+1 − projWi

(xi+1).
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Proof. Our proof of the existence of orthogonal projections relies on this theorem.

To avoid circular arguments, define

projWi
(y) =

y • v1
v1 • v1

v1 +
y • v2
v2 • v2

v2 + · · ·+ y • vi
vi • vi

vi

for i = 1, 2, . . . , p and y ∈ Rn.

We want to show that v1, v2, . . . , vi is an orthogonal basis for Wi for each i.

If we assume that this is true for any particular value of i, then the formula vi+1 = xi+1 − projWi
(xi+1)

automatically holds, which means that vi+1 ∈ W⊥i so v1, v2, . . . , vi, vi+1 is also an orthogonal set, and
therefore an orthogonal basis for Wi+1.

The single vector v1 = x1 is necessarily an orthogonal basis for W1 = R-span{v1}.

Therefore v1, v2 is an orthogonal basis for W2, which means that v1, v2, v3 is an orthogonal basis for
W3, which means . . . continuing in this way . . . that v1, v2, . . . , vi is an orthogonal basis for Wi for each
i = 1, 2, . . . , p. In particular v1, v2, . . . , vp is an orthogonal basis for Wp = W .

Remark. To find an orthonormal basis for a subspace W , first find an orthogonal basis v1, v2, . . . , vp.
Then replace each vector vi by ui = 1

‖vi‖vi. The vectors u1, u2, . . . , up will then be an orthonormal basis.

Example. Suppose x1 =


1
1
1
1

 and x2 =


0
1
1
1

 and x3 =


0
0
1
1

.

These vectors are linearly independent and so are a basis for the subspace W = R-span{x1, x2, x3}.

To compute an orthogonal basis for W , we carry out the Gram-Schmit process as follows:

1. First let v1 = x1 =


1
1
1
1

.

2. Next let v2 = x2 − x2•v1

v1•v1 v1 =


0
1
1
1

− 3
4


1
1
1
1

 =


−3/4

1/4
1/4
1/4

.

3. Finally let v3 = x3 − x3•v1
v1•v1 v1 −

x3•v2
v2•v2 v2 =


0
0
1
1

− 1
2


1
1
1
1

− 2
3


−3/4

1/4
1/4
1/4

 =


0

−2/3
1/3
1/3

.

The vectors

v1 =


1
1
1
1

 , v2 =


−3/4

1/4
1/4
1/4

 , v3 =


0

−2/3
1/3
1/3


then form an orthogonal basis for W .

We note one final result related to the Gram-Schmidt process.
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Theorem (QR factorisation). Let A be an m × n matrix with linearly independent columns. Then
A = QR where Q is an m × n matrix whose columns are an orthonormal basis for ColA and R is an
n× n upper-triangular matrix with positive entries on the diagonal.

One calls the decomposition A = QR a QR factorisation of A.

Proof. Let A =
[
x1 x2 . . . xn

]
where each xi ∈ Rm.

Perform the Gram-Schmidt process on x1, x2, . . . , xn to get an orthogonal basis v1, v2, . . . , vn for ColA.

Then define Q =
[
u1 u2 . . . un

]
where ui = 1

‖vi‖vi for i = 1, 2, . . . , n.

These vectors have the property that R-span{u1, u2, . . . , uk} = R-span{x1, x2, . . . , xk} for each k =
1, 2, . . . , n, and xi ∈ ‖vi‖ui + R-span{u1, u2, . . . , ui−1}. It follows that A = QR for an upper-triangular
matrix R of the desired form.
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