1 Last time: inverses and subspaces

To show that an $n \times n$ matrix A is *invertible*, all we have to do is check that (1) its columns are linearly independent or (2) its columns span \mathbb{R}^n . If either (1) or (2) holds, then the other property is also true.

If A is invertible then it has an *inverse* which is an $n \times n$ matrix A^{-1} with

$$AA^{-1} = A^{-1}A = I_n = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}.$$

If A and B are $n \times n$ and $AB = I_n$ then it automatically holds that $BA = I_n$ so $B = A^{-1}$ and $A = B^{-1}$.

Definition. A subset $H \subset \mathbb{R}^n$ is a *subspace* if $0 \in H$, $u + v \in H$, and $cv \in H$ for all $u, v \in H$ and $c \in \mathbb{R}$. A subspace is a nonempty set that contains all linear combinations of vectors already in the set.

Example. Examples of subspaces of \mathbb{R}^n :

- The set {0} containing just the zero vector.
- The set of all scalar multiples of a single vector.
- \mathbb{R}^n itself.
- The span of any set of vectors in \mathbb{R}^n .
- The range of a linear function $T: \mathbb{R}^k \to \mathbb{R}^n$.
- The set of vectors v with T(v) = 0 for a linear function $T : \mathbb{R}^n \to \mathbb{R}^k$.

The union of two subspaces is not necessarily a subspace. (Why?)

The intersection of two subspaces is a subspace, however. (Why?)

Definition. To any $m \times n$ matrix A there are two corresponding subspaces of interest:

- 1. The column space of A is the subspace $\operatorname{Col} A \subset \mathbb{R}^m$ given by the span of the columns of A.
- 2. The null space of A is the subspace Nul $A \subset \mathbb{R}^n$ given by the set of vectors $v \in \mathbb{R}^n$ with Av = 0.

It is not obvious from these definitions, but it will turn out that each subspace of \mathbb{R}^m occurs as the column space of some matrix. Likewise, each subspace of \mathbb{R}^n occurs as the null space of some matrix.

Definition. A basis of a subspace H of \mathbb{R}^n is a set of linearly independent vectors whose span in H.

The most important basis in linear algebra (and the only one that has a standard notation) is the *standard basis* of \mathbb{R}^n : this is the basis consisting of the vectors e_1, e_2, \ldots, e_n where e_i is the vector in \mathbb{R}^n with 1 in row i and 0 is all other rows.

The fundamental property of subspaces and bases:

Theorem. Every subspace H of \mathbb{R}^n has a basis of size at most n.

Let A be an $m \times n$ matrix.

How to find a basis of Nul A.

- 1. Find all solutions to Ax = 0 by row reducing A to echelon form. Recall that x_i is a basic variable if column i of RREF(A) contains a leading 1, and that otherwise x_i is a free variable.
- 2. Express each basic variable in terms of the free variables, and then write

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_{i_1} \begin{bmatrix} b_1 \end{bmatrix} + x_{i_2} \begin{bmatrix} b_2 \end{bmatrix} + \dots + x_{i_k} \begin{bmatrix} b_k \end{bmatrix}$$

where $x_{i_1}, x_{i_2}, \dots, x_{i_k}$ are the free variables and $b_1, b_2, \dots, b_k \in \mathbb{R}^n$.

3. The vectors b_1, b_2, \dots, b_k then form a basis for Nul A.

Example. Suppose $A = \begin{bmatrix} 1 & 2 & 5 & 8 \\ 2 & 3 & 7 & 0 \end{bmatrix}$.

- 1. Then $A \sim \begin{bmatrix} 1 & 2 & 5 & 8 \\ 0 & -1 & -3 & -16 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -24 \\ 0 & 1 & 3 & 16 \end{bmatrix}$ so Ax = 0 iff $\begin{cases} x_1 x_3 24x_4 = 0 \\ x_2 + 3x_3 + 16x_4 = 0. \end{cases}$
- 2. This means x_1 , x_2 are basic variables and x_3 , x_4 are free variables. We have Ax = 0 if and only if $x_1 = x_3 + 24x_4$ and $x_2 3x_3 16x_4$, which means

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 + 24x_4 \\ -3x_3 - 16x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 24 \\ -16 \\ 0 \\ 1 \end{bmatrix}.$$

3. Thus
$$\left\{ \begin{bmatrix} 1\\-3\\1\\0 \end{bmatrix}, \begin{bmatrix} 24\\-16\\0\\1 \end{bmatrix} \right\}$$
 is a basis for Nul A.

How to find a basis of Col A.

1. The pivot columns of A form a basis of $\operatorname{Col} A$.

This looks simpler than the previous algorithm, but to find out which columns of A are pivot columns, we have to row reduce A to echelon form, which takes just as much work as finding a basis of Nul A.

Example. If
$$A = \begin{bmatrix} 1 & 2 & 5 & 8 \\ 2 & 3 & 7 & 0 \end{bmatrix}$$
 then columns 1, 2 have pivots so $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$ is a basis for Col A .

This is not the only set of columns of A that forms a basis for $\operatorname{Col} A$, however.

2 Coordinate systems

Suppose H is a subspace of \mathbb{R}^n .

Let b_1, b_2, \ldots, b_k be a basis of H.

Theorem. Let $v \in H$. There are unique coefficients $c_1, c_2, \ldots, c_k \in \mathbb{R}$ such that

$$c_1b_1+c_2b_2+\cdots+c_kb_k=v.$$

Proof. Since our basis spans H, there must be some coefficients with $c_1b_1 + c_2b_2 + \cdots + c_kb_k = v$. If these coefficients were not unique, so that we could write $c'_1b_1 + c'_2b_2 + \cdots + c'_kb_k = v$ for some different list of numbers $c'_1, c'_2, \ldots, c'_k \in \mathbb{R}$, then we would have

$$0 = v - v = (c_1b_1 + c_2b_2 + \dots + c_kb_k) - (c'_1b_1 + c'_2b_2 + \dots + c'_kb_k)$$

= $(c_1 - c'_1)b_1 + (c_2 - c'_2)b_2 + \dots + (c_k - c'_k)b_k$.

Since our numbers are different, at least one of the differences $c_i - c'_i$ must be nonzero, so what we just wrote is a nontrivial linear dependence among the vectors b_1, b_2, \ldots, b_k . But this contradicts the condition that elements of a basis be linearly independent.

Let $\mathcal{B} = (b_1, b_2, \dots, b_k)$ be the list of basis vectors in some fixed order.

Given
$$v \in H$$
, define $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} \in \mathbb{R}^k$ as the unique vector with $c_1b_1 + c_2b_2 + \cdots + c_kv_k = v$.

We call $[v]_{\mathcal{B}}$ the coordinate vector of v in the basis \mathcal{B} or just v in the basis \mathcal{B} .

Example. If $H = \mathbb{R}^n$ and $\mathcal{B} = (e_1, e_2, \dots, e_n)$ is the standard basis then $[v]_{\mathcal{B}} = v$.

Example. If
$$H = \mathbb{R}^n$$
 and $\mathcal{B} = (e_n, \dots, e_2, e_1)$ and $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ then $[v]_{\mathcal{B}} = \begin{bmatrix} v_n \\ \vdots \\ v_2 \\ v_1 \end{bmatrix}$.

Example. Let
$$b_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
 and $b_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$.

Then $\mathcal{B} = (b_1, b_2)$ is a basis for $H = \mathbb{R}$ -span $\{b_1, b_2\} \subset \mathbb{R}^3$.

The unique
$$w=\left[\begin{array}{c}w_1\\w_2\end{array}\right]\in\mathbb{R}^2$$
 such that $\left[\begin{array}{cc}3&-1\\6&0\\2&1\end{array}\right]w=\left[\begin{array}{c}3\\12\\7\end{array}\right]$ is found by row reduction:

$$\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 3 \\ 2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -3 \\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

The last matrix implies that $w_1 = 2$ and $w_2 = 3$ so $[v]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Example. If $b_1 = e_1 - e_2$, $b_2 = e_2 - e_3$, $b_3 = e_3 - e_4$, ..., $b_{n-1} = e_{n-1} - e_n$ and

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{n-1} \\ -v_1 - v_2 - \dots - v_{n-1} \end{bmatrix}$$

then $v \in H = \mathbb{R}$ -span $\{b_1, b_2, \dots, b_{n-1}\}$ and

$$[v]_{\mathcal{B}} = \begin{bmatrix} v_1 \\ v_1 + v_2 \\ v_1 + v_2 + v_3 \\ v_1 + v_2 + v_3 + v_4 \\ \vdots \\ v_1 + v_2 + v_3 + \dots + v_{n-1} \end{bmatrix} \in \mathbb{R}^{n-1}.$$

The notation $[v]_{\mathcal{B}}$ gives us an easy way to check the following important property:

Theorem. Let H be a subspace of \mathbb{R}^n . Then all bases of H have the same number of elements.

Proof. Suppose $\mathcal{B} = (b_1, b_2, \dots, b_k)$ and $\mathcal{B}' = (b'_1, b'_2, \dots, b'_l)$ are two ordered bases of H with k < l.

Then $[b'_1]_{\mathcal{B}}$, $[b'_2]_{\mathcal{B}}$, ..., $[b'_l]_{\mathcal{B}}$ are l > k vectors in \mathbb{R}^k , so they must be linearly dependent.

This means there exist coefficients $c_1, c_2, \ldots, c_l \in \mathbb{R}$, not all zero, with

$$c_1[b_1']_{\mathcal{B}} + c_2[b_2']_{\mathcal{B}} + \dots + c_l[b_l']_{\mathcal{B}} = 0.$$

But we have

$$c_1[b_1']_{\mathcal{B}} + c_2[b_2']_{\mathcal{B}} + \dots + c_l[b_l']_{\mathcal{B}} = [c_1b_1' + c_2b_2' + \dots + c_lb_l']_{\mathcal{B}}$$

(This is the key step; why is this true? Think about how $[v]_{\mathcal{B}}$ is defined.)

Thus $[c_1b'_1 + c_2b'_2 + \dots + c_lb'_l]_{\mathcal{B}} = 0$, so

$$c_1b'_1 + c_2b'_2 + \dots + c_lb'_l = [b_1 \ b_2 \ \dots \ b_k][c_1b'_1 + c_2b'_2 + \dots + c_lb'_l]_{\mathcal{B}} = 0.$$

(The first equality holds since by definition $v = B[v]_{\mathcal{B}}$ for $B = \begin{bmatrix} b_1 & b_2 & \cdots & b_k \end{bmatrix}$.)

Since the coefficients c_i are not all zero, this contradicts the fact that b'_1, b'_2, \ldots, b'_l are linearly independent. This mean our original supposition that H has two bases of different sizes can't hold.

3 Dimension

Let $\mathcal{B} = (b_1, b_2, \dots, b_k)$ be an ordered basis of a subspace $H \subset \mathbb{R}^n$.

The function $H \to \mathbb{R}^k$ with the formula $v \mapsto [v]_{\mathcal{B}}$ is linear and invertible.

Thus H "looks the same as" \mathbb{R}^k .

For this reason we say that H is k-dimensional. More generally:

Definition. The dimension of a subspace H is the number of vectors in any basis of H.

We denote the dimension of H by dim H. This number belongs to $\{0, 1, 2, 3, \dots\}$.

If $H = \{0\}$ then we define dim H = 0.

Example. We have dim $\mathbb{R}^n = n$.

 $\begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \\ 0 \\ 0 \\ \vdots \\ 0 \end{vmatrix} \in \mathbb{R}^n, \text{ then } H \text{ is a subspace and } \dim H = k.$ If H is the set of all vectors of the form

Note that e_1, e_2, \ldots, e_k is a basis for H.

A line in \mathbb{R}^2 through the origin is a 1-dimensional subspace.

Let A be an $m \times n$ matrix.

The processes we gave to construct bases of Nul A and Col A imply that:

Corollary. The dimension of Nul A is the number of free variables in the linear system Ax = 0.

Corollary. The dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

There is a special name for the dimensional of the column space of a matrix:

Definition. The rank of a matrix A is rank $A = \dim \operatorname{Col} A$.

Putting everything together gives the following pair of important results.

Theorem (Rank-nullity theorem). If A is a matrix with n columns then rank $A + \dim \text{Nul } A = n$.

Proof. Every column of A which is not a pivot column indexes a free variable in the system Ax = 0, so

```
n = \#\{ \text{ pivot columns of } A \} + \#\{ \text{ non-pivot columns } \}
= \#\{ pivot columns of A \} + \#\{ free variables in Ax = 0 \}
= \dim \operatorname{Col} A + \dim \operatorname{Nul} A
= \operatorname{rank} A = \operatorname{dim} \operatorname{Nul} A.
```

Theorem (Basis theorem). If H is a subspace of \mathbb{R}^n with dim H = p then

- 1. Any set of p linearly independent vectors in H is a basis for H.
- 2. Any set of p vectors in H whose span is H is a basis for H.

Proof. Suppose we have p linearly independent vectors in H. If these vectors do not span H, then adding a vector which is in H but not in their span would produce a set of p+1 linearly independent vectors in H. If this larger set still does not span H, then adding a vector from H that is not in the span gives an even larger linearly independent set of p+2 vectors. Continuing in this way must eventually produce a basis for H, but this basis will have more than p elements, contradicting dim H = p.

Suppose we instead have p vectors which span H. If these vectors are not linearly independent, then one of the vectors is a linear combination of the others. Remove this vector; we then have p-1 vectors which span H. If these vectors are still not linearly independent, then one is a linear combination of

the others and removing this vector gives a set of $p-2$ vectors which span H . Continuing in this v	vay
must eventually produce a basis for H , but this basis will have fewer than p elements, contradict	ing
$\dim H = p$.	
Corollary, If $H \subset \mathbb{D}^n$ is an n -dimensional subspace than $H = \mathbb{D}^n$	

Corollary. If $H \subset \mathbb{R}^n$ is an *n*-dimensional subspace then $H = \mathbb{R}^n$.

Proof. If H has a basis with n elements then these elements are linearly independent, so form a basis for \mathbb{R}^n . Then every vector in \mathbb{R}^n is a linear combination of the basis vectors, so belongs to H.

Corollary. If $U, V \subset \mathbb{R}^n$ are subspaces with $U \subset V$ and $U \neq V$, then $\dim U < \dim V \leq n$.

Proof. If $j = \dim V \leq \dim U = k$ and u_1, u_2, \dots, u_k is a basis for U, then u_1, u_2, \dots, u_j would be linearly independent and therefore a basis for V. But then $V \subset U$ which would imply U = V if also $U \subset V$. \square

Corollary. Let A be an $n \times n$ matrix. The following are equivalent:

- (a) A is invertible.
- (b) The columns of A form a basis for \mathbb{R}^n .
- (c) $\operatorname{rank} A = \dim \operatorname{Col} A = n$.
- (d) $\dim \text{Nul } A = 0.$

Proof. We have already seen that (a) and (b) are equivalent.

- (c) holds if and only if the columns of A span \mathbb{R}^n which is equivalent to (a).
- (d) holds if and only if the columns of A are linearly independent which is equivalent to (a).

4 Vocabulary

Keywords from today's lecture:

1. Coordinate vector of a vector $v \in H$ with respect to an ordered basis $\mathcal{B} = (b_1, b_2, \dots, b_k)$.

The unique vector of coefficients
$$[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} \in \mathbb{R}^k$$
 with $c_1b_1 + c_2b_2 + \cdots + c_kb_k = v$.

Example: If
$$H = \mathbb{R}^2$$
 and $\mathcal{B} = \left(\left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \right)$ and $v = \left[\begin{array}{c} x \\ y \end{array} \right]$ then $[v]_{\mathcal{B}} = \left[\begin{array}{c} x-y \\ y \end{array} \right]$.

2. **Dimension** of a subspace $H \subset \mathbb{R}^n$

The number $\dim H$ of vectors in any basis for H.

3. Rank of an $m \times n$ matrix A.

The dimension of the column space $\operatorname{Col} A$. This is also the number of pivot columns in A. This is denoted rank A.

4. Rank-nullity theorem.

If A is an $m \times n$ matrix then dim Col $A + \dim \text{Nul } A = \text{rank } A + \dim \text{Nul } A = n$.

5. Basis theorem.

If $H \subset \mathbb{R}^n$ is a subspace with dim H = p then (1) any set of p linearly independent vectors in H is a basis for H and (2) any set of p vectors whose span is H is a basis for H.