
MATH 2121 — Linear algebra (Fall 2017) Lecture 23

1 Last time: least-squares problems

Definition. If A is an m × n matrix and b ∈ Rm, then a least-squares solution to the linear system
Ax = b is a vector x̂ ∈ Rn such that ‖b−Ax̂‖ ≤ ‖b−Ax‖ for all x ∈ Rn.

If Ax = b is a consistent linear system then every least-squares solution will be an exact solution. For
any linear system Ax = b, there is always at least one least-squares solution.

Theorem. Let A be an m×n matrix and b ∈ Rm. A vector x̂ ∈ Rn is a least-square solutions to Ax = b
if and only if ATAx̂ = AT b. The linear system ATAx = AT b is always consistent.

Theorem. Let A be an m× n matrix. The following are then equivalent:

(a) Ax = b has a unique least-squares solution for each b ∈ Rm.

(b) The columns of A are linearly independent.

(c) ATA is invertible.

When these properties hold, the unique least-squares solution to Ax = b is the vector

x̂ = (ATA)−1AT b

(which is the unique exact solution to ATAx = AT b).

In applications, the matrix A usually has many more rows than columns, so m is much larger than n. In
this case, the n×n matrix ATA is much smaller than A, and we can find a least-squares solution by row
reducing

[
ATA AT b

]
to echelon form to find the exact solutions to ATAx = AT b in the usual way.

Example (Lines of best fit). Suppose we have n data points (x1, y1), (x2, y2), . . . , (xn, yn) that appear
to be close to a line. We want to find parameters β0, β1 ∈ R such that y = β0 + β1x describes the line of

best fit for this data. If our points are collinear, then for some β =

[
β0
β1

]
∈ R2 we would have exactly

yi = β0 + β1xi for i = 1, 2, . . . , n,

meaning that there is an exact solution to the linear system Xβ = Y where

X =


1 x1
1 x2
...

...
1 xn

 and Y =


y1
y2
...

yn

 .
If the given points are not already on a line, then no exact solution to Xβ = Y exists, and we should
instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5, 2), (7, 3), and (8, 3) so that

X =


1 2
1 5
1 7
1 8

 and Y =


1
2
3
3

 .
The least-squares solutions to Xβ = Y are the exact solutions to XTXβ = XTY . We have

XTX =

[
1 1 1 1
2 5 7 8

]
1 2
1 5
1 7
1 8

 =

[
4 22

22 142

]
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and

XTY =

[
1 1 1 1
2 5 7 8

]
1
2
3
3

 =

[
9

57

]
.

The matrix XTX is invertible. (Why?) It follows that a least-squares solution β ∈ R2 is provided by

β =

[
β0
β1

]
=

[
4 22

22 142

]−1 [
9

57

]
=

1

84

[
142 −22
−22 4

] [
9

57

]
=

[
2/7

5/14

]
.

Thus our line of best fit for the data is y = 2
7 + 5

14x:

2 Symmetric matrices

A matrix A is symmetric if AT = A.

This happens if and only if A is square and Aij = Aji for all i, j.

Example.

[
1 0
0 −3

]
and

 0 −1 0
−1 5 8

0 8 −7

 and

 a b c
b d e
c e f

 are symmetric matrices.

[
1 −3
3 0

]
and

 1 −4 0
−6 1 −4

6 −6 1

 and

[
1 2 3
2 3 5

]
are not symmetric.

Proposition. If A is a symmetric matrix and k is a positive integer then Ak is also symmetric.

Proof. If A = AT then (Ak)T = (AA · · ·A)T = AT · · ·ATAT = (AT )k = Ak.

Proposition. If A is an invertible symmetric matrix then A−1 is also symmetric.

Proof. This is because (A−1)T = (AT )−1.

Recall how we can diagonalise a matrix.

Example. Let A =

 6 −2 −1
−2 6 −1
−1 −1 5

.

Then det(A− xI) = (8− x)(6− x)(3− x) so the eigenvalues of A are 8, 6, and 3. By constructing bases
for the null spaces of A− 8I, A− 5I, and A− 3I, we find that the following are eigenvectors of A:
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v1 =

 −1
1
0

 with eigenvalue 8.

v2 =

 −1
−1

2

 with eigenvalue 6.

v3 =

 1
1
1

 with eigenvalue 3.

These eigenvectors are actually an orthogonal basis for R3.

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

u1 =

 −1/
√

2

1/
√

2
0

 , u2 =

 −1/
√

6

−1/
√

6

2/
√

6

 , u3 =

 1/
√

3

1/
√

3

1/
√

3

 .
We then have A = PDP−1 where

P =
[
u1 u2 u3

]
and D =

 8 0 0
0 6 0
0 0 3

 .
(Do you remember why this holds? It is enough to check that PDP−1v = Av for v ∈ {u1, u2, u3}.)

Since the columns of P are orthonormal, we actually have PT = P−1 so A = PDPT .

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of
A are orthogonal. In other words, if A is n × n and u, v ∈ Rn are such that Au = au and Av = bv for
numbers a, b ∈ R with a 6= b, then u • v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a 6= b.

Then au • v = Au • v = (Au)T v = uTAT v = uTAv = u •Av = u • bv.

But au • v = a(u • v) and u • bv = b(u • v), so this means a(u • v) = b(u • v) and therefore

(a− b)(u • v) = 0.

Since a− b 6= 0, it follows that u • v = 0.

Definition. A matrix P is orthogonal if P is invertible and P−1 = PT .

Definition. A matrix A is orthogonally diagonalisable if there is an orthogonal matrix P and a diagonal
matrix D such that A = PDP−1 = PDPT .

When A is orthogonally diagonalisable and A = PDP−1 = PDPT , the diagonal entries of D are the
eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors
form an orthonormal basis of Rn.

In fact, it follows by the arguments in our earlier lectures about diagonalisable matrices that an n × n
matrix A is orthogonally diagonalisable if and only if there is an orthogonal basis for Rn consisting of
eigenvectors for A.

Surprisingly, there is a much more direct characterisation of orthogonally diagonalisable matrices:
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Theorem. A square matrix is orthogonally diagonalisable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalisable then A is symmetric.

Proof. Note that if X,Y, Z are n× n matrices the (XY Z)T = ZT (XY )T = ZTY TXT .

Suppose A = PDPT where D is diagonal. Then D = DT and (PT )T = P , so

AT = (PDPT )T = (PT )TDTPT = PDPT = A.

Lemma. All (complex) eigenvalues of an n× n symmetric matrix A with real entries belong to R.

Proof. Suppose A is a symmetric n× n matrix with real entries, so that A = AT = A.

Let v ∈ Cn. Then vTAv is some complex number.

For example, if A =

[
1 2
2 1

]
and v =

[
1 + i
1− i

]
then

vTAv =
[

1− i 1 + i
] [ 1 2

2 1

] [
1 + i
1− i

]
=
[

3 + i 3− i
] [ 1 + i

1− i

]
= (3 + i)(1 + i) + (3− i)(1− i) = 4.

In fact, the number vTAv belongs to R since

vTAv = vTAv =
(
vTAv

)T
= vTAv.

(The last equality holds since both sides are 1× 1 matrices, i.e., scalars.)

Now suppose v ∈ Cn is an eigenvector for A with eigenvalue λ ∈ C. Then vTAv = vT (λv) = λ(vT v) ∈ R.
The complex number vT v always belongs to R (why?) so it must also hold that λ ∈ R.

Lemma. An n×n matrix A with all real eigenvalues can be written as A = URUT where U is an n×n
orthogonal matrix (i.e., has orthonormal columns) and R is an n× n upper-triangular matrix.

One calls A = URUT with U and R of this form a Schur factorisation of A.

Proof. Suppose A is an n× n matrix with all real eigenvalues.

Let u1 ∈ Rn be a unit eigenvector for A with eigenvalue λ ∈ R.

Let u2, . . . , un ∈ Rn be any vectors such that u1, u2, . . . , un is an orthonormal basis for Rn. (One
way to construct these vectors: let u1 = x1, x2, . . . , xn be any basis, apply Gram-Schmidt to get u1 =
v1, v2, . . . , vn, then convert each vi to a unit vector.)

Define U =
[
u1 u2 . . . un

]
so that UT = U−1.

By considering the product UTAUei for i = 1, 2, . . . , n, one finds that UTAU has the form

UTAU =

[
λ ∗
0 B

]
for some (n− 1)× (n− 1) matrix B. Here, ∗ stands for n− 1 arbitrary entries.
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The matrix UTAU = U−1AU has the same characteristic polynomial as A.

This polynomial is (λ− x) det(B − xI), i.e., λ− x times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic
polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue µ ∈ R for B, an (n−1)× (n−1)
orthogonal matrix V , and an (n− 2)× (n− 2) matrix C with all real eigenvalues such that

V TBV =

[
µ ∗
0 C

]
.

The matrix

[
1 0
0 V

]
is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)

It follows for the orthogonal matrix W = U

[
1 0
0 V

]
that

WTAW =

 λ ∗ ∗
0 µ ∗
0 0 C

 .
By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular
matrix R such that XTAX = R, in which case A = XXTAXXT = XRXT .

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalisable then A is symmetric.

Suppose conversely that A is symmetric.

Then A has all real eigenvalues, so there exists a Schur factorisation A = URUT .

We then have AT = (URUT )T = URTUT but also AT = A = URUT .

Since UT = U−1, it follows that R = RT .

Since R is upper-triangular, this can only hold if R is diagonal.

But if R is diagonal then A = URUT is evidently orthogonally diagonalisable.

To orthogonally diagonalise an n × n symmetric matrix A, we just need to find an orthogonal basis of
eigenvectors v1, v2, . . . , vn for Rn. Then A = UDUT with U =

[
u1 u2 . . . un

]
where ui = 1

‖vi‖vi
and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an
eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to
apply the Gram-Schmidt process to covert this basis to one which is orthogonal.

Corollary. If A = UDUT where U =
[
u1 u2 . . . un

]
has orthonormal columns and

D =


λ1

λ2
. . .

λn


is diagonal, then

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n . (*)

Each product uiu
T
i is an n× n matrix of rank 1. One calls (*) a spectral decomposition of A.
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Example. Let A =

[
7 2
2 4

]
. A spectral decomposition of A is given by

A =

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

] [
8 0
0 3

] [
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]

= 8

[
2/
√

5

1/
√

5

] [
2/
√

5 1/
√

5
]

+ 3

[
−1/
√

5

2/
√

5

] [
−1/
√

5 2/
√

5
]

=

[
32/5 16/5
16/5 8/5

]
+

[
3/5 −6/5
−6/5 12/5

]
.
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