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1 Last time: Coxeter groups in general

Recall another equivalent definition of a Coxeter system:

Definition. A Coxeter system (W,S) is a pair in which

1. W is a group.

2. S ⊂W generates W .

3. Every s ∈ S has s2 = 1 6= s.

4. The natural map 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ S with m(s, t) < ∞〉 → W is an isomorphism,
where m(s, t) denotes the order of st ∈W for s, t ∈ S.

We say that W is a Coxeter group relative to the set of simple generators S.

The Coxeter graph of a Coxeter system (W,S) is the weighted graph with vertex set S, and with an edge
labeled by m(s, t) from s to t whenever s, t ∈ S are such that m(s, t) > 2.

The length function of (W,S) is the map ` : W → N which assigns to w the smallest integer r ≥ 0 such
that w = s1s2 · · · sr for some si ∈ S.

Call w = s1s2 · · · sr a reduced expression for w if si ∈ S and `(w) = r.

Given (W,S), define V as the real vector space R-span{αs : s ∈ S}. Here, each αs is just a formal symbol.
Define (·, ·) as the bilinear form in V with (αs, αt) = − cos(π/m(s, t)) for s, t ∈ S. Each αs is a unit
vector with respect to this form.

Theorem. For each s, t ∈ S, it holds that (σsσt)
m(s,t) = 1. Hence the map S 7→ GL(V ) given by s 7→ σs

uniquely extends to a homomorphism σ : W → GL(V ).

We call this homomorphism the geometric representation of (W,S).

Note, for s ∈ S:

1. σsαs = −αs.

2. σs preserves (·, ·).

3. σsv = 0 if (αs, v) = 0.

4. σ2
s = 1.

Notation: from now on, we write wv in place of σwv for the action of w ∈ W on v ∈ V under the
geometric representation.

2 Root system of a Coxeter group

Let (W,S) be a Coxeter system.

Define the root system Φ of (W,S) to be the set {wαs : w ∈W, s ∈ S}.

Note that

1. Every α ∈ Φ has (α, α) = 1.

2. wΦ = Φ for all w ∈W .

3. Φ = −Φ since if α = wαs then wsαs = −α.
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By definition, every α ∈ V can be written uniquely as

α =
∑
s∈S

csαs with cs ∈ R.

Call α positive and write α > 0 if every cs ≥ 0 in this decomposition and α 6= 0. Call α negative and
write α < 0 if every cs ≥ 0 in this decomposition and α 6= 0.

Let Φ+ = {α ∈ Φ : α > 0} and Φ− = {α ∈ Φ : α < −0}.

Also, given J ⊂W , let WJ = 〈J〉 ⊂W and define `J : WJ → N as the map which assigns to w ∈WJ the
least integer r ≥ 0 such that w = s1 · · · sr for some si ∈ J .

Note that `(w) ≤ `J(w) for all w ∈WJ . Later, we will see that this inequality is an equality.

We arrive to today’s main new result:

Theorem. Let w ∈W and s ∈ S.

(1) If `(ws) > `(w) then wαs > 0.

(2) If `(ws) < `(w) then wαs < 0.

Proof. Note that (1) ⇒ (2) since if v = ws then `(ws) < `(w) ⇔ `(vs) > `(v) and wαs < 0 ⇔ vαs > 0.
We prove (1) by induction on `(w). Assume `(ws) > `(w). If `(w) = 0 then w = 1 and wαs = αs > 0.
Suppose `(w) > 0 and that w has a reduced expression ending in t ∈ S. Then `(wt) < `(w) so s 6= t.

Let J = {s, t}, and consider

A = {v ∈W : v−1w ∈WJ and `(v) + `J(v−1w) = `(w)}.

Note that w ∈ A so that A is not empty. We may therefore choose v ∈ A with minimal length.

Write vJ = v−1w ∈ WJ . Then `(w) = `(v) + `J(vJ) by definition. Note that wt ∈ A since (tw−1)w =
t ∈WJ and `(wt) + `J(t) = (`(w)− 1) + 1 = `(w). Therefore we must have `(v) ≤ `(wt) = `(w)− 1.

If `(vs) < `(v) then we would have

`(w) ≤ `(vs) + `((sv−1)w)

≤ `(vs) + `J(sv−1w)

= `(v)− 1 + `J(sv−1w)

≤ `(v)− 1 + `J(v−1w) + 1 = `(v) + `J(v−1w) = `(w)

in which case all inequalities would have to be equalities and we would have `(w) = `(vs) + `J((sv−1)w)
so vs ∈ A. But this would contradict the minimality of `(v).

Therefore `(vs) > `(v), so by induction vαs > 0. A similar argument shows that `(vt) > `(v) so by
induction vαt > 0. As w = vvJ , the theorem will be an immediate consequence of the following lemma:

Lemma. vJαs = csαs + ctαt where cs ≥ 0 and ct ≥ 0.

Proof. We claim that `J(vJs) ≥ `J(vJ). This follows since if `J(vJs) < `J(vJ) then

`(ws) = `(vv−1ws) ≤ `(v) + `(v−1ws) = `(v) + `(vJs) ≤ `(v) + `J(vJs) < `(v) + `J(vJ) = `(w)

but `(w) < `(ws). Therefore any reduced expression for vJ in WJ must be an alternating product of the
factors s, t ending in t. There are two cases to consider:

(a) If m(s, t) =∞ then it is a straightforward exercise in algebra to show that vJαs = aαs + bαt where
a, b ≥ 0 are integers with |a− b| = 1.
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(b) Suppose m = m(s, t) <∞. We must have `J(vJ) < m since the unique element of WJ with length
m has reduced expressions ending in both s and t. Therefore vJ = (st)k or vJ = t(st)k for some
k < m/2. Observe that in the plane spanned by αs, αt in Rn, the vectors αs and αt make an angle
of π− π/m and st acts as a rotation by angle 2π/m. By drawing the right picture (try to do this!)
one deduces that vJαs is in the positive cone spanned by αs and αt, so the lemma again holds.

The theorem has two important corollaries.

Corollary. The root system Φ is the disjoint union of Φ+ and Φ−.

This result shows that when Φ is a finite set, it is a root system according to our earlier definition for
finite reflection groups.

Proof. Certainly Φ+ ∩ Φ− = ∅, and if α = wαs ∈ Φ for w ∈ W and s ∈ S then either α ∈ Φ+ if
`(ws) > `(w) or α ∈ Φ− if `(ws) < `(w).

Corollary. The geometric representation σ : W → GL(V ) is faithful, that is, injective.

Proof. Let w belong to the kernel of σ, so that wα = α for all α ∈ V . If w 6= 1 then for some s ∈ S
we have `(ws) < `(w). But the theorem then implies that wαs < 0, contradicting our assumption that
wαs = αs > 0. Therefore σ has trivial kernel, so is an injective homomorphism.

As an application of this last result, we can clear up a technical property of parabolic subgroups.

As usual, let (W,S) be a Coxeter system. Suppose J ⊂ S.

The parabolic subgroup corresponding to J is WJ = 〈s ∈ J〉 ⊂W .

By restricting m : S × S → {1, 2, 3, . . . } ∪ {∞} to J × J , we may define a Coxeter group

WJ = 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ J with m(s, t) <∞〉.

Clearly (WJ , J) is a Coxeter system, and there is a surjective homomorphism

WJ →WJ .

Proposition. This map is actually an isomorphism, so we can regard (WJ , J) as a Coxeter system.

Proof. Let VJ = R-span{αs : s ∈ J} ⊂ V and let VJ be the geometric representation of WJ .

Consider the diagram
WJ > GL(VJ)

WJ

∨
> GL(VJ)

φ
∧

where the horizontal arrows are the geometric representation of WJ and W (restricted to WJ), where
WJ →WJ is the surjective map given above, and where φ is the isomorphism GL(VJ)→ GL(VJ) induced
by the obvious identification of VJ ∼= VJ .

This diagram is commutative (consider the images of s ∈ J), so as the map WJ → GL(VJ) is injective
by the previous corollary, the map WJ →WJ must also be injective.

Next time: more properties of parabolic subgroups, a geometric interpretation of the length function of
W , and the strong exchange condition.
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