MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 2

1 Course updates

The website is up at http://www.math.ust.hk/~emarberg/Math6150F| and the first homework assign-
ment have been posted. The first assignment is due in class next Monday, 13 February.

2 Reflection groups

Let V be a vector space over the real numbers R, with a bilinear form (-,-) : V' x V' — R that is both
symmetric and positive definite. Recall that these properties are equivalent to requiring that (u, v) = (v, u)
for all u,v € V and (v,v) > 0 if v € V is nonzero.

Two vectors u,v € V are orthogonal if (u,v) = 0.

The important thing about this setup is the following basic fact from linear algebra: if U C V is any
subspace and Ut = {v € V : (u,v) = 0 for all uw € U} then U~ is also a subspace and V = U @ VL. If
U is a one-dimensional space (i.e., a line), then U~ is the hyperplane orthogonal to U.

Example. If V' = R" then the standard choice for (-,-) is given by setting (>_, ae;, Y, bie;) = >, a;b;.

Definition. The reflection through a nonzero vector o € V' is the linear map

sa:vl—>v—2%a for v e V.

Note that we don’t have to worry about dividing by («, «) since the form is positive definite.

Fix a nonzero vector a € V. To get some geometric intuition for what s, does, consider the following
simple facts. Each of these statements follows immediately from the definition of s,.

Lemma. s, = s., for any nonzero scalar ¢ € R.

Lemma. s,(a) = —a.

Lemma. If v € V and (v,a) = 0 then s,(v) = v.

Thus s, negates a and fixes every vector orthogonal to a. In other words, s, acts on V by reflecting
vectors across the hyperplane orthogonal to a.

Lemma. s2 = 1.

a =

Proof. This is clear from the geometric description of s, just given. Algebraically, we have s2(v) =

Sa(8a0) = 84 (v o) a) =y — 20y 20 g forallv €V, s0 s2 =1. O

(o, ) T (a,q) (er,c)

Proposition. If v,w € V then (sov, sqw) = (v, w).

Proof. This statement generalizes the fact from planar geometry that reflection across a line preserves
angles. Algebraically, the result follows by using bilinearity to expand

(Sav, Sqw) = (v — 2((02’7’5))@710 — 2((;’?’;3) a)

2(11,((();)7((111;704) - 2(1),2)7((;;;,0() + 4(v,az((;f)(;(;2)(a,a) _ (U,’LU).

= (U’w) -
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We write GL(V) for the general linear group of V', consisting of all invertible linear maps V' — V. The
orthogonal group of V with respect to the form (-,-) is the group O(V') consisting of all maps g € GL(V)
that preserve our bilinear form, i.e., with (gv,gw) = (v, w) for v,w € V. These sets are groups with
respect to composition of linear maps.

The preceding proposition amounts to saying that each reflection s, belongs to O(V).

Definition. A (finite) reflection group is a (finite) subgroup of O(V') generated by {s, : @ € X} for
some finite set of nonzero vectors X C V'\ {0}.

The goal of the next few lectures will be to classify the finite reflections groups, that is, to describe which
finite groups arise as reflection subgroups of O(V') for some choice of V' and the accompanying bilinear
form. It turns out, surprisingly, that such a classification is possible and nontrivial. This will afford
concrete realizations of many Coxeter groups, and motivate the study of Coxeter systems in general.

Example (Dihedral groups). Let V = R? with the standard bilinear form. Fix a regular m-gon centered
at the origin. Let D, be the set of the following linear transformations:

(i) rotation counter-clockwise by angle 2% for j=0,1,2,...,m—1,

(ii) reflection across one of the 2m “diagonals” of our m-gon (that is, across a line through the origin
that either connects two opposite vertices, two midpoints of opposite sides, or a vertex to the
midpoint of the opposite side).

There are m distinct transformations of each of these types, so |D,,| = 2m. One can check that D,, is a
group with respect to composition: this is the group of all rigid motions of R? that preserve our regular
polygon. Moreover, D,, is a reflection group since rotation by angle %” is a product of two diagonal
reflection. (Try to visualize this for m = 5 and m = 6.) Call D,, the dihedral group of size 2m or the

Cozxeter group of type I(m).

Example (Symmetric groups). Recall that S,, is the symmetric group of permutations of [n] = {1,2,...,n}.
View S,, as a subgroup of O(n,R), the orthogonal group of V' = R™ with the standard form, by having
w € S, act on the standard basis e;,ez,...,e, € R" via w(e;) = e,(;), and extending linearly. (Check

yourself that this action preserves the standard form (-,-).)

Now w € S, corresponds to the matrix (aq;); jem) With a;; = 1if j = w(i) and 0 otherwise.
Recall that S, = (s1,82,...,8,—1) where s; = (i,i + 1) transposes ¢ and i + 1.

Fact. With respect to our inclusion S,, < O(n,R), we have s; = s, for a = e; — ;1.
Proof. If i € [n — 1] and j € [n] then

2(ei—eit1,€5
Sei—eisr (€5) =€ — %(ez —eit1) = €5 — Gij(e; — €ip1) + Giy1,j(ei — €it1).
The last expression simplifies to e; if j =i+ 1, to e;=1 if j = i, and to e; otherwise, which is ey, ;). O

Thus S, is (isomorphic) to a finite reflection group: this group is the Cozeter group of type A,—1.

3 Root systems

To classify reflection groups, we develop some general theory about the action of such a group on the
ambient vector space. Continue to let V be a real vector space with a symmetric, positive definite,
bilinear form (-,-). Let W C O(V) be a finite reflection group.

Proposition. If w € O(V) and 0 # a € V then ws,w™! = s,,. Hence if w, s, € W then s,, € W.
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Proof. We have ws,w ™ (wa) = wse(a) = w(—a) = —wa = sya(wa). To show that ws,w ™! = Sy, it
suffices to check that ws,w™1(B) = B = swa(B) for all B € V with (wa, 8) = 0. But if (wa, ) = 0 then

0= (wa, B) = (wwa, w™'f) = (a,w™'B),
50 so(w™tB) = w™tB and therefore ws,w=1(B) = B. ]
When s is a reflection in O(V), let Lg be the line spanned by any nonzero vector o« € V with s = s,.

Note that L, determines s, and that we get the same line for any choice of a.

The proposition shows that W permutes the set of lines {Ls : s is a reflection in W}. To study the
structure of W, we should consider this action closely. But rather than work with lines, let’s instead
replace each line by a pair of opposite vectors and examine W’s action on the resulting set of vectors.

This sequences of ideas motivates the following definition of the root system of a reflection group.

Definition. Let ® be a finite set of nonzero vectors in V' such that

(R1) ® NRa = {a, —a} for each « € P.

(R2) so(B) € @ for all o, 8 € D.

Call ® a root system, and refer to its elements as roots.

If W = (sq : @ € ®), then we say that W is the reflection group associated to ®.

We have the following correspondence between finite reflection groups and root systems.

Proposition. If W C O(V) is a finite reflection group then W is the reflection group associated to some
root system @ (though this many not be unique).

Proof. Construct ® by including the pair of unit vectors on the line L, for each reflection s € W. This
set is finite since W is finite; ® obviously satisfies (R1); and (R2) holds by the previous proposition. [J

Proposition. If ® is a root system and W is its associated reflection group, then W is finite.

Proof. Let U = R-span{a € ®} and U+ = {v € V : (u,v) = 0 for all u € U}. Then for each a € ® we
have squ = u for all u € UL, so wu = u for all v € UL. We deduce that if wa = « for all @ € ® then w
fixes all elements of V = U @ U+, so w = 1. Thus the homomorphism W — S,, for n = |®| induced by
the action of W on @ has trivial kernel so is injective, and so |W| < [S,| = n! < cc. O

Moral: from any finite reflection group we can construct a root system, and the reflections indexed by a
root system generate a finite reflection group. So we should develop some theory about root systems.
Definition. A total order on V is a transitive relation < such that

(1) A<por A=porpu<Aforeach \,ueV.

(2) f p<vthen A+ pu < A+ v for each \, p,v € V.

(3) If A < p then eX < ep and —cu < —c for A\, u € V and any real number ¢ > 0.

This list of conditions looks a little technical, but really just axiomatizes the most natural properties of
the usual total order on real numbers.

With respect to a total order < on V', a vector v € V' is positive if 0 < v. Positive vectors are preserved
under sums and under products by positive scalars. An important thing to note:

Proposition. A total order < exists on V.
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Proof. Let eq,eq,...,e, be an arbitrary basis of V. Set A < p if we have A = aje; + ases + - -+ + anen
and p = biey + boes + ... bye,, where each a;,b; € R, and it holds that a; < b; for some j € [n] while
a; = b; for 1 < ¢ < j. Check that this relation is transitive and satisfies the axioms of a total order. [

We refer to the total order constructed in the preceding proof and the lexicographic order induced by the
ordered basis e1,es, ..., €.

There are several important constructions attached to a root system which depend on a choice of total
order on V. The relevant definitions can seem a little unnatural, since at our current level of abstraction
there is no obviously “best” total order to adopt. We will see, however, that all useful definitions
depending on a choice of total order are actually independent of our choice.

Definition. Let ® be a root system. A subset II C ® is a positive system if every o € ® is positive (i.e.,
0 < o) with respect to some total order < on V.

Proposition. If IT C & is a positive system then ® = II LI —II where LI denotes disjoint union.

Proof. This follows since roots in ® come in pairs {—«, a}. O

Definition. A subset A C ® is a simple system if A is a linearly independent set of vectors and each
a € & can be expressed as o = EﬁeA cgf for coeflicients cs3 € R which are either all > 0 or all < 0.
Elements of a simple system are called simple roots.

It is not obvious that every root system contains a simple system. (Why is it obvious that every root
system contains a positive system?) Nevertheless, the following is true:
Theorem. Let ® be a root system.

(a) If A is a simple system in @, then there is a unique positive system II C ® containing A.

(b) Every positive system II C ® contains a unique simple system. Thus, simple systems always exist.

Proof. Today, we prove the first part and start the second.

(a) The unique positive system II containing a given simple system A is the one defined with respect
to the lexicographic total order induced by any ordering of A. This positive system is uniquely
characterized as the intersection ® N R*-span{a € A} where Rt = {z € R: z > 0}.

(b) Suppose A is a simple system contained in a positive system II. Then A is the unique simple system
in IT since A is the subset of roots A € II such that A # « + 8 for all o, 8 € II.

It remains to construct a simple system A C II. The idea is to let A be the minimal subset of
IT such that each « € II is a nonnegative linear combination of elements of A. This set will be a
simple system if we can show that it is linearly independent—which we will do next time!

O
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