
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 23

1 Positivity properties of the Kazhdan-Lusztig basis

Let (W,S) be a Coxeter system with Bruhat order < and length function `.

Let H = Z[x, x−1]-span{Hw : w ∈ W} be the Iwahori-Hecke algebra of (W,S), the unique Z[x, x−1]-
algebra with H2

s = 1 + (x− x−1)Hs for s ∈ S and HuHv = Huv if `(uv) = `(u) + `(v).

Define h 7→ h as the unique ring involution of H with xn = x−n and Hw = (Hw−1)−1. Recall that the KL
basis {Cw}w∈W of H is defined as the unique set of elements with Cw = Cw ∈ Hw +

∑
y<w x

−1Z[x−1]Hy.

Theorem (Elias and Williamson). The KL basis has the following positivity properties:

1. Cw ∈ N[x−1]-span{Hy : y ∈W}.

2. CuCv ∈ N[x, x−1]-span{Cw : w ∈W}.

Our goal in the last two lectures is to sketch a heuristic explanation for these properties, which seem
to have no elementary proof. The main idea is that H and its KL basis can be “categorified,” meaning
informally that we can define a category C for where there are correspondences

H ←→ [C ], the “split Grothendieck group” of C

bar involution ←→ a duality functor on C

KL basis ←→ isomorphism classes of indecomposable objects in C

multiplication by xn ←→ shift an object’s grading by n

addition ←→ ⊕

multiplication ←→ ⊗

Some standard definitions from category theory are in order to make this picture (slightly more) rigorous.

A category C consists of a collection of objects and for each pair of objects a set of morphisms from one
to the other. If Mor(A,B) is the set of morphisms A→ B, then we can compose morphisms f : A→ B
and g : B → C to get a morphism g ◦ f ∈ Mor(A,C). This composition must be associative, and for
each object A there must exist an identity morphism idA ∈ Mor(A,A) which, when composed with a
morphism on the left or the right, yields back the morphism unchanged.

A subcategory D of C is a category in which every object is also an object of C , and MorD(A,B) ⊆
MorC (A,B). The subcategory is full if the containment of morphisms is always equality.

Example. The category Ab of abelian groups: objects are abelian groups and morphisms are group
homomorphisms. This is a full subcategory of the category of all groups.

Example. The category of (left) modules over a commutative ring R: morphisms are R-module homo-
morphisms.

Example. The category R-Bim of R-bimodules where R is a commutative ring: objects are abelian
groups M which are simultaneously left and right R-modules, such that (rm)s = r(ms) for all m ∈ M
and r, s ∈ R. This compatibility condition means we can write rms without ambiguity. The morphisms
are abelian group homomorphisms φ : M →M ′ with φ(rms) = rφ(m)s for m ∈M and r, s ∈ R.

All of these categories, and all categories we will work with are subcategories (usually not full) of Ab,
though many constructions we’ll see could be considered in a more abstract setting.

The category Ab is additive: it contains the direct sum A ⊕ B of any two objects and there exists a
0-object such that A⊕ 0 ∼= 0⊕A ∼= A for any object A. The notion of an additive category is defined in
general by the same properties (once we say how direct sums are specified by a universal property).

The category R-Bim is also additive.
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An object in an additive category is indecomposable if it is not a direct sum of two nonzero objects.

Definition. The split Grothendieck group [C ] of an additive category C is the abelian group generated
by the symbols [M ] for objects M in C , subject to the relations [M ] = [A] + [B] if M ∼= A⊕B.

There is a related construction, called the Grothendieck group, which is defined for any abelian category.
Note that [M ] = [M ] + [0] for all M so [0] = 0 in [C ], and if M ∼= N then [M ] = [N ] since M ∼= N ⊕ 0.
The group [C ] is abelian since it always holds in an additive category that M ⊕N ∼= N ⊕M .

Example. If C is the full subcategory of R-modules which are free and finitely generated (which is the
category of finite-dimensional vector spaces if R is a field) then C is additive and [C ] ∼= Z.

If C is a monoidal category, meaning there exists a notion of a tensor product ⊗ and a unit object 1
satisfying certain associativity axioms, then [C ] is a ring with respect to the multiplication [A][B] = [A⊗B]
and unit [1].

The category R-Bim, where R is a fixed commutative ring, is additive and monoidal. The tensor product
M ⊗N of two R-bimodules M and N is defined as the quotient of the abelian group M ×N = {(m,n) :
m ∈M, n ∈ N} by the relations (m1 +m2, n) = (m1, n) + (m2, n) and (m,n1 + n2) = (m,n1) + (m,n2)
and r(m,n) = (rm, n) = (m, rn) and (m,n)r = (m,nr) = (mr, n) for m,mi ∈ M and n, ni ∈ N and
r ∈ R. (There is a more concise, but less constructive definition if you know the universal property of
the tensor product.) One denotes the equivalence class of (m,n) in M ⊗N by m ⊗R n. Note that R is
itself an R-bimodule (which serves the unit object with respect to ⊗) and that R⊗M ∼= M ⊗R ∼= M as
bimodules.

A graded R-bimodule is an R-bimodule M with a direct sum decomposition M =
⊕

i∈ZM
i. Here, each

M i is an R-bimodule, called the ith graded piece of M , whose elements are said to have degree i. (Not
every element of M has a well-defined degree—only the elements which belong to M i for some i.)

The direct sum of two graded R-bimodules M and N is graded: M ⊕N =
⊕

i∈ZM
i ⊕N i.

The tensor product is also graded, in a slightly less straightforward way: M ⊗N =
⊕

i∈Z(M ⊗N)i where

(M ⊗N)i =
⊕

j+k=iM
j ⊗Nk. Thus if m ∈M j and n ∈ Nk then m⊗R n has degree j + k.

We consider R to be graded with R0 = R and Ri = 0 for i 6= 0.

A graded morphism of graded R-bimodules φ : M → N is an R-bimodule homomorphism with φ(M i) ⊂
N i for all i ∈ Z.

The category of graded R-bimodules with graded morphisms is an additive and monoidal, but not full,
subcategory of R-Bim. The split Grothendieck group of this subcategory, and more generally of any
additive category whose objects and morphisms are graded, is naturally a Z[x, x−1]-algebra: the group is
already a ring, and becomes a Z[x, x−1]-module on setting (

∑
n∈Z anx

n)[M ] =
[⊕

n∈ZM(n)⊕an
]
. Here

M(n) is the graded R-bimodule with M(n)i = M i+n, i.e., given by shifting the grading on M by n.

Example (Soergel bimodules for S1). Any left R-module can be considered as an R-bimodule on which
the right action of R is trivial. Via this identification, we get analogous notions of graded left R-modules
and graded left R-module morphisms, as well as direct sums and tensor products of these objects. Suppose
C is the additive, monoidal category whose objects are the graded left R-modules which are finitely
generated and free, with graded morphisms.

As a Z[x, x−1]-algebra, we have [C ] ∼= Z[x, x−1]. Each object is isomorphic to a sum of grading shifts of
the graded R-module given by R itself (whose elements are all in degree 0). The map [R] 7→ 1 extends
to an algebra isomorphism.

Given an object M is C , define M as the graded R-module whose jth graded piece is M−j . Then
[M ] = [M ] where h 7→ h is the usual bar involution of Z[x, x−1] = H for W = S1.
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2 Soergel bimodules for S2

Our goal is to define a full subcategory of the category of graded R-bimodules, whose split Grothendieck
group is isomorphic to the Iwahori-Hecke algebra H of an arbitrary Coxeter group. We will call this the
category SBim of Soergel bimodules.

The precise definition will come next time. In this lecture, we confine ourself to a concrete description of
SBim in the simplest nontrivial but highly instructive case when W = S2.

Let W = S2 be the unique Coxeter group with one generator, so that S = {s = (1, 2)}.

Define R = R[x] as the ring of real polynomials in one variable. Usually this ring is graded with Ri = Rxi,
but for technical reasons we adopt the perverse convention that xi has degree 2i.

W acts on R by (s · f)(x) = f(−x). For example, s · (1 + x+ x2 + x3) = 1− x+ x2 − x3.

Let Rs = {f ∈ R : sf = f} = R[x2].

For k ∈ N, define the R-bimodules

B1 = R.

Bs = R⊗Rs R(1).

B[k] = R⊗Rs R⊗Rs · · · ⊗Rs R︸ ︷︷ ︸
k+1 factors

(k).

Here Bs is the tensor product of R with itself, but regarded as an Rs-bimodule, with its grading shifted
down by 1. This means that elements of Bs are sums of tensors of the form af ⊗Rs b = a⊗Rs fb where
a, b ∈ R and f ∈ Rs. If a and b have degrees j and k in R, then a⊗Rs b has degree j + k − 1. Likewise,
B[k] is the tensor product over Rs of k + 1 copies of R, with the grading shifted down by k.

1 ∈ B1 has degree 0.

1⊗Rs 1 ∈ Bs has degree −1.

1⊗Rs · · · ⊗Rs 1 ∈ B[k] has degree −k.

x⊗Rs x2 = x3 ⊗Rs 1 ∈ Bs has degree 2 + 4− 1 = 5.

Note that B1 = B[0] and Bs = B[1]. Moreover, we have

B[k]
∼= Bs ⊗Bs ⊗ · · · ⊗Bs︸ ︷︷ ︸

k factors

where here ⊗ is over R, distinct from ⊗Rs .

Claim. The following holds:

(1) Both B1 and Bs are indecomposable R-bimodules.

(2) B[2]
∼= Bs(1)⊕Bs(−1).

Proof. (1) Both B1 and Bs are generated as R-bimodules by the single elements 1 and 1⊗Rs 1 of lowest
degree, so must be indecomposable. (2) B[2] is the direct sum of sub-R-bimodules generated by

α = 1⊗Rs 1⊗Rs 1 and β = 1⊗Rs x⊗Rs 1.

Note that α has degree −2 and β has degree 0. One checks that 〈α〉 ∼= Bs(1) and 〈β〉 ∼= Bs(−1).

Let SBim be the full subcategory of the category of graded R-bimodules which contains all direct sums
and grading shifts of the bimodules B[k] for k ∈ N.
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Proposition. The following holds for the category SBim:

(a) SBim is closed under ⊗ so [SBim] is a Z[x, x−1]-algebra.

(b) Each indecomposable object in SBim is isomorphic to some grading shift of one of B1 or Bs.

(c) There exists a unique algebra isomorphism ε : H → [SBim] with Cw 7→ [Bw] for w ∈ S2.

Proof. (a) This holds as B[k] ⊗ B[l]
∼= B[k+l]. (b) This follows from the claim. Note that B1 and Bs

are not isomorphic to any grading shifts of each other. (c) Recall that C1 = 1 and Cs = Hs + x−1.
Clearly C1C2 = Cw and [B1][Bw] = [B1 ⊗ Bw] = [Bw] for all w ∈ S2. We have C2

s = (x + x−1)Cs and
[Bs][Bs] = [Bs ⊗Bs] = [Bs(1)⊕Bs(−1)] = (x+ x−1)[Bs]. The result follows.

We have thus shown for W = S2 that there exists a category of graded R-bimodules SBim such that
H ∼= [SBim] in whih the KL basis elements correspond to a complete list of indecomposable objects up
to grading shift and isomorphism. The (trivial) claim that CuCv ∈ N[x, x−1]-span{Cw : w ∈ S2} for
u, v ∈ S2 follows immediately, since ε(CuCv) = ε(Cu)ε(Cv) = [Bu ⊕Bv].

Next time we will sketch how to extend this construction from W = S2 to an arbitrary Coxeter group W .
The key changes will be to define R as the ring of polynomial functions on the geometric representation
of W . The definitions of Rs, Bs, and SBim will be similar.
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