
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 9

1 Last time: the geometric representation is faithful

Let (W,S) be a Coxeter system.

Write m(s, t) for the order of st in W for s, t ∈ S.

Note that m(s, s) = 1 and m(s, t) = m(t, s) for all s, t, and we have

W = 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ S with m(s, t) <∞〉.

Define V as the real vector space with a basis given by the set of formal symbols {αs : s ∈ S}.

Define (·, ·) as the bilinear form on V with (αs, αt) = − cos(π/m(s, t)) for s, t ∈ S. Note that (αs, αs) = 1.

Let s ∈ S act on V by the formula

sv = v − 2(αs, v)αs for v ∈ V.

Theorem. The map S 7→ GL(V ) defined by this formula has a unique extension to a homomorphism
W → GL(V ). Thus, setting wv = s1(s2(s3(· · · (skv) · · · ))) for v ∈ V and w ∈ W , where w = s1s2 · · · sk
is any expression for w with si ∈ S, makes V into a W -module.

We call the W -module V the geometric representation if (W,S). One must be careful with this termi-
nology, since the same term is sometimes used to refer to other natural representations of W . The most
important properties of this representation, established over the last few lectures, are:

Proposition. It holds that (wu,wv) = (u, v) for all u, v ∈ V and w ∈W .

Theorem. If wv = v for all v ∈W then w = 1.

The geometric representation therefore defines an injective homomorphism W → GL(V ).

Let ` : W → N denote the length function of (W,S), so that `(w) is the least integer r ≥ 0 such that
w = s1 · · · sr for some si ∈ S. For any α ∈ V , there is a unique expansion

α =
∑
s∈S

csαs

for some real coefficients cs ∈ R. Write α > 0 if α 6= 0 and every cs ≥ 0. Write α < 0 if −α > 0. Another
useful fact proved last time:

Theorem. Let w ∈W and s ∈ S.

(a) If `(ws) > `(w) then wαs > 0.

(b) If `(ws) < `(w) then wαs < 0.

2 Parabolic subgroups

Suppose J ⊂ S. We then have a subgroup WJ = 〈s ∈ J〉 ⊂W .

At the same time, we can define a Coxeter group

WJ = 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ J with m(s, t) <∞〉.

Clearly (WJ , J) is a Coxeter system, and there is a surjective homomorphism

WJ →WJ .
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Last lecture, we proved that this map is actually an isomorphism, so (WJ , J) as a Coxeter system.

Let `J : WJ → N be the length function of (WJ , J), so that `J(w) is the smallest integer r ≥ 0 such that
w = s1 · · · sr for some si ∈ J . This is only defined for w ∈WJ , and clearly `(w) ≤ `J(w).

Recall that if w ∈W then w = s1 · · · sr is a reduced expression if si ∈ S and `(w) = r.

Theorem. The following properties hold:

(a) If w = s1 · · · sr (si ∈ S) is a reduced expression for w ∈WJ then every factor si ∈ J .

Therefore `J(w) = `(w) for w ∈WJ .

(b) Let I, J ⊂ S. Then I ⊂ J if and only if WI ⊂WJ , and WI ∩WJ = WI∩J .

(c) The set S is a minimal generating set for W .

Proof. To prove (a), we use induction of `(w), noting that `(1) = 0 = `J(1). Assume w 6= 1 and
w = s1 · · · sr is a reduced expression, and set s = sr. Then wαs > 0 by the theorem proved last time.
Since w ∈WJ , we can write w = t1 · · · tq for some ti ∈ J . One checks that

wαs = t1 · · · tqαs = αs +

q∑
i=1

ciαti for some coefficients ci ∈ R.

Since wαs < 0, we must have s = ti ∈ J for some i, and in this case wsr = s1 · · · sr−1 ∈ WJ is also a
reduced expression, so by induction si ∈ J for 1 ≤ i < r.

For (b), note that WI ∩ S = I by part (a) since any expression of length one is reduced. Therefore if
WI ⊂ WJ then I = WI ∩ S ⊂ WJ ∩ S = J . It clearly holds that WI∩J ⊂ WI ∩WJ and the reverse
containment follows by part (a).

Finally, note that if I ⊂ S and W = WI then part (b) implies that S ⊂ I so I = S.

3 Geometric interpretation of the length function

Recall that the root system of (W,S) is the set of vectors Φ = {wαs : w ∈W, s ∈ S} ⊂ V .

Define Φ+ = {α ∈ Φ : α > 0} and Φ− = {α ∈ Φ : α < 0}.

The last theorem in the first section today implies that:

Corollary. Φ is the disjoint union of Φ+ and Φ−.

The following generalizes a fact we saw earlier for finite reflection groups:

Proposition. If s ∈ S then sαs = −αs, and α 7→ sα defines a permutation of Φ+ − {αs}.

Proof. Suppose α ∈ Φ+ and α 6= αs. Since all elements of Φ are unit vectors, we have α /∈ Rαs, so
α =

∑
t∈S ctαt where each coefficient ct ≥ 0, and cq > 0 for some q 6= s. We cannot have sα ∈ Φ− since

if sα =
∑
t∈S c

′
tαt then ct = c′t for all t 6= s, and in particular c′q = cq > 0. At the same time, clearly

sα /∈ Rαs, so sα must belong to Φ+ − {αs}. Since s acts as an invertible map, the results follows.

We may now characterize the length of w ∈ W in terms of positive and negative roots, much like for
finite reflection groups.

Proposition. If w ∈W then `(w) is the number of positive roots α ∈ Φ+ with wα ∈ Φ−.
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Proof. Let Π(w) be the set of positive roots α ∈ Φ+ with wα ∈ Φ− and set n(w) = |Π(w)|. The proof is
the same as in the reflection group case several lectures ago. One first verifies for s ∈ S and w ∈W that

wαs > 0 ⇒ n(ws) = n(w) + 1

wαs < 0 ⇒ n(ws) = n(w)− 1

using the previous proposition. Comparing these properties to the identical ones pertaining to `(w), one
deduces that n(w) = `(w) by induction.

4 Roots and reflections

By the definition of the geometric representation, each s ∈ S acts on V as a reflection.

More generally, we can associate a reflection to any α ∈ Φ as follows.

Proposition. If α ∈ Φ then the set {wsw−1 : α = wαs for w ∈ W and s ∈ S} contains exactly one
element. I.e., if α = wαs then wsw−1 ∈W depends only on α, not on the choice of w ∈W and s ∈ S.

Proof. For v ∈ V , we compute that

wsw−1v = w
(
w−1v − 2(w−1v, αs)αs

)
= v − 2(w−1v, αs)wαs

= v − 2(v, wαs)wαs = v − 2(v, α)α.

The result now follows since W acts faithfully on V .

Given α ∈ Φ, define sα = wsw−1 where w ∈ W and s ∈ S are any elements with α = wαs. The
proposition shows that this construction is well-defined. Note that sαs

= s for s ∈ S.

Let T = T (W,S) = {sα : α ∈ Φ}.

Example. If W = Sn and S = {si = (i, i+ 1) ∈ Sn : i ∈ [n− 1]} then

T = {w(i, i+ 1)w−1 : i ∈ [n− 1], w ∈Wn} = {tij = (i, j) ∈ Sn : 1 ≤ i < j ≤ n}.

The set T is naturally indexed by Φ+.

Proposition. The map α 7→ sα is a bijection Φ+ → T .

Proof. If sα = sβ for α, β ∈ Φ+ then v − 2(v, α)α = v − 2(v, β)β) for all v ∈ V , so taking v = β gives
β = (β, α)α. Applying (β, ·) to both sides of this equation gives (β, α)2 = 1, so β ∈ {±α}. But as both
roots are positive, necessarily α = β.

We note another easy lemma for use later.

Lemma. If α, β ∈ Φ and β = wα for some w ∈W then wsαw
−1 = sβ .

Proof. Suppose g ∈ W is such that gαs = α. Then wsαw
−1 = wgs(wg)−1. Since wgαs = wα = β it

follows that (wg)s(wg)−1 = sβ .

This leads us to the following generalization of our earlier theorem:

Proposition. Let w ∈W and α ∈ Φ+. Then `(wsα) > `(w) if and only if wα > 0.
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Proof. It suffices to show that if `(wsα) > `(w) then wα > 0. (Why is this enough?)

We proceed by induction of `(w). The case when `(w) = 0 is clear, since then w = 1.

Assume `(w) > 0, so that `(sw) < `(w) for some s ∈ S. We then have `((sw)sα) = `(s(wsα)) ≥
`(wsα)− 1 > `(w)− 1 = `(sw), so by induction swα > 0.

Now suppose wα < 0. The only negative root made positive by s is −αs, so wα = −αs. But then
swα = s(−αs) = αs so (sw)sα(sw)−1 = s and wsα = sw. This is impossible since `(wsα) > `(w) > `(sw).

We deduce by this contradiction that instead wα > 0.

5 Strong exchange condition

We may now prove the most important technical property of a Coxeter group, generalizing the exchange
condition that we encountered for finite reflection groups.

Theorem. Let w = s1 · · · sr (si ∈ S) with `(w) ≤ r. Suppose t ∈ T is such that `(wt) < `(w).

Then there exists an index i ∈ [r] such that wt = s1 · · · ŝi · · · sr.

If `(w) = r, then the index i is unique.

Proof. Let t = sα for α ∈ Φ+. Since `(wt) < `(w), we have wα < 0. As α > 0, there must exist
an index i ≤ r such that si+1 · · · srα > 0 but sisi+1 · · · srα < 0. Since αsi is the only positive root
which si makes negative, it must hold that si+1 · · · srα = αsi . But our lemma above, it follows that
(si+1 · · · sr)t(si+1 · · · sr)−1 = si. Thus

wt = (s1 · · · si)(si+1 · · · sr)t = (s1 · · · si)si(si+1 · · · sr) = s1 · · · ŝi · · · sr.

If `(w) = r, then the index i must be unique since if we had

wt = s1 · · · ŝi · · · sr = s1 · · · ŝj · · · sr

for some 1 ≤ i < j ≤ n then it would follow that w = s1 · · · ŝi · · · ŝj · · · sr, which is impossible.

When t ∈ S ⊂ T , the theorem is referred to more simply as the exchange condition.

Next time: applications of the exchange condition, and an introduction to the Bruhat order.
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