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1 Last time: row reduction to (reduced) echelon form

The leading entry in a nonzero row of a matrix is the first nonzero entry from left going right. For
example, the row

[
0 0 7 0 5

]
has leading entry 7, which occurs in the 3rd column.

Definition. A matrix with m rows and n columns is in echelon form if it has the following properties:

1. If a row is nonzero, then every row above it is also nonzero.

2. The leading entry in a nonzero row is in a column to the right of the leading entry in the row above.

3. If a row is nonzero, then every entry below its leading entry in the same column is zero.

For example,  1 2 0 0
0 3 5 0
0 0 0 0

 (*)

is in echelon form, but none of 1 2 0 0
0 0 0 0
0 3 5 0

 or

 0 2 0 0
0 3 5 0
0 0 0 0

 or

 0 2 0 0
1 3 5 0
0 0 4 5


is in echelon form.

Definition. A matrix is in reduced echelon form if

1. The matrix is in echelon form.

2. Each nonzero row has leading entry 1.

3. The leading 1 in each nonzero row is the only nonzero number in its column.

The matrix  1 0 −10/3 0
0 1 5/3 0
0 0 0 0


is in reduced echelon form and is row equivalent to the matrix (*).

Theorem. Each matrix A is row equivalent to exactly one matrix in reduced echelon form.

We denote this matrix by RREF(A).

The row reduction algorithm is a way of constructing RREF(A) from A. This algorithm is something you
should memorize and be able to perform quickly. We won’t review the full definition again in this lecture,
but let’s do an example.

Example. Writing → to indicate a sequence of row operations, we have 1 1 1 0
1 2 4 1
1 3 9 2

→
 1 1 1 0

0 1 3 1
0 2 8 2

→
 1 1 1 0

0 1 3 1
0 0 2 0

→
 1 1 1 0

0 1 3 1
0 0 1 0

→
 1 1 0 0

0 1 0 1
0 0 1 0

→
 1 0 0 −1

0 1 0 1
0 0 1 0


and the last matrix is the reduced echelon form of the first matrix.

Remark. There is another way to think about what this computation means.

Note that the first matrix is the augmented matrix of the linear system

a+ b+ c = 0

a+ 2b+ 22c = 1

a+ 3b+ 32c = 2
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where we are now using a, b, c as variables rather than x1, x2, x3 as usual.

A solution to this linear system gives the coefficients of a polynomial f(x) = a+ bx+ cx2 with f(1) = 0,
f(2) = 1, and f(3) = 2. The graph of this function is a parabola passing through the points (1, 0), (2, 1),
and (2, 2). But these three points are all on the same line y = x− 1.

We therefore must have f(x) = x− 1 and (a, b, c) = (−1, 1, 0) must be the unique solution to our system.
This forces the reduced echelon form of our augmented matrix to be what we computed.

A pivot column of a matrix A is a column containing a leading 1 in RREF(A).

If A is the augmented matrix of a linear system in variables x1, x2, . . . , xn, then we say that xi is a basic
variable if i is a pivot column and that xi is a free variable if i is not a pivot column.

To determine the basic and free variables of the system, we have to perform the row reduction algorithm
to figure out what RREF(A) is first. Once we have done this, we can conclude that:

• The system has 0 solutions if the last column is a pivot column of A.

• The system has ∞ solutions if the last column is not a pivot column but there is ≥ 1 free variable.

• The system has 1 solution if there are no free variables, and the last column is not a pivot column.

Moreover, here’s how you find all the solutions to the system: choose any values for the free variables,
then solve for the basic variables in terms of the free variables via the equations which make up the linear
system corresponding to RREF(A).

2 Vectors

Until we see vector spaces later in this course, the term vector will always refer to an ordered list of
numbers in R. A vector (sometimes to be called a column vector) is such a list oriented vertically; in
other words, a matrix with one column:

[
1
]

or

[
3
−1

]
or


1
2
3
5

 or

[ √
7√
6

]
.

We write a general column vector as

v =


v1
v2
...

vn


where each vi is a real number. Two vectors u and v are equal if they have the same number of rows and
the same entries in each row.

The sum of two vectors is 
v1
v2
...

vn

+


u1
u2
...

un

 =


u1 + v1
u2 + v2

...
un + vn

 .
Note: u+ v = v + u, but we can only add together vectors with the same number of rows.
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If v is a vector and c ∈ R is a scalar, i.e., a real number, then we define

cv = c


v1
v2
...

vn

 =


cv1
cv2
...

cvn

 .
We call the new vector cv the scalar multiple of v by c.

Example. We have [
1
−2

]
+

[
2
5

]
=

[
3
3

]
and

−
[

1
−2

]
=

[
−1

2

]
.

Define subtraction of vectors as addition after multiplying by the scalar −1:[
1
−2

]
−
[

1
5

]
=

[
1
−2

]
+ (−1)

[
1
5

]
=

[
1
−2

]
+

[
−1
−5

]
=

[
0
−7

]
.

We write Rn for the set of all vectors with exactly n rows. Vectors a =

[
a1
a2

]
∈ R2 can be identified

with arrows in the Cartesian plane from the origin to the point (x, y) = (a1, a2):

Proposition. The sum a + b of two vectors a, b ∈ R2 is the vector represented by the arrow from the
origin to the point which is the opposite vertex of the parallelogram with sides a and b:

Proof. We have a2

a1
= (a2+b2)−b2

(a1+b1)−b1
and b2

b1
= (a2+b2)−a2

(a1+b1)−a1
.

The fractions a2

a1
and b2

b1
are the slopes of the lines through the origin containing the vectors a and b.

The other two fractions are the slopes of the lines (1) between the endpoints of b and a + b and (2)
between the endpoints of a and a+ b.

The first line of the proof shows that line (1) is parallel to a, and line (2) is parallel to b.

Therefore lines (1) and (2) are the other two sides of the unique parallelogram with sides a and b.
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The endpoint of a+ b is where lines (1) and (2) intersect.

Therefore this endpoint is the vertex of the parallelogram opposite the origin.

The zero vector 0 ∈ Rn is the vector

0 =


0
0
...
0


whose entries are all zero. We have 0 + v = v + 0 = v for any vector v.

Definition. Suppose v1, v2, . . . , vp ∈ Rn are vectors and c1, c2, . . . , cp ∈ R are scalars, i.e., numbers.
The vector y = c1v1 + c2v2 + · · · + cpvp is called a linear combination of v1, v2, . . . , vp. It is the linear
combination of v1, v2, . . . , vp with coefficients c1, c2, . . . , cp.

Example. Suppose a =

 1
−2
−5

 and b =

 2
5
6

 and c =

 7
4
−3

. Is c a linear combination of a and b?

If it were, we could find numbers x1, x2 ∈ R such that x1a+ x2b = c, i.e., such that

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3.

So to answer our question we need to determine if this linear system has a solution.

To do this, use row reduction:

A =

 1 2 7
−2 5 4
−5 6 −3

→
 1 2 7

0 9 18
0 16 32

→
 1 2 7

0 1 2
0 1 2

→
 1 2 7

0 1 2
0 0 0

→ RREF(A) =

 1 0 3
0 1 2
0 0 0

 .
The pivot columns of A are 1 and 2: the last column is not a pivot column. Therefore our linear system
is consistent, which means that c is a linear combination of a and b.

We generalize this example with the following statement.

Proposition. A vector equation of the form x1a1 + x2a2 + · · · + xnan = b where x1, x2, . . . , xn are
variables and a1, a2, . . . , an, b ∈ Rm are vectors, has the same solutions as those for the linear system
with augmented matrix [

a1 a2 a3 . . . an b
]
. (*)

This notation means the matrix whose ith column is ai and last column is b.

In other words, the vector b is a linear combination of a1, a2, . . . , an if and only if the linear system whose
augmented matrix is (*) is consistent.

Definition. The span of a vectors v1, v2, . . . , vp ∈ Rn is the set of all vectors y ∈ Rn that are linear
combinations of v1, v2, . . . , vp. We denote the span of some set of vectors by

R-span{v1, v2, . . . , vp} or span{v1, v2, . . . , vp}.

What does R-span{v1, v2, . . . , vp} look like?

We can visualize the span of the 0 vector as the single point consisting of just the origin. We imagine the
span of a collection of vectors that all belong to the same line through the origin as that line.

In R2, if the span of v1, v2, . . . , vp does not consist of a line, then the span is the whole plane.
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To see this, imagine we have two vectors u, v ∈ R2 which are not parallel. We can then get to any point
in the plane by travelling some distance in the u direction, then some distance in the v direction. In other
words, we can get any vector in R2 as the linear combination au+ bv for some scalars a, b ∈ R. Draw a
picture to illustrate this to yourself:
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3 Vocabulary

Keywords from today’s lecture:

1. Vector.

A vertical list of numbers. Equivalently, a matrix with one column.

The set of all vectors with n rows is written Rn.

Example:


1
0

−5.2
3

 or
[

4
]

or

[ √
2
π

]
.

2. Scalar.

Another word for “number” or “constant.” We can multiply scalars together, but not vectors.

Example: 5 or π or
√

2.

3. The zero vector 0 ∈ Rn.

The vector


0
0
...
0

 with n rows all equal to zero.

4. Linear combination of vectors.

If u =

[
u1
u2

]
and v =

[
v1
v2

]
are vectors, then u+ v =

[
u1 + v1
u2 + v2

]
.

If c ∈ R is a scalar then cv =

[
cv1
cv2

]
.

The linear combination of vectors v1, v2, . . . , vp ∈ Rn with coefficients a1, a2, . . . , ap ∈ R is

a1v1 + a2v2 + · · ·+ apvp ∈ Rn.

Example: 2

[
1
4

]
−
[

0
1

]
+ π

[
1
3

]
=

[
2− 0 + π

8− 1 + 3π

]
=

[
2 + π

7 + 3π

]
.

5. The span of a list of vectors v1, v2, . . . , vp ∈ Rn.

The set of all linear combinations of the vectors v1, v2, . . . , vp ∈ Rn.

A vector u ∈ Rn belongs to the span of v1, v2, . . . , vp ∈ Rn if and only if the n× (p+ 1) matrix

A =
[
v1 v2 · · · vp u

]
is the augmented matrix of a consistent linear system.

This happens precisely when A has no pivot positions in the last column.
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