
MATH 2121 — Linear algebra (Fall 2017) Lecture 24

1 Last time: symmetric matrices

A matrix A is symmetric if AT = A.

This happens if and only if A is square and Aij = Aji for all i, j.

Example.

[
1 2
2 3

]
is symmetric but

[
1 2
3 2

]
is not.

A matrix U is orthogonal if U is invertible and U−1 = UT .

This happens precisely when U is square with orthonormal columns.

An n×n matrix A is orthogonally diagonalisable if there is an orthogonal matrix U and a diagonal matrix
D such that A = UDU−1 = UDUT . In this case, the columns of U are an orthonormal basis for Rn
consisting of eigenvectors for A, and the eigenvalues of these eigenvectors are the diagonal entries of D.

The following summarises the main results from last time:

Theorem.

(1) A square matrix is orthogonally diagonalisable if and only if it is symmetric.

(2) Eigenvectors with distinct eigenvalues of a symmetric matrix are orthogonal.

(3) All (complex) eigenvalues of a symmetric matrix A are real, i.e., the characteristic polynomial of
A has all real roots and can be expressed as det(A − xI) = (λ1 − x)(λ2 − x) · · · (λn − x) for some
not-necessarily-distinct real numbers λ1, λ2, . . . , λn ∈ R.

Example. Suppose A =

[
a b
b a

]
for some a, b ∈ R.

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

det(A− xI) = det

[
a− x b

b a− x

]
= (a− x)2 − b2 = (a− b− x)(a+ b− x),

the eigenvalues of A are a− b and a+ b.

It’s not too hard to guess the eigenvectors corresponding to these eigenvectors just by looking, though
the usual method of finding eigenvectors by row reducing A−λI to find a basis for Nul(A−λI) will also
produce the answer.

Namely, the vector

[
1
−1

]
is an eigenvector for A with eigenvalue a− b.

The vector

[
1
1

]
is an eigenvector for A with eigenvalue a+ b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by
multiplying each vector by the reciprocal of its length. This gives the eigenvectors[

1
√

2

−1/
√

2

]
and

[
1/
√

2

1/
√

2

]
which form an orthonormal basis for R2.

It follows that A = UDU−1 = UDUT where U =

[
1
√

2 1/
√

2

−1/
√

2 1/
√

2

]
and D =

[
a− b 0

0 a+ b

]
.
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2 Singular value decomposition

Today, we’ll apply the results from last time to prove the existence of singular value decompositions,
which will give a sort of approximate orthogonal diagonalisation for any matrix, not just symmetric ones.

Let A be an m× n matrix.

Then ATA is a symmetric n× n matrix, since (ATA)T = AT (AT )T = ATA.

It follows from our results last time that ATA has all real eigenvalues. A stronger statement holds:

Lemma. All eigenvalues of ATA are nonnegative real numbers.

Proof. Since ATA is symmetric, we know that the matrix can be orthogonally diagonalised. In other
words, we know there exists an orthonormal basis v1, v2, . . . , vn for Rn consisting of eigenvectors of ATA.
Let λ1, λ2, . . . , λn ∈ R be the associated eigenvalues, so that ATAvi = λivi for i = 1, 2, . . . , n. Then

‖Avi‖2 = (Avi) • (Avi) = (Avi)
T (Avi) = vTi A

TAvi = vTi (λivi) = λi‖vi‖2 = λi

for each index i. Since ‖Avi‖ ≥ 0, it follows that every eigenvalue satisfies λi ≥ 0.

The preceding lemma allows us to make the following definition.

Definition. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA arranged in decreasing order. Define
σi =

√
λi for i = 1, 2, . . . , n. We call the numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 the singular values of A.

In other words, the singular values of a matrix A are the squares roots of the eigenvalues of ATA, which
are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

Example. Suppose A =

[
4 11 14
8 7 −2

]
. Then ATA =

 80 100 40
100 170 140
40 140 200

.

This matrix ATA has characteristic polynomial

det(ATA− xI) = (360− x)(90− x)x

so the eigenvalues of ATA are λ1 = 360, λ2 = 90, and λ3 = 0.

The singular values of A are therefore σ1 =
√

360, σ2 =
√

90, and σ3 = 0.

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of ATA.

Theorem. Suppose v1, v2, . . . , vn is an orthonormal basis of Rn composed of eigenvectors of ATA, ar-
ranged so that if λi ∈ R is the eigenvalue of vi then λ1 ≥ λ2 ≥ · · · ≥ λn.

Assume A has r nonzero singular values.

Then Av1, Av2, . . . , Avr is an orthogonal basis for the column space of A and consequently rankA = r.

Proof. Choose indices i 6= j. Then vi • vj = 0 so also vi • λjvj = 0.

Therefore (Avi)
T (Avj = vTi A

TAvj = vTi (λjvj) = vi • λjvj = 0.

This shows that Av1, Av2, . . . , Avr are orthogonal vectors in ColA.

Since ‖Avi‖ =
√
λi > 0, these vectors are all nonzero and therefore are linearly independent.
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To see that these vectors span the column space of A, suppose y ∈ ColA. The y = Ax for some vector
x ∈ Rn, which we can write as x = c1v1 + c2v2 + · · ·+ cnvn for some coefficients c1, c2, . . . , cn ∈ R. Then

y = Ax = c1Av1 + c2Av2 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn︸ ︷︷ ︸
=0

= c1Av1 + c2Av2 + · · ·+ crAvr

since Avi = 0 as ‖Avi‖ =
√
λi = 0 for i > r. We conclude that Av1, Av2, . . . , Avr is a basis for ColA.

Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today’s main result.

Theorem (Existence of SVDs). Let A be an m× n matrix with rank r. Then we can write

A = UΣV T

where

(i) U is some m×m orthogonal matrix.

(ii) V is some n× n orthogonal matrix.

(iii) Σ is the m× n matrix

Σ =

[
D 0
0 0

]
where D =


σ1

σ2
. . .

σr


and σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of A.

Comments. The three zeros in the matrix defining Σ are implicitly blocks of zeros: the upper
right 0 stands for an r × (n− r) zero submatrix, the lower right 0 stands for an (m− r)× (n− r)
zero submatrix, and the lower left 0 stands for an (m− r)× r zero submatrix.

Another way to think of Σ: place the diagonal matrix D in the upper left corner of an m×n matrix,
and then fill all of the remaining entries with zeros.

A factorisation A = UΣV T with U , V , and Σ as in (i)-(iii) is a singular value decomposition (SVD) of A.

The matrices U and V in an SVD A = UΣV T are not uniquely determined by A, but Σ is. The columns
of U are the left singular vectors of A while the columns of V are the right singular vectors of A.

Proof that an SVD of A exists. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the decreasing list of eigenvalues of ATA.

Let v1, v2, . . . , vn a list of corresponding orthonormal eigenvectors for ATA.

Then λr+1 = λr+2 = · · · = λn = 0 are Av1, Av2, . . . , Avr is an orthogonal basis for ColA.

For each i = 1, 2, . . . , r, define

ui =
1

‖Avi‖
Avi =

1√
λi
Av =

1

σi
Avi.

Then u1, u2, . . . , ur is an orthonormal basis for ColA.

We can choose vectors ur+1, ur+2, . . . , um ∈ Rm such that the extended list of vectors u1, u2, . . . , um is
an orthonormal basis for Rm. Make any such choice, and define

U =
[
u1 u2 . . . um

]
and V =

[
v1 v2 . . . vn

]
.
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These matrices are orthogonal by construction, and

AV =
[
Av1 Av2 . . . Avn

]
=
[
Av1 Av2 . . . Avr 0 . . . 0

]
=
[
σ1u1 σ2u2 . . . σrur 0 . . . 0

]
.

If Σ is the matrix given in (iii), then we also have

UΣ =
[
σ1u1 σ2u2 . . . σrur 0 . . . 0

]
= AV

so UΣV T = AV V T = AI = A, which confirms the theorem statement.

We conclude this lecture with a small example, continuing from before.

Example. Again suppose A =

[
4 11 14
8 7 −2

]
.

To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalisation of ATA.

In this case ATA is a 3 × 3 matrix, and by the usual methods (of row reducing A − λI to find a
basis for Nul(A− λI) for each eigenvalue λ), you can find that

v1 =

 1/3
2/3
2/3

 , v2 =

 −2/3
−1/3

2/3

 , and v3 =

 2/3
−2/3

1/3


is an orthonormal basis of R3 consisting of eigenvectors of ATA, with corresponding eigenvalues
λ1 = 360, λ2 = 90, and λ3 = 0.

2. Set up V and Σ.

Following the proof of the theorem, we have

V =
[
v1 v2 v3

]
=

1

3

 1 −2 2
2 −1 −2
2 2 1

 and D =

[
σ1 0
0 σ2

]
for σ1 =

√
λ1 =

√
360 and σ2 =

√
λ2 =

√
90.

Since Σ must have the same size as A, we get

Σ =

[ √
360 0 0

0
√

90 0

]
.

3. Construct U .

We have U =
[
u1 u2

]
where ui = 1

σi
Avi.

In this case you can compute that

u1 =
1√
360

[
18
6

]
and u2 =

1√
90

[
3
−9

]
which means that we can write

U =
1√
10

[
3 −1
1 −3

]
.

Putting everything together produces the singular value decomposition

A = UΣV T =

[
3/
√

10 1/
√

10

1/
√

10 −3/
√

10

] [ √
360 0 0

0
√

90 0

] 1/3 2/3 2/3
−2/3 −1/3 2/3

2/3 −2/3 1/3

 .
Be careful to note that the third matrix factor is the transpose V T rather than V .
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