MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 8

1 Last time: Coxeter groups in general

Recall another equivalent definition of a Coxeter system:

Definition. A Cozeter system (W, S) is a pair in which
1. W is a group.
2. S C W generates W.
3. Every s € S has s> =1# s.

4. The natural map (s € S : (st)™() =1 for s,t € S with m(s,t) < co) — W is an isomorphism,
where m(s,t) denotes the order of st € W for s,t € S.

We say that W is a Coxeter group relative to the set of simple generators S.

The Cozxeter graph of a Coxeter system (W, .S) is the weighted graph with vertex set S, and with an edge
labeled by m(s,t) from s to ¢t whenever s,t € S are such that m(s,t) > 2.

The length function of (W, S) is the map £ : W — N which assigns to w the smallest integer r > 0 such
that w = s185 -+ s, for some s; € S.

Call w = s1892 -+ 8, a reduced expression for w if s; € S and £(w) = r.

Given (W, S), define V' as the real vector space R-span{a; : s € S}. Here, each a; is just a formal symbol.
Define (-,-) as the bilinear form in V' with (as, ) = —cos(n/m(s,t)) for s,t € S. Each ay is a unit
vector with respect to this form.

Theorem. For each s,t € S, it holds that (o,0;)™(*! = 1. Hence the map S + GL(V) given by s — o
uniquely extends to a homomorphism o : W — GL(V).
We call this homomorphism the geometric representation of (W, S).
Note, for s € S:
1. o505 = —ag.
2. o, preserves (-, ).
3. o0 =0if (ag,v) =0.
4. o2 =1.

Notation: from now on, we write wv in place of o,v for the action of w € W on v € V under the
geometric representation.

2 Root system of a Coxeter group

Let (W, S) be a Coxeter system.
Define the root system ® of (W, S) to be the set {wa, : w e W, s € S}.
Note that

1. Every a € ®@ has (a, ) = 1.

2. wd =@ forallwe W.

3. ® = —® since if @ = wa, then wsa; = —a.
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By definition, every a € V' can be written uniquely as
a= Z CsOlg with ¢, € R.
seS

Call a positive and write a > 0 if every ¢; > 0 in this decomposition and « # 0. Call « negative and
write a < 0 if every ¢s > 0 in this decomposition and « # 0.

Let " ={a€®:a>0}and &~ ={a € ®:a < —0}.

Also, given J C W, let W; = (J) C W and define ¢; : W; — N as the map which assigns to w € W the
least integer » > 0 such that w = sy - - - s, for some s; € J.

Note that ¢(w) < £;(w) for all w € W;. Later, we will see that this inequality is an equality.

We arrive to today’s main new result:

Theorem. Let w € W and s € S.
(1) If L(ws) > £(w) then was > 0.
(2) If {(ws) < £(w) then wa, < 0.
Proof. Note that (1) = (2) since if v = ws then £(ws) < £(w) & £(vs) > £(v) and was < 0 < vag > 0.

We prove (1) by induction on ¢(w). Assume ¢(ws) > ¢(w). If {(w) = 0 then w = 1 and was = a5 > 0.
Suppose ¢(w) > 0 and that w has a reduced expression ending in ¢t € S. Then ¢(wt) < {(w) so s # t.

Let J = {s,t}, and consider
A={veW: v lwe W;and £(v) + Ly(v  w) = £(w)}.

Note that w € A so that A is not empty. We may therefore choose v € A with minimal length.

Write vy = v~'w € W;. Then ¢(w) = £(v) + £;(v;) by definition. Note that wt € A since (tw™1)w =
t € Wy and £(wt) + £;(t) = ({(w) — 1) + 1 = ¢(w). Therefore we must have £(v) < l(wt) = £(w) — 1.

If ¢(vs) < £(v) then we would have

(w) < L(vs) 4+ £((sv™Hw)
< l(vs) + Ly(svw)
={(v) — 1+ L;(sv w)
<) =1+ Ly w) + 1 = L) + (v w) = £(w)

in which case all inequalities would have to be equalities and we would have £(w) = £(vs) + £5((sv™!)w)
so vs € A. But this would contradict the minimality of £(v).

Therefore £(vs) > £(v), so by induction vas > 0. A similar argument shows that £(vt) > £(v) so by
induction vay > 0. As w = vvy, the theorem will be an immediate consequence of the following lemma:

Lemma. vja, = csas + cpay where ¢ > 0 and ¢; > 0.
Proof. We claim that £;(vys) > £;(vy). This follows since if £;(vys) < £;(vy) then
((ws) = L(vo ws) < L(v) + Lo ws) = £(v) + L(vs) < L) +Lr(vys) < L(v) + Lr(vy) = L(w)

but ¢(w) < ¢(ws). Therefore any reduced expression for vy in W; must be an alternating product of the
factors s,t ending in t. There are two cases to consider:

(a) If m(s,t) = oo then it is a straightforward exercise in algebra to show that v as = aas + bay where
a,b > 0 are integers with |a — b| = 1.
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(b) Suppose m = m(s,t) < co. We must have £;(v;) < m since the unique element of W with length
m has reduced expressions ending in both s and ¢t. Therefore v; = (st)* or v; = t(st)* for some
k < m/2. Observe that in the plane spanned by «as, a; in R™, the vectors a; and «; make an angle
of m—7/m and st acts as a rotation by angle 2r/m. By drawing the right picture (try to do this!)
one deduces that vy is in the positive cone spanned by ag and oy, so the lemma again holds.

O
O
The theorem has two important corollaries.

Corollary. The root system @ is the disjoint union of ®* and ®~.
This result shows that when & is a finite set, it is a root system according to our earlier definition for

finite reflection groups.

Proof. Certainly ®+ N &~

= @, and if @ = wa, € ® for w € W and s € S then either o € ®T if
(ws) > L(w) or v € D if L(ws)

< l(w). O

Corollary. The geometric representation o : W — GL(V) is faithful, that is, injective.

Proof. Let w belong to the kernel of o, so that wa = « for all @« € V. If w # 1 then for some s € S
we have £(ws) < £(w). But the theorem then implies that wa,s < 0, contradicting our assumption that
was = ag > 0. Therefore o has trivial kernel, so is an injective homomorphism. O
As an application of this last result, we can clear up a technical property of parabolic subgroups.
As usual, let (W, S) be a Coxeter system. Suppose J C S.
The parabolic subgroup corresponding to J is Wy = (s € J)y C W.
By restricting m : S x S — {1,2,3,...} U{oo} to J x J, we may define a Coxeter group

W, =(seS:(st)">Y =1 for s,t € J with m(s,t) < co).
Clearly (W, J) is a Coxeter system, and there is a surjective homomorphism

WJ-)WJ.

Proposition. This map is actually an isomorphism, so we can regard (W, J) as a Coxeter system.

Proof. Let V; = R-span{a, : s € J} C V and let V; be the geometric representation of W.

Consider the diagram o o
W; — GL(VJ)

| A
W; — GL(VJ)
where the horizontal arrows are the geometric representation of W; and W (restricted to W), where

W — W is the surjective map given ‘above, and where ¢ is the isomorphism GL(V;) — GL(Vy) induced
by the obvious identification of V; = V.

This diagram is commutative (consider the images of s € J), so as the map W; — GL(V}) is injective

by the previous corollary, the map W; — W must also be injective. O

Next time: more properties of parabolic subgroups, a geometric interpretation of the length function of
W, and the strong exchange condition.
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