MATH 2121 — Linear algebra (Fall 2017) Lecture 23

1 Last time: least-squares problems

Definition. If A is an m x n matrix and b € R™, then a least-squares solution to the linear system
Ax = b is a vector Z € R™ such that ||b — AZ|| < ||b — Az|| for all x € R™.

If Ax = b is a consistent linear system then every least-squares solution will be an exact solution. For
any linear system Az = b, there is always at least one least-squares solution.

Theorem. Let A be an m x n matrix and b € R™. A vector T € R” is a least-square solutions to Az = b
if and only if AT A2 = ATb. The linear system A7 Az = ATb is always consistent.
Theorem. Let A be an m x n matrix. The following are then equivalent:

(a) Az = b has a unique least-squares solution for each b € R™.

(b) The columns of A are linearly independent.

(c) AT A is invertible.
When these properties hold, the unique least-squares solution to Az = b is the vector

z=(ATA) ATy

(which is the unique exact solution to AT Ax = ATb).

In applications, the matrix A usually has many more rows than columns, so m is much larger than n. In
this case, the n x n matrix AT A is much smaller than A, and we can find a least-squares solution by row
reducing [ ATA  ATh ] to echelon form to find the exact solutions to AT Az = ATb in the usual way.

Example (Lines of best fit). Suppose we have n data points (z1,y1), (£2,¥2),- .., (Zn,ys) that appear
to be close to a line. We want to find parameters Gy, 51 € R such that y = By + 12 describes the line of
Bo

1

best fit for this data. If our points are collinear, then for some 8 = € R? we would have exactly

yi = Bo+ Prx; fori=1,2,...,n,

meaning that there is an exact solution to the linear system X3 =Y where

1 = (%1

1z Y2
X = . . and Y =

1 =z, Yn

If the given points are not already on a line, then no exact solution to X8 = Y exists, and we should
instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5,2), (7,3), and (8,3) so that

1 2 1
1 5 2
X = 17 and Y = 3
1 8 3

The least-squares solutions to X8 =Y are the exact solutions to X7 X3 = XTY. We have
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The matrix X7 X is invertible. (Why?) It follows that a least-squares solution 3 € R? is provided by
go[M]_[ 4 2 9] 1 142 -2 91 [ 2/7
T B | 22 142 57 | 84 | —22 4 57 | | 5/14 |°

Thus our line of best fit for the data is y = % + 2

2 Symmetric matrices

A matrix A is symmetric if AT = A.

This happens if and only if A is square and A;; = A;; for all ¢, j.

1 0 0 -1 0 a b ¢
Example. and | —1 ) 8 | and | b d e | are symmetric matrices.
0 -3
0 8 -7 c e f
1 —4 0
=3 and | —6 1 —4 | and 123 are not symmetric.
3 0 6 —6 1 2 3 5

Proposition. If A is a symmetric matrix and k is a positive integer then A is also symmetric.

Proof. It A= AT then (AF)T = (AA.-  A)T = AT ... ATAT = (AT)k = Ak, m

Proposition. If A is an invertible symmetric matrix then A~' is also symmetric.

Proof. This is because (A~1)T = (AT)~1. O

Recall how we can diagonalise a matrix.

6 -2 -1
Example. Let A= | -2 6 —1
-1 -1 )

Then det(A — aI) = (8 —z)(6 — x)(3 — x) so the eigenvalues of A are 8, 6, and 3. By constructing bases
for the null spaces of A —8I, A — 51, and A — 3I, we find that the following are eigenvectors of A:
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-1
v = 1 | with eigenvalue 8.
- O -
e
vo = | —1 | with eigenvalue 6.
- 2 -
[ 1
vy = | 1 | with eigenvalue 3.
1

These eigenvectors are actually an orthogonal basis for R3.

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

-1/v2 -1/v6 1/v3
U = 1/\@ 5 U = —1/\/6 5 ug = 1/\/3
0 2/V6 1/v3

We then have A = PDP~! where

8§ 0 0
P = [ u;r U U3 ] and D= 0 6 0
0 0 3

(Do you remember why this holds? It is enough to check that PDP~1v = Av for v € {uy,us,u3}.)
Since the columns of P are orthonormal, we actually have PT = P~1 so A = PDPT.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of

A are orthogonal. In other words, if A is n x n and u,v € R™ are such that Au = au and Av = bv for
numbers a,b € R with a # b, then v e v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a # b.

Then auev = Auev = (Au)Tv =uTATv =uT Av = u e Av = v e bu.

But auev = a(uewv) and u e bv = b(u e v), so this means a(u e v) = b(u e v) and therefore
(a—Db)(uev)=0.

Since a — b # 0, it follows that v e v = 0. O

Definition. A matrix P is orthogonal if P is invertible and P~! = PT.

Definition. A matrix A is orthogonally diagonalisable if there is an orthogonal matrix P and a diagonal
matrix D such that A= PDP~! = PDPT.

When A is orthogonally diagonalisable and A = PDP~! = PDP”, the diagonal entries of D are the
eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors
form an orthonormal basis of R".

In fact, it follows by the arguments in our earlier lectures about diagonalisable matrices that an n x n
matrix A is orthogonally diagonalisable if and only if there is an orthogonal basis for R™ consisting of
eigenvectors for A.

Surprisingly, there is a much more direct characterisation of orthogonally diagonalisable matrices:
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Theorem. A square matrix is orthogonally diagonalisable if and only if it is symmetric.

We prove this after a sequence of lemmas.
Lemma. If A is orthogonally diagonalisable then A is symmetric.

Proof. Note that if X,Y,Z are n x n matrices the (XY 2)T = ZT(XY)T = ZTyTXT,
Suppose A = PDPT where D is diagonal. Then D = DT and (PT)T = P, so

AT = (pDPTYT = (P)TDTPT = PDPT = A.

Lemma. All (complex) eigenvalues of an n x n symmetric matrix A with real entries belong to R.

Proof. Suppose A is a symmetric n x n matrix with real entries, so that A = AT = A.

Let v € C". Then 7' Av is some complex number.

For example, if A = [ L2 } and v = [ 11—2 ] then

2 1 1
A =[1—i 1+¢}B f]“fi]
= [ 3+i 3—2‘}“f§]_(3+i)(1+i)+(3z‘)(li)_4.

In fact, the number 77 Av belongs to R since
ol Av =0T Av = (ﬁTAv)T =77 Av.

(The last equality holds since both sides are 1 x 1 matrices, i.e., scalars.)

Now suppose v € C" is an eigenvector for A with eigenvalue A € C. Then o7 Av = o7 (\v) = A(v7v) € R.
The complex number 77 v always belongs to R (why?) so it must also hold that A € R. O

Lemma. An n x n matrix A with all real eigenvalues can be written as A = URU” where U is an n x n
orthogonal matrix (i.e., has orthonormal columns) and R is an n x n upper-triangular matrix.

One calls A = URUT with U and R of this form a Schur factorisation of A.

Proof. Suppose A is an n X n matrix with all real eigenvalues.

Let u; € R™ be a unit eigenvector for A with eigenvalue A € R.

Let wg,...,u, € R™ be any vectors such that wq,us,...,u, is an orthonormal basis for R™. (One
way to construct these vectors: let w1 = x1,x2,...,x, be any basis, apply Gram-Schmidt to get u; =
V1, V2, ..., U, then convert each v; to a unit vector.)
Define U = [ Uy Uy ... Up ] so that UT = U1,

By considering the product UT AUe; for i = 1,2,...,n, one finds that UT AU has the form

T _ A *
v ;]

for some (n — 1) X (n — 1) matrix B. Here, * stands for n — 1 arbitrary entries.
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The matrix UT AU = U~ AU has the same characteristic polynomial as A.
This polynomial is (A — z) det(B — zI), i.e., A — = times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic
polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue p € R for B, an (n—1) x (n—1)
orthogonal matrix V, and an (n — 2) x (n — 2) matrix C with all real eigenvalues such that

T I B T
VBV{O C]'

The matrix [ 1

0V ] is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)

It follows for the orthogonal matrix W = U [ (1) ‘9 ] that
A

kX%
WIAW =] 0 p  *
0 0 C

By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular
matrix R such that X7 AX = R, in which case A = XXTAXXT = XRXT. O

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalisable then A is symmetric.
Suppose conversely that A is symmetric.

Then A has all real eigenvalues, so there exists a Schur factorisation A = URUT.

We then have AT = (URUT)T = URTUT but also AT = A=URUT.

Since UT = U1, it follows that R = RT.

Since R is upper-triangular, this can only hold if R is diagonal.

But if R is diagonal then A = URU” is evidently orthogonally diagonalisable. O

To orthogonally diagonalise an n X n symmetric matrix A, we just need to find an orthogonal basis of
eigenvectors vy, va, . .., v, for R™. Then A = UDUT with U = [ UL Uz ... Up ] where u; = mvi
and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an
eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to
apply the Gram-Schmidt process to covert this basis to one which is orthogonal.

Corollary. If A=U DUT where U = [ UL Uy ... Up ] has orthonormal columns and

A1

An

is diagonal, then
A= Aluluf + )\guquT + -+ )\nunuz. (*

Each product u;ul is an n x n matrix of rank 1. One calls (*) a spectral decomposition of A.
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EN|

Example. Let A = [ 9 4

2 o L
} . A spectral decomposition of A is given by

= sl sl ]

s[ Ve Lars s s TYVE 1 -vs 25 ]

=[5 s |+ [ 6n 12s )
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