
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 17

1 Hecke algebras so far

Here’s what we know about Hecke algebras so far.

Let (W,S) be a Coxeter system.

Let A be a commutative ring with unit 1.

Choose elements as, bs ∈ A for s ∈ S such that as = at and bs = bt if s, t ∈ S are conjugate in W .

The following definition is a little different from the one we’ve been using in past lectures, but is equivalent
by the main result last time:

Definition. The generic (Hecke) algebra H is the (unital, associative) A-algebra generated by {Ts : s ∈
S} subject to the relations

(1) T 2
s = asTs + bsT1 for s ∈ S.

(2) TsTtTs · · · = TtTsTt · · · for s, t ∈ S, where both sides have m(s, t) terms.

For w ∈ W define Tw ∈ H by Tw = Ts1Ts2 · · ·Tsk where w = s1s2 · · · sk is any reduced expression. We
get the same element in H for any choice of reduced expression as a result of relation (1). For w = 1,
define T1 as the unit in H.

Inverting the order of results last time, we get:

Theorem. The algebra H is a free A-module with basis {Tw : w ∈W} and unit T1, and it holds that

1. TsTw =

{
Tsw if `(sw) > `(w)

asTw + bsTsw if `(sw) < `(w)
if s ∈ S and w ∈W .

2. TwTs =

{
Tws if `(ws) > `(w)

asTw + bsTws if `(ws) < `(w)
if s ∈ S and w ∈W .

3. TxTy = Txy if x, y ∈W and `(xy) = `(x) + `(y) and T 2
s = asTs + bsT1 for s ∈ S.

Moreover, H is the only A-algebra structure on the free A-module with basis {Tw : w ∈W} and unit T1
satisfying any one of these properties.

The advantage of thinking of H via its presentation is:

Corollary. If X is an A-algebra and ϕ : {Ts : s ∈ S} → X is map, then ϕ extends to a (unique) A-algebra
homomorphism H → X if and only both of the following hold:

(1) φ(Ts)
2 = asφ(Ts) + bs1X for s ∈ S.

(2) φ(Ts)φ(Tt)φ(Ts) · · · = φ(Tt)φ(Ts)φ(Tt) · · · for s, t ∈ S, where both sides have m(s, t) terms.

2 Hecke algebras from idempotents

The goal, before proceeding to more technical properties of H, is to motivate our definition of the generic
Hecke algebra of a Coxeter system as a special case of a much more general construction in representation
theory. We’ll realize half of this goal today, by setting up the main parts of the general theory of Hecke
algebras. The rest will come next time.

We’ll need a little commutative algebra. To make everything a bit simpler, we restrict our attention to
the following well-behaved situation: let A be a finite-dimensional algebra over a field K. All algebras
are associative and unital.
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The (Jacobson) radical of A is the set of elements J(A) consisting of the intersection of the annihilators
of all simple left A-modules. Note that this set is actually a two-sided ideal.

The seeming preference for the left is not needed: one can show that the same definition using right
A-modules gives the same thing. But we won’t pursue those results here.

The algebra A is (Jacobson) semisimple if J(A) = 0.

Theorem (Wedderburn Theorem). If A is semisimple then there are numbers d1, . . . , dn ≥ 1 such that

A ∼=
n⊕

i=1

Kdi×di (*)

as K-algebras. Here Kd×d is the algebra of d×d matrices over K. So we can think of A, when semsimple,
as an algebra of square, block diagonal matrices over K.

This is a fundamental result which we won’t prove. This shows that the representation theory of a
semisimple algebra is essentially trivial: all simple modules of Kd×d are isomorphic to Kd, and all simple
modules of A will be direct sums of the simple modules of the factor algebras Kdi×di . However, usually
the algebra A is given as a set of symmetries of some object, and it is highly nontrivial to interpret the
decomposition of any given symmetric according to the isomorphism (*), or more generally to determine
the dimensions di.

We prove two standard facts to make it easier to detect semisimplicity.

Proposition. If M is a finite-dimensional left A-module and J(A)M = M then M = 0.

Proof. Assume M 6= 0 and let J = J(A). Suppose JM = M . If M were simple then JM = 0 6= M . Since
M is finite-dimensional and not simple, there must exist a proper submodule N ⊂ M such that M/N
is simple: take N to be any proper submodule of maximal possible dimension. But then J annihilates
M/N , so JM ⊂ N 6= M , contradicting our hypothesis. Therefore M = 0.

If I is an ideal, then Im is the ideal generated by all products a1a2 · · · am with ai ∈ I.

An ideal I is nilpotent if I 6= 0 and Im = 0 for some m ≥ 1.

Proposition. The radical J(A) is a nilpotent ideal.

Proof. Let J = J(A) Since A is finite-dimensional, the sequence J ⊃ J2 ⊃ J3 ⊃ . . . must stabilize. But
if JJm = Jm+1 = Jm for some m then by the previous proposition Jm = 0.

Corollary. If A has no nilpotent left ideals (respectively, right ideals), then A is semisimple.

Proof. If A is not semisimple, then J(A) is nilpotent two-sided ideal.

Let e ∈ A be an idempotent, that is, an element with e2 = e.

Consider the right A-module eA = {ea : a ∈ A}.

Let EndA(eA) be the set of linear maps λeA→ eA with λ(xa) = λ(x)a for x ∈ eA and a ∈ A.

Let H(A, e) = eAe = {eae : a ∈ A}. Call H(A, e) the Hecke algebra of (A, e).

Note that both EndA(eA) and H(A, e) are K-algebras: the product for the endomorphism algebra is
composition, and the unit for the Hecke algebra is e. Therefore eu = ue = eue for all u ∈ H(A, e).

The reason we introduce these algebras together is:

Proposition. The map φ(λ) = λ(e) is an algebra isomorphism EndA(eA)→ H(A, e).
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Proof. Clearly φ is linear and φ(1) = e. If φ(λ) = eXe and φ(λ′) = eY e for X,Y ∈ A then

φ(λ ◦ λ′) = λ(λ′(e)) = λ(eY e) = λ(e)Y e = eXeY e = φ(λ)φ(λ′)

since e2 = e. Thus φ is a homomorphism. We have φ(λ) = λ(e) = 0 only if λ(ea) = λ(e)a = 0 for
all a ∈ A, so φ is injective. Finally, φ is surjective since for any X ∈ A we have eXe = φ(λ) for the
endomorphism λ ∈ EndA(eA) with λ(ea) = eXea for a ∈ A.

Schur’s lemma states that the right module eA is simple if and only if EndA(eA) is a division algebra.

The idempotent e ∈ A is primitive if this condition holds and eA is simple.

Proposition. Suppose u ∈ H(A, e) is a primitive idempotent, so that uH(A, e) is a simple right H(A, e)-
module. Then u is also a primitive idempotent in A,and uA is simple submodule of eA.

Proof. Write H = H(A, e) and let u ∈ H be an idempotent. Note that u = eu = ue. Using the previous
proposition, we have EndA(uA) ∼= uAu = ueAeu = uHu ∼= EndH(uH). It follows by Schur’s lemma that
u is primitive in H if and only if u is primitive in A.

Proposition. If M ⊂ eA is a simple A-module then Me ⊂ H(A, e) is a simple H(A, e)-module or 0.

Proof. Let M ⊂ eA be a simple A-module. If x ∈ M and xe ∈ Me ⊂ M is nonzero, then xeA = M so
xeH(A, e) = xeAe = Me, so Me is a simple H(A, e)-submodule of H(A, e).

3 Hecke algebras from group algebras

We now specialize to the case when A is a group algebra and e is the idempotent affording the trivial
representation of a subgroup. In this nice situation, both A and H(A, e) will be semisimple.

Let G be a finite group and let B ⊂ G be a subgroup.

Consider the complex group algebra CG = C-span{g : g ∈ G}.

Let e = 1
|B|

∑
b∈B b ∈ CG.

Proposition. If b ∈ B then be = eb = e so e2 = e.

Proof. An easy calculation.

Define H(G,B) = H(CG, e) = eCGe = C-span{ege : g ∈ G}.

Abbreviate by writing H = H(G,B).

Define M = eCG. The following is obvious:

Proposition. The right module M has a basis given by the elements eg = 1
|B|

∑
b∈Bg b where g ranges

over a set of representatives for the distinct right cosets of B in G.

Most of the following is obvious too:

Proposition. The algebra H has a basis given by the elements ege = 1
|BgB|

∑
b∈BgB b where g ranges

over a set of representatives of the distinct (B,B)-double cosets of G.

Proof. The formula for ege follows by noting that the number of (b, b′) ∈ B×B with bgb′ = g for a given
g ∈ G is |B|2/|BgB|.
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It follow from the homework assignment that H has no nilpotent ideals. Therefore:

Proposition. H is semisimple.

This implies as a corollary the following weaker form of Maschke’s theorem.

Corollary. CG is semisimple.

Proof. This is well-known, has more direct proofs, but follows in our case since CG = H(G, {1}).

The following is the fundamental theorem of (semisimple) Hecke algebras, and explains why considering
H is a worthwhile exercise if one wants to under the simple submodules of M .

Theorem. The map N 7→ Ne defines a bijection between isomorphism classes of simple G-submodules
of M and simple H-modules. The multiplicity of a submodule N in M is the dimension of Ne.

Proof. Since CG is semisimple, it is isomorphic to an algebra of square block diagonal matrices. Moreover,
after changing the basis, we may assume that in this algebra the idempotent e corresponds to a diagonal
matrix whose diagonal entries are all 0 or 1: it is a standard linear algebra exercise that any idempotent
matrix can be diagonalized and has eigenvalues all 0 or 1. Let I be the set of rows/columns that contain
nonzero entries of e. The right module M then consists of the block diagonal matrices m ∈ CG with
mij = 0 if i /∈ I. The simple submodules of M are given by N = vCG where v is a nonzero matrix, with
nonzero entries only in a single column, and only in the rows i ∈ I. The elements of such a module N are
the block diagonal matrices in CG in which each column is a scalar multiple of the nonzero column in v.
It is evident from this description that Ne is never zero, since N contains elements with nonzero entries
in the columns i ∈ I. Therefore, by the results at the end of the last section, Ne is a simple H-module
whenever N ⊂M is a simple submodule. Conversely, since H is semisimple, each right simple H-module
is isomorphic to uH for a primitive idempotent u ∈ H, and N = uCG is then a simple submodule of M ,
and we have Ne = uCGe = ueCGe = uH, so uH 7→ uCG is the inverse to N 7→ Ne.

To justify the assertion about multiplicities of submodules, reconsider the identification of CG with a
matrix algebra. The sum of all submodules of M isomorphic to a given simple submodule N ⊂ M may
be identified with Cm×d, where d is the dimension of N and m is the multiplicity of N in M . The Hecke
algebra H = eCGe can be viewed as the direct sum of the matrix algebras Cmi×mi where m1,m2, . . . ,mn

are the multiplicities of the non-isomorphic simple submodules of M . If N ⊂ M is a simple submodule
with multiplicity m, then eN is a simple submodule of H occurring within the m ×m block, and so is
m-dimensional.

Bringing things full circle, let Fq be a finite field of order q and consider the Hecke algebra H(G,B)
where G = GLn(Fq) and B ⊂ G is the subgroup of invertible upper triangular matrices. Next time, we
will show that H(G,B) is isomorphic to the generic Hecke algebra over C of the Coxeter group Sn, with
parameters as = q − 1 and bs = q.
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