MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 23

1 Positivity properties of the Kazhdan-Lusztig basis

Let (W, S) be a Coxeter system with Bruhat order < and length function /.

Let H = Z[x,x~']-span{H,, : w € W} be the Iwahori-Hecke algebra of (W, S), the unique Z[x,z -
algebra with H2 =1+ (z — 27 1)H; for s € S and H,H, = Hy, if {(uv) = £(u) + £(v).

Define h + h as the unique ring involution of # with ™ = =" and H,, = (H,,-1)"*. Recall that the KL

basis {Cy, }wew of H is defined as the unique set of elements with C,, = C,, € H,, +Zy<w r 1 Z[z7 H,.

Theorem (Elias and Williamson). The KL basis has the following positivity properties:
1. Cy, € Nlz~!]-span{H, : y € W}.
2. C,C, € N[z,z7]-span{C,, : w € W}.

Our goal in the last two lectures is to sketch a heuristic explanation for these properties, which seem
to have no elementary proof. The main idea is that H and its KL basis can be “categorified,” meaning
informally that we can define a category % for where there are correspondences

H +— [€], the “split Grothendieck group” of ¢
bar involution +— a duality functor on ¢
KL basis +— isomorphism classes of indecomposable objects in ¢
multiplication by z™ <— shift an object’s grading by n
addition «+— &
multiplication +— ®
Some standard definitions from category theory are in order to make this picture (slightly more) rigorous.

A category € consists of a collection of objects and for each pair of objects a set of morphisms from one
to the other. If Mor(A, B) is the set of morphisms A — B, then we can compose morphisms f: A — B
and g : B — C to get a morphism g o f € Mor(A,C). This composition must be associative, and for
each object A there must exist an identity morphism idg € Mor(A4, A) which, when composed with a
morphism on the left or the right, yields back the morphism unchanged.

A subcategory 2 of € is a category in which every object is also an object of €, and Morg (A, B) C
Morg (A, B). The subcategory is full if the containment of morphisms is always equality.

Example. The category Ab of abelian groups: objects are abelian groups and morphisms are group
homomorphisms. This is a full subcategory of the category of all groups.

Example. The category of (left) modules over a commutative ring R: morphisms are R-module homo-
morphisms.

Example. The category R-Bim of R-bimodules where R is a commutative ring: objects are abelian
groups M which are simultaneously left and right R-modules, such that (rm)s = r(ms) for all m € M
and r,s € R. This compatibility condition means we can write rms without ambiguity. The morphisms
are abelian group homomorphisms ¢ : M — M’ with ¢(rms) = r¢(m)s for m € M and r, s € R.

All of these categories, and all categories we will work with are subcategories (usually not full) of Ab,
though many constructions we’ll see could be considered in a more abstract setting.

The category Ab is additive: it contains the direct sum A @& B of any two objects and there exists a
0-object such that A& 0= 0® A = A for any object A. The notion of an additive category is defined in
general by the same properties (once we say how direct sums are specified by a universal property).

The category R-Bim is also additive.
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An object in an additive category is indecomposable if it is not a direct sum of two nonzero objects.

Definition. The split Grothendieck group [€] of an additive category ¥ is the abelian group generated
by the symbols [M] for objects M in €, subject to the relations [M] = [A]+ [B] if M 2 A ¢ B.

There is a related construction, called the Grothendieck group, which is defined for any abelian category.
Note that [M] = [M] + [0] for all M so [0] =0 in [¥], and if M = N then [M] = [N] since M = N & 0.
The group [%] is abelian since it always holds in an additive category that M & N = N @ M.

Example. If ¢ is the full subcategory of R-modules which are free and finitely generated (which is the
category of finite-dimensional vector spaces if R is a field) then ¥ is additive and [¢] = Z.

If € is a monoidal category, meaning there exists a notion of a tensor product ® and a unit object 1
satisfying certain associativity axioms, then [%] is a ring with respect to the multiplication [A][B] = [A® B]
and unit [1].

The category R-Bim, where R is a fixed commutative ring, is additive and monoidal. The tensor product
M ® N of two R-bimodules M and N is defined as the quotient of the abelian group M x N = {(m,n) :
m € M, n € N} by the relations (m1 +ma,n) = (mi1,n) + (me,n) and (m,ny +ng) = (m,n1) + (m, na)
and r(m,n) = (rm,n) = (m,rn) and (m,n)r = (m,nr) = (mr,n) for m,m; € M and n,n; € N and
r € R. (There is a more concise, but less constructive definition if you know the universal property of
the tensor product.) One denotes the equivalence class of (m,n) in M ® N by m ®pr n. Note that R is
itself an R-bimodule (which serves the unit object with respect to ®) and that R M 2 M @ R = M as
bimodules.

A graded R-bimodule is an R-bimodule M with a direct sum decomposition M = P, ., M i, Here, each
M? is an R-bimodule, called the ith graded piece of M, whose elements are said to have degree i. (Not
every element of M has a well-defined degree—only the elements which belong to M* for some i.)

The direct sum of two graded R-bimodules M and N is graded: M & N = @,., M" & N°.

The tensor product is also graded, in a slightly less straightforward way: M @ N = @, (M @ N )t where
(M@ N) =@, —; M7 ® N*. Thus if m € M7 and n € N* then m @ n has degree j + k.

We consider R to be graded with R = R and R = 0 for i # 0.

A graded morphism of graded R-bimodules ¢ : M — N is an R-bimodule homomorphism with ¢(M?) C
Nt for all i € Z.

The category of graded R-bimodules with graded morphisms is an additive and monoidal, but not full,
subcategory of R-Bim. The split Grothendieck group of this subcategory, and more generally of any
additive category whose objects and morphisms are graded, is naturally a Z[z, z~!]-algebra: the group is
already a ring, and becomes a Z[x,z~*]-module on setting (3, o7 anz™)[M] = [@,,c, M (n)®*]. Here
M (n) is the graded R-bimodule with M (n)® = Mt i.e., given by shifting the grading on M by n.

Example (Soergel bimodules for S7). Any left R-module can be considered as an R-bimodule on which
the right action of R is trivial. Via this identification, we get analogous notions of graded left R-modules
and graded left R-module morphisms, as well as direct sums and tensor products of these objects. Suppose
% is the additive, monoidal category whose objects are the graded left R-modules which are finitely
generated and free, with graded morphisms.

As a Z[z, x~!]-algebra, we have [¢] = Z[z,x~!]. Each object is isomorphic to a sum of grading shifts of
the graded R-module given by R itself (whose elements are all in degree 0). The map [R] — 1 extends
to an algebra isomorphism.

Given an object M is ¢, define M as the graded R-module whose jth graded piece is M 7. Then

[M] = [M] where h + h is the usual bar involution of Z[z,z™1] = H for W = 5.
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2 Soergel bimodules for 5

Our goal is to define a full subcategory of the category of graded R-bimodules, whose split Grothendieck
group is isomorphic to the Iwahori-Hecke algebra H of an arbitrary Coxeter group. We will call this the
category SBim of Soergel bimodules.

The precise definition will come next time. In this lecture, we confine ourself to a concrete description of
SBim in the simplest nontrivial but highly instructive case when W = Ss.

Let W = S5 be the unique Coxeter group with one generator, so that S = {s = (1,2)}.

Define R = R[z] as the ring of real polynomials in one variable. Usually this ring is graded with R = Rz,
but for technical reasons we adopt the perverse convention that z* has degree 2i.

W acts on R by (s- f)(z) = f(—z). For example, s- (1 +z+ 2% +23) =1 -2+ 2% — 3.
Let R* ={f € R:sf = f} = R[z?].
For k € N, define the R-bimodules

B1 =R.

B, = R®r: R(1).

Bjy) = R ®gs R®pgs --- Qgs R(k).

k-+1 factors

Here B; is the tensor product of R with itself, but regarded as an R*-bimodule, with its grading shifted
down by 1. This means that elements of By are sums of tensors of the form af ®ps b = a @rs fb where
a,be Rand f € R°. If a and b have degrees j and k in R, then a ®p- b has degree j + k — 1. Likewise,
By is the tensor product over R* of k + 1 copies of R, with the grading shifted down by k.

1 € B; has degree 0.

1 ®pgs 1 € B, has degree —1.

1 ®pgs -+~ ®@pgs 1 € By has degree —k.

T ®ps 2 =23 ®ps 1 € B, has degree 24+4 —1=15.
Note that By = Bjg and Bs; = Bpy). Moreover, we have

By =2 Bs®Bs® - ® By

k factors

where here ® is over R, distinct from ®pgs.

Claim. The following holds:
(1) Both B; and By are indecomposable R-bimodules.
(2) B[2] = Bs(]-) S Bs(_l)'

Proof. (1) Both By and Bj are generated as R-bimodules by the single elements 1 and 1 ®gs 1 of lowest
degree, so must be indecomposable. (2) By is the direct sum of sub-R-bimodules generated by

Oé:1®Rs 1®R91 and 6:1®R9$®R€ 1.

Note that « has degree —2 and 8 has degree 0. One checks that () = Bs(1) and (8) = Bs(—1). O

Let SBim be the full subcategory of the category of graded R-bimodules which contains all direct sums
and grading shifts of the bimodules By for k£ € N.
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Proposition. The following holds for the category SBim:
(a) SBim is closed under ® so [SBim] is a Z[x, 2z~ ']-algebra.
(b) Each indecomposable object in SBim is isomorphic to some grading shift of one of B; or Bs.

(c) There exists a unique algebra isomorphism € : H — [SBim] with C\, — [B,,] for w € S5.

Proof. (a) This holds as By ® Byj) = Bgqy. (b) This follows from the claim. Note that By and Bj
are not isomorphic to any grading shifts of each other. (c) Recall that C; = 1 and Cy = Hy + 2~ L.
Clearly C1Cy = Cy, and [B1][By] = [B1 ® By] = [By] for all w € Sy. We have C? = (z + 27 1)Cy and
[Bs][Bs] = [Bs ® Bs] = [Bs(1) ® Bs(—1)] = (z + 27 1)[Bs]. The result follows. O

We have thus shown for W = S5 that there exists a category of graded R-bimodules SBim such that
‘H = [SBim] in whih the KL basis elements correspond to a complete list of indecomposable objects up
to grading shift and isomorphism. The (trivial) claim that C,C, € Nlx,z~!]-span{C,, : w € Sy} for
u,v € Sy follows immediately, since (C,C,) = £(Cy)e(Cy) = [By @ B,

Next time we will sketch how to extend this construction from W = Ss to an arbitrary Coxeter group W.
The key changes will be to define R as the ring of polynomial functions on the geometric representation
of W. The definitions of R®, B, and SBim will be similar.
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