
MATH 2121 — Linear algebra (Fall 2018) Lecture 4

1 Last time: Vectors

A (column) vector

v =


v1
v2
...

vn


is a matrix with one column. A vector has the same data as a list of real numbers.

Let Rn be the set of all vectors with exactly n rows.

We can add two vectors of the same size:


v1
v2
...

vn

+


u1

u2

...
un

 =


u1 + v1
u2 + v2

...
un + vn

 .

We can multiply a vector by a scalar : cv = c


v1
v2
...

vn

 =


cv1
cv2

...
cvn

 for c ∈ R and v ∈ Rn

The word “scalar” is a synonym for real number.

It is useful to visualize vectors a =

[
a1
a2

]
∈ R2 as arrows in the Cartesian plane from the origin to the

point (x, y) = (a1, a2):

Relative to this picture, the sum a + b of two vectors a, b ∈ R2 is the vector represented by the arrow
from the origin to the point which is the opposite vertex of the parallelogram with sides a and b:

The zero vector 0 ∈ Rn is the vector

0 =


0
0
...
0


whose entries are all zero. We have 0 + v = v + 0 = v for any vector v.
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A linear combination of vectors v1, v2, . . . , vp ∈ Rn is any vector of the form

y = c1v1 + c2v2 + · · ·+ cpvp ∈ Rn

where c1, c2, . . . , cp ∈ R.

The span of some vectors v1, v2, . . . , vp ∈ Rn is the set of all of their linear combinations. Denote this by

R-span{v1, v2, . . . , vp} or span{v1, v2, . . . , vp}.

Proposition. If v1, v2, . . . , vp ∈ Rn, then a vector y ∈ Rn belongs to R-span{v1, v2, . . . , vp} if and only
if the matrix

[
v1 v2 . . . vp y

]
is the augmented matrix of a consistent linear system.

The span of vectors in R2 can be interpreted geometrically as either a point (at the origin), a line (through
the origin), or the whole plane R2.

2 Multiplying matrices and vectors

We have seen that one way to view a matrix is as a compact notation for representing a linear system.

Today we introduce a second, perhaps more fundamental way of viewing a matrix: namely, as an object
that transforms one vector to another.

Definition. If A is a matrix with columns a1, a2, . . . , an ∈ Rm and v ∈ Rn, so that

A =
[
a1 a2 . . . an

]
and v =


v1
v2
...

vn


then the matrix-vector product Av is the vector in Rm given by the linear combination of the columns of
A with coefficients from v:

Av =
[
a1 a2 . . . an

]


v1
v2
...

vn

 = v1a1 + v2a2 + · · ·+ vnan ∈ Rm.

Example. If A =

[
1 2 −1
0 −5 3

]
and v =

 4
3
7

 then a1 =

[
1
0

]
, a2 =

[
2
−5

]
, and a3 =

[
−1

3

]
so

Av = 4a1 + 3a2 + 7a3 =

[
4
0

]
+

[
6

−15

]
+

[
−7
21

]
=

[
3
6

]
.

Example. If A =

 2 −3
8 0
−5 2

 and v =

[
4
7

]
then a1 =

 2
8
−5

 and a2 =

 −3
0
2

 so we have

Av = 4a1 + 7a2 = 4

 2
8
−5

+ 7

 −3
0
2

 =

 8
32
−20

+

 −21
0

14

 =

 −13
32
−6

 .
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If A is m× n then Av is only defined for v ∈ Rn, and in this case we have Av ∈ Rm.

Thus A transforms vectors in Rn to vectors in Rm.

This transformation is linear :

1. If A is an m× n matrix and u, v ∈ Rn then A(u + v) = Au + Av.

2. If A is an m× n matrix and v ∈ Rn and c ∈ R then A(cv) = c(Av).

Proof. If the columns of A are a1, a2, . . . , an ∈ Rm and the numbers in the ith row of u, v are ui, vi, then

A(u + v) = (u1 + v1)a1 + (u2 + v2)a2 + · · · = (u1a1 + u2a2 + . . . ) + (v1a1 + v2a2 + . . . ) = Au + Av.

If c ∈ R then
A(cv) = (cv1)a1 + (cv2)a2 + · · · = c(v1a1 + v2a2 + . . . ) = c(Av).

Let A and v be the general m× n matrix and n-dimensional vector given by

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and v =


v1
v2
...

vn

 .

Quick way to compute Av: match up entries in the ith column of A with the entry in the ith row of v.
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn




v1
v2
...

vn

 =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

 .

For example,
[

1 2 3 4
] 

5
6
7
8

 = 1 · 5 + 2 · 6 + 3 · 7 + 4 · 8 = 5 + 12 + 21 + 32 = 70.

3 Matrix equations

If A is an m× n matrix with columns a1, a2, . . . , an ∈ Rm and x =


x1

x2

...
xn

 is a vector where each xi is

a variable and b =


b1
b2
...

bm

 ∈ Rm, then we call Ax = b a matrix equation.

Proposition. The matrix equation Ax = b has the same solutions as the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

and also the same solutions as the linear system whose augmented matrix is
[
a1 a2 . . . an b

]
.
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Proposition. The matrix equation Ax = b has a solution if and only if b is a linear combination of the
columns of A, that is, b ∈ R-span{a1, a2, . . . , an}.

Example. Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 and b =

 b1
b2
b3

.

Does Ax = b have a solution for all choices of b1, b2, b3 ∈ R?

The system Ax = b has a solution if and only if 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3


is the augmented matrix of a consistent linear system. We can determine if this system is consistent by
row reducing the matrix to echelon form: 1 3 4 b1

−4 2 −6 b2
−3 −2 −7 b3

→
 1 3 4 b1

0 14 10 4b1 + b2
0 7 5 3b1 + b3

→
 1 3 4 b1

0 14 10 4b1 + b2
0 0 0 b1 − 1

2b2 + b3

 .

The last matrix is in echelon form, so its leading entries are the pivot positions of our first matrix. The
corresponding linear system is consistent if and only if the last column does not contain a pivot position.
This occurs precisely when b1 − 1

2b2 + b3 = 0.

But we can choose numbers such that b1 − 1
2b2 + b3 6= 0: take b1 = 1 and b2 = b3 = 0. Therefore our

original matrix equation Ax = b does not always have a solution.

We can generalize this example:

Theorem. Let A be an m× n matrix. If one of the following holds, then all of the statements hold. If
one of the following fails, then all of the statements fail:

1. For each vector b ∈ Rm, the matrix equation Ax = b has a solution.

2. Each vector b ∈ Rm is a linear combination of the columns of A.

3. The span of the columns of A is all of Rm (say this as: “the columns of A span Rm”).

4. A has a pivot position in every row.

Proof. (1)-(3) are different ways of saying the same thing.

We must check that (1)-(3) are equivalent to (4), which is less obvious.

If A has a pivot position in every row, then the augmented matrix
[
A b

]
cannot have a pivot position

in the last column; saying that A has a pivot position in every row means that
[
A b

]
has to be row

equivalent to something like  0 1 ∗ ∗ ∗ c1
0 0 0 4 ∗ c2
0 0 0 0 3 c3


where c1, c2, c3 are numbers (i.e., 1-dimensional vectors) given by linear combinations of b1, b2, b3. Re-
gardless of what c1, c2, c3 are, the given matrix has pivot columns 2, 4 and 5 but not 6.

We saw last time that not having a pivot position in the last column means that
[
A b

]
is the augmented

matrix of a consistent linear system.

On the other hand, if A doesn’t have a pivot position in some row, then it is always possible to choose b
such that

[
A b

]
has a pivot position in the last column, in which case the corresponding linear system

has no solution. (Think about why this is true!)
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4 Homogeneous linear systems

Any system of linear equations

a11x1 + a12x2 + · · ·+ x1nxn = b1

a21x1 + a22x2 + · · ·+ x2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be written as the matrix equation Ax = b where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and x =


x1

x2

...
xn

 and b =


b1
b2
...

bm

 .

A linear system is homogeneous if it can be written as Ax = 0 where 0 ∈ Rm is the zero vector.

Important easy fact. The homogeneous equation Ax = 0 always has a solution given by x = 0 ∈ Rn.

We call x = 0 the trivial solution to Ax = 0. A nonzero vector x ∈ Rn is a nontrivial solution if Ax = 0.
A homogeneous matrix equation may or may not have nontrivial solutions.

Proposition. The equation Ax = 0 has a nontrivial solution if and only if the corresponding linear
system has at least one free variable.

Proof. If the system has no free variables, then it has either zero solutions or one solution. Since x = 0
already gives one solution to Ax = 0, the system must have exactly one solution if it has no free variables,
but this solution is the trivial one.

Theorem. Suppose the matrix equation Ax = b has a solution x0 ∈ Rn. Every solution of this equation
has the form x0 + h where h ∈ Rn is an arbitrary solution to the homogeneous equation Ax = 0.

Proof. Let x1 ∈ Rn be another solution to Ax = b. We want to show that x1 = x0 +h for a vector h ∈ Rn

which solves Ax = 0. Clearly we have to have h = x1 − x0. But this does satisfy Ah = A(x1 − x0) =
Ax1 + A(−x0) = Ax1 −Ax0 = b− b = 0.

5 Linear independence

Let v1, v2, . . . , vp be vectors in Rn.

These vectors are linearly independent if the homogeneous vector equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only trivial solutions, i.e., if x1v1 + · · ·+ xpvp = 0 if and only if x1 = x2 = · · · = xp = 0.

The vectors v1, v2, . . . , vp are linearly dependent otherwise, i.e., if there are some numbers c1, c2, . . . , cp ∈
R, at least one of which is nonzero, such that c1v1 + c2v2 + . . . cpvp = 0.
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Example. If v1 =

 1
2
3

 and v2 =

 4
5
6

 and v3 =

 2
1
0

 then

v1 + v3 =

 3
3
3

 and v2 + v3 =

 6
6
6


so 2(v1 + v3)− (v2 + v3) = 2v1 − v2 + v3 = 0. Hence v1, v2, v3 are linearly dependent.

It is usually not so easy to guess whether a given list of vectors is linearly independent or not. In general,
to do this we have to determine whether a certain homogeneous linear system has a nontrivial solution,
which involves reducing its matrix to echelon form.

The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has no nontrivial
solution.

Example. Some useful observations:

1. A list of just one vector v is linearly independent if and only if v 6= 0.

2. Two vectors u, v ∈ Rn are linear dependnet if and only if we can write au + bv = 0 for numbers
a, b ∈ R with a 6= 0 or b 6= 0. If a 6= 0 then we have u = (−b/a)v. If b 6= 0 then v = (−a/b)u. (Both
of these cases could occur.) Thus:

Two vectors are linearly independent if and only if neither is a scalar multiple of the other.

3. If some vi = 0 then v1, v2, . . . , vp are linear dependent, since then

0v1 + · · ·+ 0vi−1 + 5vi + 0vi+1 + · · ·+ 0vp = 0.

(The scalar 5 here can be replaced by any number.)

Characterization of linearly dependent vectors. The vectors v1, v2, . . . , vp ∈ Rn are linearly dependent if
and only if some vector vi is a linear combination of the other vectors v1, . . . , vi−1, vi+1, . . . , vp.

Proof. We first show that if the vectors are linearly dependent then some vector is a linear combination
of the others. Suppose c1v1 + · · ·+ cpvp = 0 where ci 6= 0 . Then

vi = (−c1/ci)v1 + (−c2/ci)v2 + · · ·+ (−ci−1/ci)vi−1 + (−ci+1/ci)vi+1 + · · ·+ (−cp/ci)vp

so vi is a linear combination of v1, . . . , vi−1, vi+1, . . . , vp.

Conversely, if we can write vi = c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cpvp for any coefficients in R, so
that vi is a linear combination of the remaining vectors, then

c1v1 + · · ·+ ci−1vi−1 − vi + ci+1vi+1 + · · ·+ cpvp = 0

which means that the vectors are linearly dependent, since the coefficient of at least vi is nonzero.

We conclude this lecture with a useful, non-obvious fact:

Theorem. Suppose v1, v2, . . . , vp ∈ Rn. If p > n then these vectors are linearly dependent.

Proof. Saying these vectors are linearly dependent is the same thing as saying that the n× (p+1) matrix

A =
[
v1 v2 . . . vp 0

]
is the augmented matrix of a linear system with at least one free variable. A variable xi for 1 ≤ i ≤ p is
free for this system precisely when i is not a pivot column of A. There can only be 1 pivot position in
each row, so there can be at most n pivot columns in A. If p > n, it follows that there will be at least
p− n > 0 free variables, so our vectors must be linearly dependent.
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Example. Suppose u =

[
1
2

]
and v =

[
1
3

]
and w =

[
5

60

]
. Then

A =

[
1 1 5 0
2 3 60 0

]
→
[

1 1 5 0
0 1 50 0

]
→
[

1 0 −45 0
0 1 50 0

]
= RREF(A)

so the pivot columns of A are 1 and 2, while x3 is a free variable. Therefore u, v, w are linearly dependent.

In fact we have x1u + x2v + x3w = 0 if and only if x1 − 45x3 = x2 + 50x3 = 0.

Take x3 = 1. Then x1 = 45 and x2 = −50, so 45u− 50v + w = 0.
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6 Vocabulary

Keywords from today’s lecture:

1. The product of a matrix A and a vector v.

This is only defined if A is m× n and v ∈ Rn.

In this case, if

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and v =


v1
v2
...

vn


then their product is

Av =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn




v1
v2
...

vn

 =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

 ∈ Rm.

Example:

[
1 2 3 4
0 1 0 1

]
5
6
7
8

 =

[
5 + 12 + 21 + 32

6 + 8

]
=

[
70
14

]
.

2. A matrix equation.

An equation of the form Ax = b where A is an m×n matrix with columns a1, a2, . . . , an ∈ Rm and

x =


x1

x2

...
xn


is a vector where each xi is a variable and b ∈ Rm.

This equation has the same solutions as the linear system with augmented matrix
[
A b

]
.

There are several equivalent ways of characterizing whether this system has a solution.

Example:

 1 3 4
−4 2 −6
−3 −2 −7

 x1

x2

x3

 =

 1
2
3

.

3. Homogeneous linear system.

A linear system for which (0, 0, 0, . . . , 0) is a solution.

Equivalently, a linear system that can be written as a matrix equation of the form Ax = 0.

A nontrivial solution to a homogeneous linear system is a solution not given by x = 0 ∈ Rn.

Example:

 1 3 4
−4 2 −6
−3 −2 −7

 x1

x2

x3

 =

 0
0
0

.
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4. Linearly independent vectors.

The vectors v1, v2, . . . , vp ∈ Rn are linearly independent when x1v1 + · · · + xpvp = 0 if and only if
x1 = x2 = · · · = xp = 0; equivalently, when the homogeneous matrix equation

[
v1 v2 . . . vp

]


x1

x2

...
xp

 = 0

has no nontrivial solutions.

Vectors that are not linearly independent are linearly dependent.

Example: The three vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

 are linearly independent.

The four vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

,

 −1
−2
−3

 are linearly dependent.
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