
MATH 2121 — Linear algebra (Fall 2018) Lecture 1

Check the course website

http://www.math.ust.hk/~emarberg/teaching/2018/Math2121/

for the syllabus and other course details.

1 Notation

Today’s lecture corresponds to Section 1.1 in the textbook. See the book for a more detailed discussion!

Throughout, we’ll be using the following notation:

• C denotes the complex numbers a+ b
√
−1.

• R denotes the real numbers.

• Q denotes the rational numbers p/q.

• Z denotes the integers {. . . ,−2,−1, 0, 1, 2, . . . }.

• N denotes the nonnegative integers {0, 1, 2, . . . }.

Ellipsis (“. . . ”) notation: we write a1, a2, . . . , a7 instead of the full list a1, a2, a3, a4, a5, a6, a7.

We use the same convention to write a1, a2, . . . , an even when n is a variable integer.

2 Systems of linear equations

Let x1, x2, . . . , xn be variables, where n ≥ 1 is some integer.

Let a1, a2, . . . , an, b be numbers in R (or C).

We’ll usually work with real numbers, but nothing is any harder with complex numbers.

Unlike in calculus, where our favorite variables are x, y, z, in linear algebra we prefer x1, x2, x3, . . . since
later we will want to go beyond 3 dimensions.

Definition. We refer to
a1x1 + a2x2 + · · ·+ anxn = b

as a linear equation in the variables x1, x2, . . . , xn.

Notation. Another way of writing this equation is
∑n

i=1 aixi = b.

The symbol “
∑

” is the Greek letter sigma, for “sum.”

There are many other equivalent ways of writing the same equation. For example:

a1x1 + a2x2 + · · ·+ anxn − b = 0

b = a1x1 + a2x2 + · · ·+ anxn

a1x1 + a3x3 + a5x5 + . . . = b− a2x2 − a4x4 − . . .

We consider all of these equations to be the same thing.

Example. The following are all linear equations:

3x1 = 2x2, 3x1 + 4
3x2 −

√
2x3 = 7, 0 = 0.
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Even though the last equation involves no variables, it has the form required of a linear equation.

The following are not linear equations:

3x21 + 4x2 = 7, x1x2 = x3,
√
x2 − 1 = 2.

A system of linear equations or linear system is a list of linear equations.

Example.

2x1 − x2 +
√

3x3 = 8

x1 − 4x3 = 8

x2 = 0

is a linear system in the variables x1, x2, x3.

Definition. A solution of a linear system in variables x1, x2, . . . , xn is a list of n numbers (s1, s2, . . . , sn)
with the property that if we set x1 = s1, x2 = s2, . . . , xn = sn in our equations, we get all true statements.

If our system contains any false equations like “0 = 1”, then it cannot have any solutions.

Two linear systems are equivalent if they have the same set of solutions.

Example. How many solutions can a linear system have?

1. The system
x1 − 2x2 = −1

−x1 + 3x2 = 3

has one solution (s1, s2) = (3, 2).

2. But the system
x1 − 2x2 = −1

3x1 − 6x2 = −3

has many solutions: (s1, s2) = (1, 1) or (3, 2) or (5, 3) or . . . .

3. Whereas the system
x1 − 2x2 = −1

x1 − 2x2 = 0

has no solutions.

Theorem. A linear system in two variables x1 and x2 has either 0, 1, or ∞ solutions.

Remark. The symbol “∞” is pronounced “infinity.” Saying that a linear system has ∞ solutions is
somewhat imprecise, since ∞ isn’t a number. When we say this, we really mean: “does not have a finite
number of solutions.”

Proof by geometry. A solution to one equation ax1 +bx2 = c represents a point on a line after we identify
the pair of numbers (x1, x2) with a point in the Cartesian plane.

A solution to a system of 2-variable linear equations represents a point where the lines corresponding to
the equations all intersect.

But a collection of lines all intersect either at 0 points (they don’t have a common intersection), 1 point
(the unique point of intersection) or at infinitely many points (in the case when the lines are all the same
line, though they might come from different equations).
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Proof by algebra. Suppose the linear system has two different solutions (s1, s2) and (r1, r2).

Define λ1 = s1 − r1 and λ2 = s2 − r2.

The symbol “λ” is the Greek letter lambda.

If ax1+bx2 = c was one of the equations in our system, then by definition as1+bs2 = c and ar1+br2 = c.

Taking the difference of these equations gives a(s1 − r1) + b(s2 − r2) = 0. In other words, aλ1 + bλ2 = 0.

It follows that a(s1 + zλ1) + b(s2 + zλ2) = as1 + bs2 = c for all z.

This works for all the equations in our system.

Therefore (s1 + zλ1, s2 + zλ2) is a new solution to our system, for any choice of z.

So the system has infinitely many solutions.

A linear system is consistent if it has one or infinitely many solutions, and inconsistent if it has zero
solutions. Both the algebraic and geometric proofs generalize to any number of variables. (Think about
how to do this!) Therefore:

Theorem. Any linear system in n variables is either consistent or inconsistent, and therefore has either
0, 1, or infinitely many solutions.

3 Matrices

A matrix is just a rectangular array of numbers, like these ones:[
1
]

or

[
5 3
2 π

]
or

[
7 6 4 3
2 1 1 0

]
.

We denote a general matrix by

A =

 A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34


Here “A23” is pronounced “A, two, three”. This matrix is 3-by-4: it has 3 rows and 4 columns.

Say that a matrix A is m-by-n or m× n if has m rows and n columns.

We usually write Aij (pronounced “A, i, j”) for the entry in the ith row and jth column of the matrix.

Matrices are useful as a compact way of writing a linear system.

Consider the linear system
x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

5x1 − 5x3 = 10

Define the coefficient matrix of this system to be 1 −2 1
0 2 −8
5 0 −1


In other words, the matrix A where Aij is the coefficient of xj in the ith equation.

The augmented matrix of the system is  1 −2 1 0
0 2 −8 8
5 0 −1 10

 .
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Exercise: how would you generalize this definition to any linear system?

4 Solving linear systems

We solve linear systems by adding equations together to cancel variables.

Example. To solve
x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

5x1 − 5x3 = 10

 1 −2 1 0
0 2 −8 8
5 0 −5 10


we first add −5 time equation 1 to equation 3 to get

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

10x2 − 10x3 = 10

 1 −2 1 0
0 2 −8 8
0 10 −10 10

 .
We then multiply equation 2 by 1/2 to get

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

10x2 − 10x3 = 10

 1 −2 1 0
0 1 −4 4
0 10 −10 10

 .
We then add −10 times equation 2 to equation 3:

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

30x3 = −30

 1 −2 1 0
0 1 −4 4
0 0 30 −30

 .
Multiple equation 3 by 1/30:

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

x3 = −1

 1 −2 1 0
0 1 −4 4
0 0 1 −1

 .
The augmented matrix of the last system if triangular : all entries in positions (i, j) with i > j are zero.

Remember that i is the row, j is the column.

We can easily solve for x1, x2, x3 from a triangular system, working from the bottom up:

• The last equation x3 = −1 is already as simple as possible.

• Substitute into second equation: x2 − 4x3 = x1 − 4(−1) = 4 ⇒ x2 = 0 .

• Substitute into first equation: x1 − 2x2 + x1 = x1 − 2(0) + (−1) = 0 ⇒ x1 = 1 .

Definition. In solving this system of equations, we performed the following (elementary) row operations
on the augmented matrix of the system:

1. Replacement: replace one row by the sum of itself and a multiple of another row.

2. Scaling: multiple all entries in a row by a nonzero number.

3. Interchange: swap two rows.
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Note: we “add” rows by adding the corresponding entries:[
1 2 3 4

]
+
√

7
[

0 8 4 6
]

=
[

1 2 + 8
√

7 3 + 4
√

7 4 + 6
√

7
]
.

Two matrices are row equivalent if one can be transformed to the other by a sequence of row operations.

Each row operation is reversible. (Exercise: why?)

Theorem. If the augmented matrices of two linear systems are row equivalent, then the systems are
equivalent (i.e., have same solutions).

Proof. Here’s the idea, minus the details: check that performing one row operation does not change
whether a given (s1, s2, . . . , sn) is a solution to the linear system.

Given a linear system with augmented matrix A, suppose we perform row operations on A until we get
a matrix T with the property that whenever Tij is the first nonzero entry in the ith row of T going left
to right, then Tij is the last nonzero entry in the jth column of T going top to bottom. For example:

T =

 1 6 8 9 0
0 0 3 2 1
0 0 0 4 2

 or T =

 1 6 8 9 0
0 0 3 2 1
0 0 0 0 2


From T in this form, we can easily determine if the system we started out with is consistent or inconsistent.

If T is the left matrix, the system is consistent: we have

x4 = 4, 3x3 + 2x4 = 1, and x− 1 + 6x2 + 8x3 + 9x4 = 0.

Exercise: find a solution!

If T is the right matrix, the system is inconsistent: it includes the equation 0 = 2, from the last row.

In general, a linear system is inconsistent if and only if its augmented matrix can be transformed by row
operations to a matrix with a row of the form[

0 0 . . . 0 q
]

where q 6= 0. We’ll prove this next time, after introducing the course’s most important algorithm, row
reduction to echelon form.
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5 Vocabulary

Keywords from today’s lecture:

1. Linear equation.

An equation of the form a1x1 + a2x2 + . . . anxn = b where n is a positive integer, a1, a2, . . . , an, b
are numbers, and x1, x2, . . . , xn are variables.

Example: 3x1 − 1
7x3 = x4 + 5.

2. Linear system or system of linear equations.

A list of one or more linear equations.

Example:

{
x1 + x2 = 3

3x2 − x1 = 2

3. Solution to a linear system.

A solution to one linear equation a1x1 + a2x2 + . . . anxn = b is a list of numbers (s1, s2, . . . , sn)
such that a1s1 +a2s2 + . . . ansn is equal to b. A solution to a linear system is a list of numbers that
is simultaneously a solution to every equation in the system.

Example: a solution to

{
x1 + x2 = 3

3x2 − x1 = 2
is (s1, s2) = (7

4 ,
5
4 ).

4. Equivalent linear systems.

Two linear systems with the same sets of variables and same sets of solutions.

Example:

{
x1 + x2 = 3

3x2 − x1 = 2
and

{
2x1 + 2x2 = 6

x1 − 3x2 + 2 = 0
are equivalent.

5. Consistent linear system.

A linear system with at least one solution.

Example:

{
x1 + x2 = 3

3x2 − x1 = 2
is consistent.

6. Inconsistent linear system.

A linear system with no solutions.

Example:

{
x1 + x2 = 3

2x1 + 2x2 = 4
is inconsistent.

7. Matrix.

A rectangular array of numbers. A matrix A is m× n if it has m rows and n columns.

We write Aij for the entry of A is row i and column j.

Example: A =

[
0 −1 2√
2 5 6

]
. This matrix is 2× 3 and A21 =

√
2 while A12 = −1.
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8. Coefficient matrix of a linear system.

For a linear system m equations with n variables, the m× n matrix that records the coefficients of
the variables.

Example:

[
0 −1 2√
2 5 6

]
is the coefficient matrix of

{
−x2 + 2x3 = 3√

2x1 + 5x2 + 6x3 = 7
.

9. Augmented matrix of a linear system.

For a linear system m equations with n variables, the m×(n+1) matrix that records the coefficients
of the variables and the constant on the other side of each equation.

Example:

[
0 −1 2 3√
2 5 6 7

]
is the augmented matrix of

{
−x2 + 2x3 = 3√

2x1 + 5x2 + 6x3 = 7
.

10. Elementary row operator on a matrix.

One of the following operations on a matrix: replace one row by the sum of the row and a multiple
of another row, multiply all entries in row by a fixed number, or swap two rows.

Example:

[
0 −1 2√
2 5 6

]
→
[

2
√

2 9 14√
2 5 6

]
Example:

[
0 −1 2√
2 5 6

]
→
[

0 −1 2

5
√

2 25 30

]
Example:

[
0 −1 2√
2 5 6

]
→
[ √

2 5 6
0 −1 2

]
.

11. Row equivalent matrices.

Matrices that can be transformed to each other by a sequence of row operations.

Example:

[
0 −1 2√
2 5 6

]
→
[

2
√

2 9 14√
2 5 6

]
→
[

2
√

2 9 14

5
√

2 25 30

]
→
[

5
√

2 25 30

2
√

2 9 14

]
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