1 Positivity properties of the Kazhdan-Lusztig basis

Let (W, S) be a Coxeter system with Bruhat order < and length function ℓ .

Let $\mathcal{H} = \mathbb{Z}[x, x^{-1}]$ -span $\{H_w : w \in W\}$ be the Iwahori-Hecke algebra of (W, S), the unique $\mathbb{Z}[x, x^{-1}]$ algebra with $H_s^2 = 1 + (x - x^{-1})H_s$ for $s \in S$ and $H_u H_v = H_{uv}$ if $\ell(uv) = \ell(u) + \ell(v)$.

Define $h \mapsto \overline{h}$ as the unique ring involution of \mathcal{H} with $\overline{x^n} = x^{-n}$ and $\overline{H_w} = (H_{w^{-1}})^{-1}$. Recall that the KL basis $\{C_w\}_{w \in W}$ of \mathcal{H} is defined as the unique set of elements with $C_w = \overline{C_w} \in H_w + \sum_{y < w} x^{-1}\mathbb{Z}[x^{-1}]H_y$.

Theorem (Elias and Williamson). The KL basis has the following positivity properties:

- 1. $C_w \in \mathbb{N}[x^{-1}]$ -span $\{H_y : y \in W\}$.
- 2. $C_u C_v \in \mathbb{N}[x, x^{-1}]$ -span $\{C_w : w \in W\}$.

Our goal in the last two lectures is to sketch a heuristic explanation for these properties, which seem to have no elementary proof. The main idea is that \mathcal{H} and its KL basis can be "categorified," meaning informally that we can define a category \mathscr{C} for where there are correspondences

 $\mathcal{H} \longleftrightarrow [\mathscr{C}]$, the "split Grothendieck group" of \mathscr{C}

bar involution \longleftrightarrow a duality functor on \mathscr{C}

KL basis \longleftrightarrow isomorphism classes of indecomposable objects in \mathscr{C}

multiplication by $x^n \longleftrightarrow$ shift an object's grading by n

 $\mathrm{addition}\longleftrightarrow\oplus$

multiplication $\longleftrightarrow \otimes$

Some standard definitions from category theory are in order to make this picture (slightly more) rigorous.

A category \mathscr{C} consists of a collection of objects and for each pair of objects a set of morphisms from one to the other. If Mor(A, B) is the set of morphisms $A \to B$, then we can compose morphisms $f : A \to B$ and $g : B \to C$ to get a morphism $g \circ f \in Mor(A, C)$. This composition must be associative, and for each object A there must exist an identity morphism $id_A \in Mor(A, A)$ which, when composed with a morphism on the left or the right, yields back the morphism unchanged.

A subcategory \mathscr{D} of \mathscr{C} is a category in which every object is also an object of \mathscr{C} , and $\operatorname{Mor}_{\mathscr{D}}(A, B) \subseteq \operatorname{Mor}_{\mathscr{C}}(A, B)$. The subcategory is *full* if the containment of morphisms is always equality.

Example. The category Ab of abelian groups: objects are abelian groups and morphisms are group homomorphisms. This is a full subcategory of the category of all groups.

Example. The category of (left) modules over a commutative ring R: morphisms are R-module homomorphisms.

Example. The category *R*-Bim of *R*-bimodules where *R* is a commutative ring: objects are abelian groups *M* which are simultaneously left and right *R*-modules, such that (rm)s = r(ms) for all $m \in M$ and $r, s \in R$. This compatibility condition means we can write rms without ambiguity. The morphisms are abelian group homomorphisms $\phi : M \to M'$ with $\phi(rms) = r\phi(m)s$ for $m \in M$ and $r, s \in R$.

All of these categories, and all categories we will work with are subcategories (usually not full) of Ab, though many constructions we'll see could be considered in a more abstract setting.

The category Ab is *additive*: it contains the direct sum $A \oplus B$ of any two objects and there exists a 0-object such that $A \oplus 0 \cong 0 \oplus A \cong A$ for any object A. The notion of an *additive category* is defined in general by the same properties (once we say how direct sums are specified by a universal property).

The category R-Bim is also additive.

An object in an additive category is *indecomposable* if it is not a direct sum of two nonzero objects.

Definition. The split Grothendieck group $[\mathscr{C}]$ of an additive category \mathscr{C} is the abelian group generated by the symbols [M] for objects M in \mathscr{C} , subject to the relations [M] = [A] + [B] if $M \cong A \oplus B$.

There is a related construction, called the *Grothendieck group*, which is defined for any *abelian category*. Note that [M] = [M] + [0] for all M so [0] = 0 in $[\mathscr{C}]$, and if $M \cong N$ then [M] = [N] since $M \cong N \oplus 0$. The group $[\mathscr{C}]$ is abelian since it always holds in an additive category that $M \oplus N \cong N \oplus M$.

Example. If \mathscr{C} is the full subcategory of *R*-modules which are free and finitely generated (which is the category of finite-dimensional vector spaces if *R* is a field) then \mathscr{C} is additive and $[\mathscr{C}] \cong \mathbb{Z}$.

If \mathscr{C} is a *monoidal category*, meaning there exists a notion of a tensor product \otimes and a unit object **1** satisfying certain associativity axioms, then $[\mathscr{C}]$ is a ring with respect to the multiplication $[A][B] = [A \otimes B]$ and unit [**1**].

The category *R*-Bim, where *R* is a fixed commutative ring, is additive and monoidal. The tensor product $M \otimes N$ of two *R*-bimodules *M* and *N* is defined as the quotient of the abelian group $M \times N = \{(m, n) : m \in M, n \in N\}$ by the relations $(m_1 + m_2, n) = (m_1, n) + (m_2, n)$ and $(m, n_1 + n_2) = (m, n_1) + (m, n_2)$ and r(m, n) = (rm, n) = (m, rn) and (m, n)r = (m, nr) = (mr, n) for $m, m_i \in M$ and $n, n_i \in N$ and $r \in R$. (There is a more concise, but less constructive definition if you know the universal property of the tensor product.) One denotes the equivalence class of (m, n) in $M \otimes N$ by $m \otimes_R n$. Note that *R* is itself an *R*-bimodule (which serves the unit object with respect to \otimes) and that $R \otimes M \cong M \otimes R \cong M$ as bimodules.

A graded *R*-bimodule is an *R*-bimodule *M* with a direct sum decomposition $M = \bigoplus_{i \in \mathbb{Z}} M^i$. Here, each M^i is an *R*-bimodule, called the *i*th graded piece of *M*, whose elements are said to have *degree i*. (Not every element of *M* has a well-defined degree—only the elements which belong to M^i for some *i*.)

The direct sum of two graded R-bimodules M and N is graded: $M \oplus N = \bigoplus_{i \in \mathbb{Z}} M^i \oplus N^i$.

The tensor product is also graded, in a slightly less straightforward way: $M \otimes N = \bigoplus_{i \in \mathbb{Z}} (M \otimes N)^i$ where $(M \otimes N)^i = \bigoplus_{i+k=i} M^j \otimes N^k$. Thus if $m \in M^j$ and $n \in N^k$ then $m \otimes_R n$ has degree j + k.

We consider R to be graded with $R^0 = R$ and $R^i = 0$ for $i \neq 0$.

A graded morphism of graded R-bimodules $\phi : M \to N$ is an R-bimodule homomorphism with $\phi(M^i) \subset N^i$ for all $i \in \mathbb{Z}$.

The category of graded *R*-bimodules with graded morphisms is an additive and monoidal, but not full, subcategory of *R*-Bim. The split Grothendieck group of this subcategory, and more generally of any additive category whose objects and morphisms are graded, is naturally a $\mathbb{Z}[x, x^{-1}]$ -algebra: the group is already a ring, and becomes a $\mathbb{Z}[x, x^{-1}]$ -module on setting $(\sum_{n \in \mathbb{Z}} a_n x^n)[M] = [\bigoplus_{n \in \mathbb{Z}} M(n)^{\oplus a_n}]$. Here M(n) is the graded *R*-bimodule with $M(n)^i = M^{i+n}$, i.e., given by shifting the grading on *M* by *n*.

Example (Soergel bimodules for S_1). Any left *R*-module can be considered as an *R*-bimodule on which the right action of *R* is trivial. Via this identification, we get analogous notions of graded left *R*-modules and graded left *R*-module morphisms, as well as direct sums and tensor products of these objects. Suppose \mathscr{C} is the additive, monoidal category whose objects are the graded left *R*-modules which are finitely generated and free, with graded morphisms.

As a $\mathbb{Z}[x, x^{-1}]$ -algebra, we have $[\mathscr{C}] \cong \mathbb{Z}[x, x^{-1}]$. Each object is isomorphic to a sum of grading shifts of the graded *R*-module given by *R* itself (whose elements are all in degree 0). The map $[R] \mapsto 1$ extends to an algebra isomorphism.

Given an object M is \mathscr{C} , define \overline{M} as the graded R-module whose *j*th graded piece is M^{-j} . Then $[\overline{M}] = [\overline{M}]$ where $h \mapsto \overline{h}$ is the usual bar involution of $\mathbb{Z}[x, x^{-1}] = \mathcal{H}$ for $W = S_1$.

2 Soergel bimodules for S_2

Our goal is to define a full subcategory of the category of graded *R*-bimodules, whose split Grothendieck group is isomorphic to the Iwahori-Hecke algebra \mathcal{H} of an arbitrary Coxeter group. We will call this the category SBim of *Soergel bimodules*.

The precise definition will come next time. In this lecture, we confine ourself to a concrete description of SBim in the simplest nontrivial but highly instructive case when $W = S_2$.

Let $W = S_2$ be the unique Coxeter group with one generator, so that $S = \{s = (1, 2)\}$.

Define $R = \mathbb{R}[x]$ as the ring of real polynomials in one variable. Usually this ring is graded with $R^i = \mathbb{R}x^i$, but for technical reasons we adopt the perverse convention that x^i has degree 2i.

W acts on R by $(s \cdot f)(x) = f(-x)$. For example, $s \cdot (1 + x + x^2 + x^3) = 1 - x + x^2 - x^3$. Let $R^s = \{f \in R : sf = f\} = \mathbb{R}[x^2]$.

For $k \in \mathbb{N}$, define the *R*-bimodules

$$B_1 = R.$$

$$B_s = R \otimes_{R^s} R(1).$$

$$B_{[k]} = \underbrace{R \otimes_{R^s} R \otimes_{R^s} \cdots \otimes_{R^s} R}_{k+1 \text{ factors}}(k).$$

Here B_s is the tensor product of R with itself, but regarded as an R^s -bimodule, with its grading shifted down by 1. This means that elements of B_s are sums of tensors of the form $af \otimes_{R^s} b = a \otimes_{R^s} fb$ where $a, b \in R$ and $f \in R^s$. If a and b have degrees j and k in R, then $a \otimes_{R^s} b$ has degree j + k - 1. Likewise, $B_{[k]}$ is the tensor product over R^s of k + 1 copies of R, with the grading shifted down by k.

- $1 \in B_1$ has degree 0.
- $1 \otimes_{R^s} 1 \in B_s$ has degree -1.
- $1 \otimes_{R^s} \cdots \otimes_{R^s} 1 \in B_{[k]}$ has degree -k.

 $x \otimes_{R^s} x^2 = x^3 \otimes_{R^s} 1 \in B_s$ has degree 2 + 4 - 1 = 5.

Note that $B_1 = B_{[0]}$ and $B_s = B_{[1]}$. Moreover, we have

$$B_{[k]} \cong \underbrace{B_s \otimes B_s \otimes \cdots \otimes B_s}_{k \text{ factors}}$$

where here \otimes is over R, distinct from \otimes_{R^s} .

Claim. The following holds:

- (1) Both B_1 and B_s are indecomposable *R*-bimodules.
- (2) $B_{[2]} \cong B_s(1) \oplus B_s(-1).$

Proof. (1) Both B_1 and B_s are generated as *R*-bimodules by the single elements 1 and $1 \otimes_{R^s} 1$ of lowest degree, so must be indecomposable. (2) $B_{[2]}$ is the direct sum of sub-*R*-bimodules generated by

$$\alpha = 1 \otimes_{R^s} 1 \otimes_{R^s} 1$$
 and $\beta = 1 \otimes_{R^s} x \otimes_{R^s} 1$.

Note that α has degree -2 and β has degree 0. One checks that $\langle \alpha \rangle \cong B_s(1)$ and $\langle \beta \rangle \cong B_s(-1)$.

Let SBim be the full subcategory of the category of graded *R*-bimodules which contains all direct sums and grading shifts of the bimodules $B_{[k]}$ for $k \in \mathbb{N}$. **Proposition.** The following holds for the category SBim:

- (a) SBim is closed under \otimes so [SBim] is a $\mathbb{Z}[x, x^{-1}]$ -algebra.
- (b) Each indecomposable object in SBim is isomorphic to some grading shift of one of B_1 or B_s .
- (c) There exists a unique algebra isomorphism $\varepsilon : \mathcal{H} \to [\mathbb{SBim}]$ with $C_w \mapsto [B_w]$ for $w \in S_2$.

Proof. (a) This holds as $B_{[k]} \otimes B_{[l]} \cong B_{[k+l]}$. (b) This follows from the claim. Note that B_1 and B_s are not isomorphic to any grading shifts of each other. (c) Recall that $C_1 = 1$ and $C_s = H_s + x^{-1}$. Clearly $C_1C_2 = C_w$ and $[B_1][B_w] = [B_1 \otimes B_w] = [B_w]$ for all $w \in S_2$. We have $C_s^2 = (x + x^{-1})C_s$ and $[B_s][B_s] = [B_s \otimes B_s] = [B_s(1) \oplus B_s(-1)] = (x + x^{-1})[B_s]$. The result follows.

We have thus shown for $W = S_2$ that there exists a category of graded *R*-bimodules SBim such that $\mathcal{H} \cong [SBim]$ in which the KL basis elements correspond to a complete list of indecomposable objects up to grading shift and isomorphism. The (trivial) claim that $C_u C_v \in \mathbb{N}[x, x^{-1}]$ -span $\{C_w : w \in S_2\}$ for $u, v \in S_2$ follows immediately, since $\varepsilon(C_u C_v) = \varepsilon(C_u)\varepsilon(C_v) = [B_u \oplus B_v]$.

Next time we will sketch how to extend this construction from $W = S_2$ to an arbitrary Coxeter group W. The key changes will be to define R as the ring of polynomial functions on the geometric representation of W. The definitions of R^s , B_s , and \mathbb{S} Bim will be similar.