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1 Three forms Hecke algebras

We've now seen Hecke algebras in three different guises:

1. (Deformation of group algebra of a Coxeter group.) If (W,S) is a Coxeter system, and A is a
commutative ring, and as,bs € A for s € S are such that a; = a; and by = b; when s is conjugate
to t in W, then the generic Hecke algebra H is the unique A-algebra structure on the free A-
module A-span{T,, : w € W} in which T} serves as the unit element and we have T,, Ty = Ty, if
l(ws) > L(w) and T? = a,T,, + bs for s € S and w € W.

This, equivalently, is the A-algebra generated by T for s € S subject to the relations
T T;Ts - - = TyTsT; - - - (both sides with m(s,t) factors) for s,t € S such that m(s,t) < oco.
T? = a, Ty + bs for s € S.

Since setting as = 0 and by = 1 turns this into a presentation for the group algebra AW, we say
that H is a deformation of AW.

Note in either case that T\, = T, Ts, - - - Ts,, if w = s159---5, € W is a reduced expression.

2. (Endomorphism algebra of module generated by an idempotent.) If A is a finite-dimensional algebra
over a field K and e = ¢ € A is an idempotent, then the Hecke algebra of (A, e) is H(A,e) = eAe =
{eae : a € A}. This is an associative A-algebra with unit e.

Proposition. H(A,e) = End(eA), the algebra of right A-module endomorphisms of eA.

The algebra A is semisimple if no nonzero element annihilates every simple right A-module.
Theorem (Wedderburn). If A is semisimple then 4 = @}, K%*% is isomorphic as an algebra to
a direct sum of matrix algebras.

3. (Bi-invariant functions on a group.) Let G be a finite group and let B C G be a subgroup. The
Hecke algebra of (G, B) is H(G, B) = H(CG, e) where e = ﬁ > e 0. Elements of this algebra
can be identified with functions f : G — C with f(bi1gbs) = f(g) for all g € G and by,bs € B: every
element of H(G, B) has the form deG f(g)g for a function with this property.

Last time we proved:
Proposition. Both CG and H(G, B) are semisimple C-algebras.
Proposition. N — Ne defines a bijection between isomorphism classes of simple right G-submodules

of eCG and simple right H-modules. The multiplicity of N in eCG is the dimension of Ne.

Hecke algebras of type (3) are a special case of those of type (2). Today we will show that a special case
of (3) coincides with a special case of (1), thus explaining why the algebra H attached to (W, .S) is called
a Hecke algebra.

2 Hecke algebras for (G, B)

Let IF, be a finite field with ¢ elements. Let n be a positive integer.
Set G = GL,,(F,) and define B C G as the subgroup of upper-triangular matrices.
Let e = ﬁ > bep b € CG as usual, and let H = H(G, B) = eCGe.

We identify S,, as a subgroup of G by letting a permutation w € S,, correspond to the linear transformation
with we; = e,,(;) where e, ea,..., e, are the standard basis elements of C".
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Proposition. The matrix of w € S, under the identification is Z?Zl Ey )i where Ej; is the n X n
matrix with 1 in position (7, ) and 0 in all other positions.

Proof. Follows by an easy calculation, noting that Fjjey is e; if j = k and otherwise zero. O

Corollary. It holds that w™! = w” for w € S,, C G.

Proof. We compute ww = (Z E@w(i)) ZEw(j)’j = ZELw(i)Ew(j)J = ZE” =1 O
j=1 ij i=1

i=1
Proposition (Bruhat decomposition in type A). The subgroup S, C G is a complete set of representa-
tives of the double cosets BgB for g € G. l.e., if g € G then BgB = BwG for a unique w € S,,.

To see how this generalizes, check out https://en.wikipedia.org/wiki/Bruhat_decompositionl

Proof. The main idea is to recall Gaussian elimination and use induction. The key thing to understand is
what happens to a matrix when we multiply on the left and right by an element of B: rows get rescaled
and/or added to rows above, while columns get rescaled and/or added to columns to the right.

For example, if n = 2 then the cases for BgB are:

1.BgB:<: :):B<(1) (1)>B.
* % 1 0
o= (5 1 )=5(} 0)n

The details for general n are left as an exercise. O

The set {ege : g € G} clearly forms a basis for #H, though it frequently happens that ege = ehe for
distinct g, h € G. Since be = eb = e if and only if b € B, it follows that {ege : g € G} = {ewe : w € S, }
and that the elements of the latter set are all distinct. The next few results will tell us how to multiply
these basis elements.

Lemma. If b € B and w € S,, then wbw™! € B if and only if b;; = 0 for all (4,7) € Inv(w).
Proof. Let b € B and w € S,,. We have
(wbw™1) ;i = e;‘-rwbwflei = (wle;)Tb(wte;) = 65_1(j)b6w—1(i) = by—1(j) w1 (i)

On the other hand, wbw™! € B if and only if (wbw™');; = 0 whenever i < j.

If i < j and w™'(i) < w™'(j) then the calculation above shows that (wbw™");; = by-1(j),w—1(;) = 0

If i < j and w™ (i) > w=t(j) then (w1 (j),w™1(i)) € Inv(w), and every inversion of w arises in this way.

We conclude that (wbw™!);; = 0 for all i < j if and only if b;; = 0 for all (4,5) € Inv(w). O

Lemma. Suppose w € S,, and s = s; = (4,7 + 1) are such that £(ws) > ¢(w). Then

(BwB)(BsB) = {awb - csd : a,b,c,d € B} = BwsB.


https://en.wikipedia.org/wiki/Bruhat_decomposition
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Proof. Note that (i,i+1) ¢ Inv(w) since £(ws) > £(w). It suffices to check that if b € B then wbs € BwsB.

We confirm this with some slightly imprecise, but hopefully intuitively clear matrix calculations:

* ok kX
wbs = w @ T s
o 0 b =«
3
1 0 0 O * ok ok %
. a = 0 1 0 =
- 0 b 0 01 % |*
1 *
1 0 0 O * % % ok
_ a x 0 _1 1 0 =
=w b0 w T ws S 0 1 s € BwsB.
1 *
€B by lemma €B by lemma

Here, the rows/columns containing a, b, z are ¢ and i + 1.

Lemma. Let s =s; € (4,4 4+ 1) € S,,. Then (BsB)(BsB) = BLU BsB.
Moreover, the number of elements b € B with sbs € B is |B|/q.

Proof. Let b € B. It suffices to show that sbs € B LU BsB.

By the lemma above, we have sbs € B if and only if b; ;41 = 0. Directly, note that if b; ;41 = 0 then

* % % % * ok % %
a 0 * b 0 =
sbs = s 0 b« |57 0 a € B.
* *
On the other hand if b; ;41 # 0 then
* % k% * ok % % * % % %
a T * b 0 =x* 0 1 =«
sbs = s 0 b s = r oa = €B 1 0 B = BsB.
* k k

Thus sbs € B if and only if b; ;11 = 0, and otherwise sbs € BsB, so the lemma follows.
Define T, = ¢! ewe for w € S, C G. These elements are a basis for .

Theorem. If w € S, and s € S = {s1,89,...,8,-1} then
(a) TwTs = Tys if £L(ws) > L(w).
(b) T2 = (¢ = V)T, + qT.

Thus H = H(G, B) is the generic Hecke algebra of the Coxeter system (W, S) = (Sy, {s1, sz, ..

with A=C, as =q—1, and b; =gq.
Proof. If £(ws) > ¢(w) then, using the above lemmas, we compute

1
TTs = qE(w)ewe cgese = qZ(w)JrlE Z ewbse = qe(wS)ewse = Tws
beB

. aSnfl})
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as desired. Likewise, we have

1 2
T2 = qzﬁ Z esbse = % (%e + (|B| - @) ese) =qe+ (¢* — q)ese = (¢ — 1)Ts + qTx.
beB

O

The results in this section generalize significantly. The generic Hecke algebra of any finite Weyl group
with A = C, as = ¢ — 1, and by = ¢ for a prime power ¢ may be realized as a Hecke algebra H(G, B)
where G is a finite group with a so-called BN -pair.

These results motivate us to specifically consider generic Hecke algebras with parameters as = ¢ — 1 and
bs = q. We start this in the next section, and continue next time.

3 Iwahori-Hecke algebras

Let (W, S) be a Coxeter system.
Let A = Z[z,z7'] be the ring of Laurent polynomials in one variable z.
Set as =22 — 1 and by = 22 for s € S.

The Twahori-Hecke algebra of (W, S) is the generic Hecke algebra H defined with respect to these choices
of A and parameters as; and bs. This algebra is the free A-module with basis {T}, : w € W}, with

T, =1 and TwTs = Ty if ws > w and Tf = (x2 - DT+ 2T

for se Sand w e W.

We imagine that 22 = ¢ in the previous section. For technical reasons which are hard to motivate right
now, we need A is contain square root of ¢; hence our choice of parameters. Many subsequent formulas
become nicer if we work not with the basis elements T,, € H, but rather the rescaled elements

H, =2z v, for w € W.

Since z is invertible in H, the elements {H,, : w € W} are also an A-basis for the algebra. We observe
some key properties of this new basis:
Proposition. Let s € S and w € W.

(1) H,=T,=1€H.

(2) H2 =1+ (x — 2 ')Hy and so (Hs — z)(Hs + 271) = 0.

H, if ws > w
Hys+ (x — 2 YH, if sw < w.

Hyg, if sw > w

3) HH,, =
(3) HHe {st—l—(x—x_l)Hw if sw < w

and H,Hs = {

Proof. Part (1) is trivial, part (2) holds since
H2 =2 T2 =072(2® — )T+ o 22’y = (v — 2 NaT, + Ty = (v —x) 'H, +1,
and part (3) follows by similar calculations: for example, if sw > w then

H.H, = xie(w)ilTsTw = xiz(sw)Tsw = Hgy.
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Of course, we could achieve the same effect by using the usual basis elements T, with different parameters
(namely, a; = x — 2~ ! and b, = 1) in place of H,,. This would conflict with the common usage of T, in
the literature and in Humphreys’s book, however.

Corollary. Each H, € H for s € S is invertible, with inverse H; ' = Hy, + 271 — .
Proof. Note that Hy(Hs, + 27! —2) = H? — (v — 2~ Y)H, = H;. O

S

Next time: the bar involution of H and its Kazhdan-Lusztig basis.
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