MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 9

1 Last time: the geometric representation is faithful

Let (W, S) be a Coxeter system.
Write m(s,t) for the order of st in W for s,t € S.
Note that m(s,s) =1 and m(s,t) = m(t, s) for all s,¢, and we have

W=(seS:(st)y™®) =1 for s,t € S with m(s,t) < co).

Define V as the real vector space with a basis given by the set of formal symbols {a; : s € S}.
Define (-, -) as the bilinear form on V with (s, ;) = — cos(mw/m(s,t)) for s,t € S. Note that (as, ) = 1.

Let s € S act on V' by the formula

sv=v— 2(as,v)as forveV.

Theorem. The map S — GL(V) defined by this formula has a unique extension to a homomorphism
W — GL(V). Thus, setting wv = s1(s2(s3(- -+ (sxv)--+))) for v € V and w € W, where w = $182- - 8j,
is any expression for w with s; € S, makes V into a W-module.

We call the W-module V' the geometric representation if (W,S). One must be careful with this termi-
nology, since the same term is sometimes used to refer to other natural representations of . The most
important properties of this representation, established over the last few lectures, are:

Proposition. It holds that (wu,wv) = (u,v) for all u,v € V and w € W.

Theorem. If wv = v for all v € W then w = 1.
The geometric representation therefore defines an injective homomorphism W — GL(V).

Let £ : W — N denote the length function of (W, S), so that ¢(w) is the least integer r > 0 such that
w = 818, for some s; € S. For any o € V, there is a unique expansion

a= E CsQlg

seS

for some real coefficients ¢, € R. Write o > 0 if @ # 0 and every ¢s > 0. Write o < 0 if —a > 0. Another
useful fact proved last time:

Theorem. Let w € W and s € S.
(a) If L(ws) > £(w) then was > 0.
(b) If {(ws) < £(w) then wa, < 0.

2 Parabolic subgroups

Suppose J C S. We then have a subgroup W; = (s € J) C W.

At the same time, we can define a Coxeter group
W;={(seS:(st)y™>) =1 for s,t € J with m(s,t) < co0).
Clearly (W, J) is a Coxeter system, and there is a surjective homomorphism

WJ-)WJ.
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Last lecture, we proved that this map is actually an isomorphism, so (W, J) as a Coxeter system.

Let £; : Wy — N be the length function of (W, J), so that £;(w) is the smallest integer > 0 such that
w =818, for some s; € J. This is only defined for w € W, and clearly £(w) < £;(w).

Recall that if w € W then w = s --- s, is a reduced expression if s; € S and £(w) = 7.

Theorem. The following properties hold:
(a) If w=5s1---5, (s; € §) is a reduced expression for w € W then every factor s; € J.
Therefore ¢;(w) = {(w) for w € Wj.
(b) Let I,J C S. Then I C J if and only if W; C Wy, and Wy N W; = Winy.
(c) The set S is a minimal generating set for .
Proof. To prove (a), we use induction of ¢(w), noting that ¢(1) = 0 = £;(1). Assume w # 1 and

w = S1---8 is a reduced expression, and set s = s,.. Then was > 0 by the theorem proved last time.
Since w € W, we can write w = t; - - - t, for some ¢; € J. One checks that

q
wog =ty - tgog = g + g cioy, for some coefficients ¢; € R.
=1

Since was < 0, we must have s = t; € J for some i, and in this case ws, = s1---s,._1 € Wy is also a
reduced expression, so by induction s; € J for 1 <1 <.

For (b), note that W; NS = I by part (a) since any expression of length one is reduced. Therefore if
Wr C Wythen I =WrnNS cC W;nS =J. It clearly holds that W;~; C Wy N W; and the reverse
containment follows by part (a).

Finally, note that if I C S and W = W then part (b) implies that S C I so I = S. O

3 Geometric interpretation of the length function

Recall that the root system of (W, .S) is the set of vectors ® = {wa, : w e W, s € S} C V.
Define #* ={a€®:a >0} and ?~ ={a € P: a < 0}.

The last theorem in the first section today implies that:

Corollary. ® is the disjoint union of ®* and ®~.

The following generalizes a fact we saw earlier for finite reflection groups:

Proposition. If s € S then sa; = —ag, and « — sa defines a permutation of &+ — {a,}.

Proof. Suppose @ € ®T and o # «as. Since all elements of ® are unit vectors, we have a ¢ Ray, so
a= ZteS croy where each coefficient ¢; > 0, and ¢, > 0 for some g # s. We cannot have s € &~ since
if sa = ) ,cqciap then ¢; = ¢ for all ¢ # s, and in particular ¢/ = ¢, > 0. At the same time, clearly

sa ¢ Rag, so sa must belong to @ — {a,}. Since s acts as an invertible map, the results follows. O

We may now characterize the length of w € W in terms of positive and negative roots, much like for
finite reflection groups.

Proposition. If w € W then £(w) is the number of positive roots o € &+ with wa € &~



MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 9

Proof. Let TI(w) be the set of positive roots o € ®+ with wa € ®~ and set n(w) = |II(w)|. The proof is
the same as in the reflection group case several lectures ago. One first verifies for s € S and w € W that

was > 0 = n(ws) =n(w) +1
was < 0= n(ws) =n(w) —1

using the previous proposition. Comparing these properties to the identical ones pertaining to £(w), one
deduces that n(w) = ¢(w) by induction. O

4 Roots and reflections

By the definition of the geometric representation, each s € S acts on V' as a reflection.

More generally, we can associate a reflection to any a € ¢ as follows.

Proposition. If a € ® then the set {wsw™! : a = wa, for w € W and s € S} contains exactly one
element. Le., if &« = wa, then wsw™ € W depends only on «, not on the choice of w € W and s € S.

Proof. For v € V| we compute that

wsw v =w (w_lv —2(w o, as)as)
= v —2(w v, ay)was

=0 — 2(v, wa,)was = v — 2(v, @)a.
The result now follows since W acts faithfully on V. O

Given o € ®, define s, = wsw™! where w € W and s € S are any elements with o = wa,. The
proposition shows that this construction is well-defined. Note that s,, = s for s € S.

Let T =T(W,S) = {sq : @ € D}.
Example. If W =S5, and S = {s; = (4,1 + 1) € Sp, : i € [n — 1]} then

T={wii+w':icn-1], we W,}={t;j=(i,j) € Sn: 1 <i<j<n}

The set T is naturally indexed by ®7.
Proposition. The map a — s, is a bijection ®+ — 7.

Proof. If s, = sg for a, B € ®T then v — 2(v,a)a = v — 2(v, 8)B) for all v € V, so taking v = 3 gives
B = (B,a)a. Applying (3,-) to both sides of this equation gives (8,a)? =1, so 8 € {£a}. But as both
roots are positive, necessarily a = 3. O

We note another easy lemma for use later.

-1

Lemma. If a, 8 € ® and 8 = wa for some w € W then ws,w™" = sg.

-1

Proof. Suppose g € W is such that gas, = a. Then ws,w™! = wgs(wg)~!. Since wga, = wa = 3 it
1

follows that (wg)s(wg)~' = sg. O
This leads us to the following generalization of our earlier theorem:

Proposition. Let w € W and « € ®+. Then ¢(ws,) > ¢(w) if and only if wa > 0.



MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 9

Proof. Tt suffices to show that if £(wsa) > ¢(w) then wa > 0. (Why is this enough?)
We proceed by induction of £(w). The case when ¢(w) = 0 is clear, since then w = 1.

Assume £(w) > 0, so that ¢(sw) < f(w) for some s € S. We then have {((sw)sy) = l(s(wsy)) >
l(wsy) — 1 > L(w) — 1 = {(sw), so by induction swa > 0.

Now suppose wa < 0. The only negative root made positive by s is —ag, so wa = —as. But then
swa = s(—ag) = s 80 (sw)se(sw) ™! = s and ws, = sw. This is impossible since {(ws,) > £(w) > L(sw).

We deduce by this contradiction that instead wa > 0. O

5 Strong exchange condition

We may now prove the most important technical property of a Coxeter group, generalizing the exchange
condition that we encountered for finite reflection groups.

Theorem. Let w =15, (s; € S) with £(w) < r. Suppose ¢ € T is such that £(wt) < £(w).

Then there exists an index ¢ € [r] such that wt = sy ---§; -+ s,..

If £(w) = r, then the index i is unique.

Proof. Let t = s, for « € ®*. Since {(wt) < l(w), we have wa < 0. As a > 0, there must exist
an index ¢ < r such that s;11---s,a > 0 but s;5,41---s,a < 0. Since oy, is the only positive root

which s; makes negative, it must hold that s;41---s,a = as,. But our lemma above, it follows that
(Six1- 8 )t(six1--+8.) 1 =s;. Thus

~

Wt:(51"‘5i)(5i+1"‘5r)t:(51"’5i)$z‘(5i+1"'5r):51"‘5i"'5r~

If ¢(w) = r, then the index ¢ must be unique since if we had

Wt:31"'SAi"'Sr:31"'8?‘"'&
for some 1 <i < j < n then it would follow that w = s;---§;---§; - -- s, which is impossible. O

When t € S C T, the theorem is referred to more simply as the exchange condition.

Next time: applications of the exchange condition, and an introduction to the Bruhat order.
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