
MATH 2121 — Linear algebra (Fall 2018) Lecture 5

1 Last time: multiplying vectors matrices

Given a matrix A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 and a vector v =


v1
v2
...

vn

 ∈ Rn we define

Av = v1


a11
a21
...

am1

+ v2


a12
a22
...

am2

+ · · ·+ vn


a1n
a2n
...

amn

 .
We refer to Av as the product of A and v, or the vector given by multiplying v by A.

Example. We have

[
1 2 3
5 6 7

] −1
0
1

 =

[
−1 + 0 + 3
−5 + 0 + 7

]
=

[
2
2

]
.

If A is an m× n matrix and x =


x1
x2
...

xn

 and b ∈ Rm, then we call Ax = b a matrix equation.

A matrix equation Ax = b has the same solutions as the linear system with augmented matrix
[
A b

]
.

Theorem. Let A be an m× n matrix. The following are equivalent:

1. Ax = b has a solution for any b ∈ Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot position in every row.

Example. The matrix equation  1 3 4
−4 2 −6
−3 −2 −7

 x1
x2
x3

 =

 b1
b2
b3


may fail to have a solution since

RREF

 1 3 4
−4 2 −6
−3 −2 −7

 =

 1 0 ∗
0 1 ∗
0 0 0


has pivot positions only in rows 1 and 2.

A homogeneous linear system is one that can be written Ax = 0.

Such a system has one trivial solution given by x = 0.

A homogeneous linear system has a nontrivial solution if and only if it has at least one free variable.

A homogeneous linear system has a free variable if not every column is a pivot column in its coefficient
matrix, which is the augmented matrix without the last column.
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2 Linear independence

We briefly introduced the notion of linear independence last time.

Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if the homogeneous matrix equation

[
v1 v2 . . . vp

]

x1
x2
...

xp

 = 0

has no nontrivial solution.

If c1v1 + c2v2 + · · ·+ cpvp = 0 where c1, c2, . . . , cp ∈ R and some ci 6= 0, then we refer to “c1v1 + c2v2 +
· · ·+ cpvp = 0” as a linear dependence among the vectors v1, v2, . . . , vp.

Vectors are linearly independent if there is no linear dependence among them.

Vectors which are not linearly independent are linearly dependent.

How to determine if v1, v2, . . . , vp ∈ Rn are linear independent.

• Form the n× p matrix A =
[
v1 v2 . . . vp

]
.

• Reduce A to echelon form (or to reduced echelon form) to find its pivot columns.

• If every column of A is a pivot column, then the vectors are linearly independent.

If some column of A is not a pivot column, then the vectors are linearly dependent.

Example. The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

16

 are linear dependent since

A =

 1 2 5
0 3 9
−1 5 16

 ∼
 1 2 5

0 3 9
0 7 21

 ∼
 1 2 5

0 1 3
0 1 3

 ∼
 1 0 −1

0 1 3
0 0 0

 = RREF(A)

where ∼ denotes row equivalence. The last matrix has no pivot position in column 3. In fact, we have

−

 1
0
−1

+ 3

 2
3
5

−
 5

9
16

 =

 0
0
0

 = 0.

The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

15

 are linearly independent, since

A =

 1 2 5
0 3 9
−1 5 15

 ∼
 1 2 5

0 3 9
0 7 20

 ∼
 1 2 5

0 1 3
0 0 −1

 ∼
 1 0 0

0 1 0
0 0 1

 = RREF(A)

Every column of A contains a pivot position, so the linear system with coefficient matrix A has no free
variables, so Ax = 0 have no nontrivial solutions, meaning the columns of A are linearly independent.

2



MATH 2121 — Linear algebra (Fall 2018) Lecture 5

Facts about linear independence.

1. A single vector v is linearly independent if and only if v 6= 0.

A list of vectors is linearly dependent if it includes the 0 vector.

2. Vectors v1, v2, . . . , vp ∈ Rn are linearly dependent if and only if some vector vi is a linear combination
of the other vectors v1, . . . , vi−1, vi+1, . . . , vp.

We saw this in the previous example:

 5
9

16

 = 3

 2
3
5

−
 1

0
−1

.

The last thing we’ll note about linear independence (for now) is this useful, non-obvious fact:

Theorem. Assume p > n and v1, v2, . . . , vp ∈ Rn. Then these vectors are linearly dependent.

Proof. Let A =
[
v1 v2 . . . vp

]
.

This matrix has more columns than rows.

Each row contains at most one pivot position, so there are fewer pivot positions than columns.

Therefore some column is not a pivot column.

This means the linear system Ax = 0 has a free variable, so has a nontrivial solution.

This implies that v1, v2, . . . , vp, the columns of A, are linearly dependent.

Example. The vectors v1 =

[
1
2

]
, v2 =

[
1
3

]
, and v3 =

[
5

60

]
are linearly dependent since 3 > 2.

3 Linear transformations

A function f (like the ones we see in calculus) takes an input x from some set X (for example, R) and
produces an output f(x) in another set Y

We write f : X → Y to mean that f is a function that takes inputs from X and gives outputs in Y .

X is called the domain of the function f .

Y is sometimes called the codomain of f .

For every x in the domain X of f , we get an output f(x).

It is possible that some values y in the codomain Y may never occur as outputs of f , however.

The image of an input x in X under f is the ouput f(x).

Define the image or range of the function f to be the subset {f(x) : x ∈ X} of the codomain Y . This is
the set of all possible outputs of f . We denote the range of f by range(f).

Definition. Let f : Rn → Rm be a function whose domain and codomain are sets of vectors. The
function f is a linear transformation or a linear function if both of these properties hold:

(1) f(u+ v) = f(u) + f(v) for all vectors u, v ∈ Rn.

(2) f(cv) = cf(v) for all vectors v ∈ Rn and scalars c ∈ R.
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Example. If A is an m× n matrix and T : Rn → Rm is the function with T (v) = Av for v ∈ Rn, then
T is a linear function.

Linear transformations have the following additional properties:

Proposition. If f : Rn → Rm is a linear transformation then

(3) f(0) = 0.

(4) f(u− v) = f(u)− f(v) for u, v ∈ Rn.

(5) f(au+ bv) = af(u) + bf(v) for all a, b ∈ R and u, v ∈ Rn.

Proof. (3) We have f(0) = f(0 + 0) = 2f(0) so f(0) = 0.

(4) We have f(u− v) = f(u) + f(−v) = f(u) + (−1)f(v) = f(u)− f(v).

(5) We have f(au+ bv) = f(au) + f(bv) = af(u) + bf(v).

Example. Suppose A =

 1 −3
3 5
−1 7

 and T : R2 → R3 is the function defined by T (v) = Av.

(a) The image of a vector v ∈ R2 under T is by definition T (v) = Av.

The image of v =

[
2
−1

]
under T is T

([
2
−1

])
=

 1 −3
3 5
−1 7

[ 2
−1

]
=

 5
1
−9

.

(b) Is the range of T all of R3? If it was, then (from results last time) A would have to have a pivot
position in every row. This is impossible since each column can only contain one pivot position,
but A has three rows and only two columns. Therefore range(T ) 6= R3.

The fundamental theorem relating matrices and linear transformations:

Theorem. Suppose T : Rn → Rm is a linear transformation. Then there is a unique m × n matrix A
such that T (v) = Av for all v ∈ Rn.

Moral: Matrices uniquely represent all linear transformations Rn → Rm.

Proof. Define e1, e2, . . . , en ∈ Rn as the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en−1 =


0
...
0
1
0

 , and en =


0
...
0
0
1


so that ei has a 1 in the ith row and 0 in all other rows.

Define ai = T (ei) ∈ Rm and A =
[
a1 a2 a3 . . . an

]
.
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If w is any vector w =


w1

w2

...
wn

 ∈ Rn then

T (w) = T (w1e1 + w2e2 + · · ·+ wnen)

= w1T (e1) + w2T (e2) + · · ·+ wnT (en) = w1a1 + w2a2 + · · ·+ wnan = Aw.

Thus A is one matrix such that T (v) = Av for all vectors v ∈ Rn.

To show that A is the only such matrix, suppose B is a m× n matrix with T (v) = Bv for all v ∈ Rn.

Then T (ei) = Aei = Bei for all i = 1, 2, . . . , n.

But Aei and Bei are the ith columns of A and B. For example,

[
1 2 3 4
5 6 7 8

]
e3 =

[
1 2 3 4
5 6 7 8

]
0
0
1
0

 =

[
3
7

]
.

Therefore A and B have the same columns, so they are the same matrix: A = B.

We call the matrix A in this theorem the standard matrix of the linear transformation T .

Example. Suppose T : Rn → Rn is the function T (v) = 3v.

This is a linear transformation. (Why?) What is the standard matrix A of T?

As we saw in the proof of the theorem, the standard matrix of T : Rn → Rn is

A =
[
T (e1) T (e2) . . . T (en)

]
=
[

3e1 3e2 . . . 3en
]

=


3 0 . . . 0
0 3 · · · 0
...

...
. . .

...
0 0 · · · 3

 .
In words, A is the matrix with 3 in each position (1, 1), (2, 2), . . . , (n, n) and 0 in all other positions.

One calls such a matrix diagonal.

Example. Suppose T : Rn → Rn is the function

T



v1
v2
...

vn


 =

[
v1 v2 . . . vn

]

v1
v2
...

vn

 = v21 + v22 + · · ·+ v2n.

This function is not linear: we have T (2v) = 4T (v) 6= 2T (v) for any nonzero vector v ∈ Rn.

Example. Suppose T : Rn → Rn is the function

T



v1
v2
...

vn


 =


vn
...

v2
v1

 .
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This function is a linear transformation. (Why?) Its standard matrix is

A =
[
T (e1) T (e2) . . . T (en−1) T (en)

]
=
[
en en−1 . . . e2 e1

]
=


1

1

. .
.

1
1

 .
In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in
the matrix which are blank contain zero entries.

Example. Fix θ ∈ [0, 2π). The notation [a, b) means “the set of numbers x ∈ R with a ≤ x < b.” Define

A =

[
cos θ − sin θ
sin θ cos θ

]
and let T : R2 → R2 be the linear transformation T (v) = Av.

If v =

[
1
0

]
is a vector parallel to the x-axis, then T (v) = Av =

[
cos θ
sin θ

]
.

If v =

[
0
1

]
is a vector parallel to the y-axis, then T (v) = Av =

[
− sin θ

cos θ

]
=

[
cos(θ + π

2 )
sin(θ + π

2 )

]
.

In general, T (v) = Av is the vector obtained by rotating v counterclockwise by the angle θ.

This holds since any vector v =

[
v1
v2

]
can be written v =

[
v1
0

]
+

[
0
v2

]
, so is the arrow to the opposite

vertex in the parallelogram with sides

[
v1
0

]
and

[
0
v2

]
. Since T (v) = T

([
v1
0

])
+ T

([
0
v2

])
and

since T rotates by angle θ the two vectors on the right, it follows that T (v) is the arrow from 0 to the
opposite vertex in our previous parallelogram, now rotated counterclockwise by angle θ.

4 One-to-one and onto functions

This section talks about two important classes of linear transformations, which can be characterized in
terms of whether the columns of the standard matrix are linearly independent or span the codomain.

Definition. A function f : X → Y is one-to-one or injective if f(a) = f(b) implies a = b. In words: f
does not send two different inputs to the same output. If a 6= b and f(a) = f(b) then f is not one-to-one.

Example. Suppose T : R3 → R2 is the linear transformation T (v) = Av where

A =

[
1 2 5
0 5 3

]
.

Is T one-to-one? No: since A has more columns than rows, its columns are linearly dependent. Therefore
there is a vector 0 6= v ∈ R3 such that T (v) = Av = 0. But we also have T (0) = 0

Theorem. If T : Rn → Rm is a linear transformation then T is one-to-one if and only if the only solution
to T (x) = 0 is x = 0 ∈ Rn, i.e., the columns of the standard matrix A of T are linearly independent.

Proof. Suppose the only solution to T (x) = 0 is x = 0 ∈ Rn. Then whenever u, v ∈ Rn are vectors with
u 6= v, we have T (u)− T (v) = T (u− v) 6= 0 since u− v 6= 0, so T (u) 6= T (v). Therefore T is one-to-one.

If T is one-to-one, then T (x) = T (0) = 0 implies x = 0, so T (x) = 0 has only trivial solutions.
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Definition. A function f : X → Y is onto or surjective if range(f) = {f(x) : x ∈ X} = Y . In words:
the range of f is equal to its codomain. If there is a value y ∈ Y such that f(x) 6= y for all x ∈ X, then
f is not onto.

Example. Suppose again that T : R3 → R2 is the linear transformation T (v) = Av where

A =

[
1 2 5
0 5 3

]
.

Is T onto? Yes: the columns of A span R2 if and only if A has a pivot position in every row, and we have

A =

[
1 2 5
0 5 3

]
∼
[

1 2 5
0 1 3/5

]
∼
[

1 0 19/5
0 1 3/5

]
= RREF(A).

Theorem. If T : Rn → Rm is a linear transformation then T is onto if and only if the columns of the
standard matrix A of T span Rm.

Proof. The vectors in the range of T are precisely the linear combinations of the columns of A.

The range is Rm precisely when the span of the columns of A is Rm.

Example. Suppose T : R2 → R3 is the function

T

([
v1
v2

])
=

 3v1 + v2
5v1 + 7v2
v1 + 3v2

 .
This function is a linear transformation. Its standard matrix is

A =

 3 1
5 7
1 3

 .
To determine if T is one-to-one, we check if the columns of A linearly independent. To do this, we row
reduce to echelon form:

A =

 3 1
5 7
1 3

 ∼
 1 3

5 7
3 1

 ∼
 1 3

0 −8
0 −8

 ∼
 1 0

0 1
0 0

 = RREF(A).

This shows that A has a pivot position in every column, which means Ax = 0 has only trivial solutions,
which means the columns of A are linearly independent, which means T is one-to-one.

To determine if T is onto, we want to find out if the columns of A span R3. From last time, we know
that this happens if and only if A has a pivot position in every row. Since the third row of A has no
pivot position, T is not onto.

Corollary. A linear transformation T : Rn → Rm is one-to-one only if n ≤ m, and onto only if n ≥ m.

Proof. Results last time show that T is one-to-one iff its standard matrix has a pivot position in every
column, and onto iff its standard matrix has a pivot position in every row. The first case requires there
to be more columns n than rows m, and the second case requires there to be more rows m than columns
n (since each row and each column contains at most one pivot position).
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5 Geometric interpretations of linear transformations R2 → R2

Suppose T : R2 → R2 is a linear transformation with standard matrix A. We can illustrate T by drawing
the parallelogram with sides T (e1) and T (e2). (Fill in these pictures yourself.)

Standard matrix of T Picture Description of T[
1 0
0 −1

]
Reflect across the x-axis

[
−1 0

0 1

]
Reflect across y-axis

[
0 1
1 0

]
Reflect across y = x

[
k 0
0 1

]
(0 < k < 1) Horizontal contraction

[
1 0
0 k

]
(0 < k < 1) Vertical contraction

[
1 k
0 1

]
(k > 0) Horizontal sheering
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6 Vocabulary

Keywords from today’s lecture:

1. Linearly independent vectors.

Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if x1v1 + · · · + xpvp = 0 holds only if
x1 = x2 = · · · = xp = 0; or when

[
v1 v2 . . . vp

]
has a pivot position in every column.

Vectors that are not linearly independent are linearly dependent.

Example: The three vectors

 1
0
0

,

 0
2
0

 ,
 0

0
3

 are linearly independent.

The four vectors

 1
0
0

,

 0
2
0

 ,
 0

0
3

,

 −1
−2
−3

 are linearly dependent.

2. Domain and codomain of a function f : X → Y .

The domain X is the set of inputs for the function.

The codomain Y is a set that contains the output of the function. This set can also contain
elements that are not outputs of the function.

Example: If A is an m× n matrix then the function T (v) = Av has domain Rn and codomain Rm.

3. Range of a function f : X → Y .

The set range(f) = {f(x) : x ∈ X} ⊂ Y of all possible outputs of the function f .

Example: IfA =

 1 0 0
0 1 0
0 0 0

 and T : R3 → R3 has T (v) = Av then range(T ) =


 x
y
0

 : x, y ∈ R

.

4. Linear function f : Rn → Rm.

A function with f(cv) = cf(v) and f(u+ v) = f(u) + f(v) for c ∈ R and u, v ∈ Rn.

Example: Every such function has the form f(v) = Av for a unique m× n matrix A.

The matrix A is called the standard matrix of f if f(v) = Av for all v ∈ Rn.

5. Diagonal matrix

A matrix which has 0 in position (i, j) if i 6= j.

Example:


4 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 9

.
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6. One-to-one or injective function f : X → Y .

A function with the property that if f(u) = f(v) for u, v ∈ X then u = v.

Example: The function f : R→ R given by f(x) = x3.

The function f : R→ R given by f(x) = x2 is not one-to-one: f(−2) = f(2) = 4.

7. Onto or surjective function f : X → Y .

A function with the property that y ∈ Y then there exists x ∈ X with f(x) = y.

Example: The function f : R→ R given by f(x) = x3.

The function f : R→ R given by f(x) = x2 is not onto: no negative number is in its range.
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