
MATH 2121 — Linear algebra (Fall 2018) Lecture 11

1 Last time: introduction to determinants

Let n be a positive integer.

A permutation matrix is a square matrix whose entries are all 0 or 1, and that has exactly one nonzero
entry in each row and in each column. Let Sn be the set of n× n permutation matrices.

If A is an n × n matrix and X ∈ Sn, then AX has the same columns as A but in a different order: the
columns of A are “permuted” by X.

Example. The six elements of S3 are 1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

  0 0 1
0 1 0
1 0 0

 .
Given X ∈ Sn and an arbitrary n× n matrix A:

• Define Π(X,A) as the product of the entries of A in the nonzero positions of X.

• Define inv(X) as the number of 2× 2 submatrices of X equal to

[
0 1
1 0

]
.

To form a 2× 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent or
related, and then take the 4 entries determined by those rows and columns.

Each 2× 2 submatrix of a permutation matrix is[
0 0
0 0

]
or

[
1 0
0 0

]
or

[
0 0
0 1

]
or

[
0 1
0 0

]
or

[
0 0
1 0

]
or

[
1 0
0 1

]
or

[
0 1
1 0

]
.

Example. Π

 0 0 1
1 0 0
0 1 0

 ,
 a b c
d e f
g h i

 = cdh

Example. inv

 0 0 1
1 0 0
0 1 0

 = 2 and inv

 1 0 0
0 1 0
0 0 1

 = 0 and inv

 0 0 1
0 1 0
1 0 0

 = 3.

Definition. The determinant of an n× n matrix A is the number given by the formula

detA =
∑

X∈Sn

Π(X,A)(−1)inv(X)

This general formula simplifies to the following expressions for n = 1, 2, 3:

det
[
a
]

= a.

det

[
a b
c d

]
= ad− bc.

det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− ef).

For n ≥ 4, our formula detA is a sum with at least 24 terms, and so is not easy to compute by hand.
We will describe a better way of computing determinants today.

The most important properties of the determinant are described by the following theorem:
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Theorem. The determinant is the unique function det : {n× n matrices} → R with these 3 properties:

(1) det In = 1 .

(2) If B is formed by switching two columns in an n× n matrix A, then detA = −detB .

(3) Suppose A, B, and C are n× n matrices with columns

A =
[
a1 a2 . . . an

]
and B =

[
b1 b2 . . . bn

]
and C =

[
c1 c2 . . . cn

]
.

If there is a single column i where ai = xbi + yci for x, y ∈ R and in all other columns j we have

aj = bj = cj then detA = xdetB + y detC .

Corollary. If A is a square matrix which is not invertible then detA = 0.

Corollary. If A is a permutation matrix then detA = (−1)inv(A).

Proof. Note that Π(X,Y ) = 0 if X and Y are different n×n permutation matrices, but Π(X,X) = 1.

2 More properties of the determinant

Recall that AT denotes the transpose of a matrix A (the matrix whose rows are the columns of A).

Lemma. If X ∈ Sn then XT ∈ Sn and inv(X) = inv(XT ).

Proof. Transposing a permutation matrix does not effect the # of 2×2 submatrices equal to

[
0 1
1 0

]
.

Corollary. If A is any square matrix then detA = det(AT ).

Proof. If X ∈ Sn then Π(X,A) = Π(XT , AT ), so our formula for the determinant gives

detA =
∑

X∈Sn

Π(X,A)(−1)inv(X) =
∑

X∈Sn

Π(XT , AT )(−1)inv(X
T ).

As X ranges over all elements of Sn, the transpose XT also ranges over all elements of Sn, so the last
sum is equal to

∑
X∈Sn

Π(X,AT )(−1)inv(X) = det(AT ).

The following lemma is a weaker form of a statement we will prove later in the lecture.

Lemma. Let A and B be n× n matrices with detA 6= 0. Then det(AB) = (detA)(detB).

Proof. Define f : { n× n matrices } → R as the function f(M) = det(AM)
detA .

Then f has the defining properties of the determinant, so must be equal to det since det is the unique
function with these properties. In more detail:

• We have f(In) = det(AIn)
detA = detA

detA = 1.

• If M ′ is given by swapping two columns in M , then AM ′ is given by swapping the two corresponding

columns in AM , so f(M ′) = det(AM ′)
detA = − det(AM)

detA = −f(M).
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• If column i of M is x times column i of M ′ plus y times column i of M ′′ and all other columns of
M , M ′, and M ′′ are equal, then the same is true of AM , AM ′, and AM ′′ so

f(M) =
det(AM)

detA
=
xdet(AM ′) + y det(AM ′′)

detA
= xf(M ′) + yf(M ′′).

These properties uniquely characterise det, so f and det must be the same function.

Therefore f(B) = det(AB)
detA = detB for any n× n matrix B, so det(AB) = (detA)(detB).

3 Determinants of triangular and invertible matrices

An n × n matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the
diagonal positions (1, 1), (2, 2), (3, 3), . . . , (n, n). Such a matrix looks like

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


where the ∗ entries can be any numbers (even 0).

An n × n matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the
diagonal positions. Such a matrix looks like

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


where the ∗ entries can again be any numbers.

The transpose of an upper-triangular matrix is lower-triangular, and vice versa.

We say that a matrix is triangular if it is either upper- or lower-triangular.

A matrix is diagonal if it is both upper- and lower-triangular, i.e., has nonzero entries only on the
diagonal: 

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗


The diagonal entries of A are the numbers that occur in positions (1, 1), (2, 2), (3, 3), . . . , (n, n).

Proposition. If A is a triangular matrix then detA is the product of the diagonal entries of A.

For example, we have det

 a 0 0
0 b 0
0 0 c

 = abc.

Proof. Assume A is upper-triangular. If X ∈ Sn and X 6= In then at least one nonzero entry of X is in
a position below the diagonal, in which case Π(X,A) is a product of numbers which includes 0 (since all
positions below the diagonal in A contain zeros) and is therefore 0.

Hence detA =
∑

X∈Sn
Π(X,A)(−1)inv(X) = Π(In, A) = the product of the diagonal entries of A.

If A is lower-triangular then the same result follows since detA = det(AT ).
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Lemma. If A is an n× n matrix then detA is a nonzero multiple of det (RREF(A)).

Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough
to show that detB is a nonzero multiple of detA. There are three possibilities for B:

1. If B is formed by swapping two rows of A then B = XA for a permutation matrix X ∈ Sn, so
detB = det(XA) = (detX)(detA) = ±detA.

2. If B is formed by rescaling a row of A by a nonzero scalar λ ∈ R then B = DA where D is a
diagonal matrix of the form

D =



1
. . .

1
λ

1
. . .

1


and in this case detD = λ 6= 0, so detB = det(DA) = (detD)(detA) = λ detA.

3. If B is formed by adding a multiple of row i of A to row j, then B = TA for a triangular matrix T
whose diagonal entries are all 1 and whose only other nonzero entry appears in column i and row
j, so we have detB = det(TA) = (detT )(detA) = detA.

This shows that performing an elementary row operation to A multiplies detA by a nonzero number.
Since we obtain RREF(A) by performing a sequence of row operations to A, it follows that det(RREF(A))
is a sequence of nonzero numbers times detA.

This brings us to a famous property of the determinant.

Theorem. An n× n matrix A is an invertible if and only if detA 6= 0.

Proof. We have already seen that if A is not invertible then detA = 0. If A is invertible then RREF(A) = In
so detA 6= 0 since detA is a nonzero multiple of det(RREF(A)) = det In = 1.

Calculating the determinant is not a particularly efficient way of checking if a matrix is invertible if n > 2.
The quickest way to compute detA involves just as much work as it takes to row reduce A to echelon
form, which would also tell us if A is invertible or not.

Now that we know that detA 6= 0 for all invertible matrices, we can show that the determinant is a
multiplicative function.

Lemma. Let A and B be n× n matrices. If A or B is not invertible then AB is not invertible.

Proof. Note that ColAB ⊂ ColA since if x ∈ ColAB then x = (AB)v = A(Bv) for some v ∈ Rn.

Also note that NulB ⊂ NulAB since if Bv = 0 then (AB)v = A(Bv) = 0.

If A is not invertible then ColA is contained in but not equal to Rn, so ColAB 6= Rn.

If B is not invertible then NulB contains but is not equal to {0}, so NulAB 6= {0}.

In either case it follows that either ColAB 6= Rn or NulAB 6= {0} so AB is not invertible.

Theorem. If A and B are any n× n matrices then det(AB) = (detA)(detB).
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Proof. We already proved this in the case when detA 6= 0.

If detA = 0, then A is not invertible, so by the previous lemma AB is not invertible either, so

det(AB) = 0 = (detA)(detB).

It is very difficult to derive this theorem directly from the formula detA =
∑

X∈Sn
Π(X,A)(−1)inv(X).

So as not to doubt this surprising property, let’s try to verify it in an example.

Example. We have det

[
1 2
3 4

]
= 4− 6 = −2 and det

[
2 3
4 5

]
= 10− 12 = −2.

On the other hand, det

([
1 2
3 4

] [
2 3
4 5

])
= det

[
10 13
22 29

]
= 290− 286 = 4.

4 Computing determinants

Our proof that detA is a nonzero multiple of det(RREF(A)) can be turned into an effective algorithm for
computing the determinant.

Algorithm to compute detA.

Input: an n× n matrix A.

1. Start by setting D = 1.

2. Row reduce A to an echelon form E. (It is not necessary to bring A all the way to reduced echelon
form: we just need to row reduce A until we get an upper triangular matrix.) Each time you
perform a row operation in this process, modify the number D as follows:

(a) When you switch two rows, multiply D by −1.

(b) When you rescale a row by a nonzero factor λ, multiply D by λ.

(c) When you add a multiple of a row to another row, don’t do anything to D.

The determinant detE is the product of the diagonal entries of E

The determinant of A is given by detA = (detE)/D.

The easiest way to understand this algorithm is through an example.

Example. Consider the matrix A =

 1 3 5
1 0 −4
2 4 6

.
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To compute its determinant, we row reduce to echelon form which keeping track of the factor D:

A =

 1 3 5
1 0 −4
2 4 6

 D = 1

∼

 1 3 5
0 −3 −9
2 4 6

 (we added a multiple of row one to row two) D = 1

∼

 1 3 5
0 −3 −9
0 −2 −4

 (we added a multiple of row one to row three) D = 1

∼

 1 3 5
0 1 3
0 −2 −4

 (we multiplied row two by −1/3) D = −1/3

∼

 1 3 5
0 1 3
0 0 2

 = E (we added a multiple of row two to row three) D = −1/3

We then get detA = (detE)/D = (1 · 1 · 2)/(−1/3) = −6.

This agrees with our earlier for the determinant of a 3-by-3 matrix, which gives

detA = 1(0− (−16))− 3(6− (−8)) + 5(4− 0) = 16− 3(14) + 5(4) = 16− 42 + 20 = −6.

Another sometimes useful algorithm to compute detA.

Given an n× n matrix A, define A(i,j) as the (n− 1)× (n− 1) submatrix formed by removing row i and
column j from A.

Example. If A =

 a b c
d e f
g h i

 then A(1,2) =

[
d f
g i

]
.

Theorem. If A is the n× n matrix

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann


then

detA = a11 detA(1,1) − a12 detA(1,2) + a13 detA(1,3) − · · · − (−1)na1n detA(1,n)

and also

detA = a11 detA(1,1) − a21 detA(2,1) + a31 detA(3,1) − · · · − (−1)nan1 detA(n,1).

Note that each A(1,j) or A(j,1) is a square matrix smaller than A, so detA(1,j) or detA(j,1) can be
computed by the same formula on a smaller scale.

Proof. The second formula follows from the first formula since detA = det(AT ). (Why?)

The first formula is a consequence of the formula for detA we derived last lecture. One needs to show

−(−1)ja1j detA(1,j) =
∑

X∈S(j)
n

Π(X,A)(−1)inv(X)
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where S
(j)
n is the set of n×n permutation matrices which have a 1 in column j of the first row. Summing

the left expression over j = 1, 2, . . . , n gives the desired formula, while summing the right expression over
j = 1, 2, . . . , n gives

∑
X∈Sn

Π(X,A)(−1)inv(X) = detA.

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:

det

 a b c
d e f
g h i

 = a det

[
e f
h i

]
−bdet

[
d f
g i

]
+cdet

[
d e
g h

]
= a(ef−hi)−b(di−fg)+c(dh−eg).

For anything larger than a 3-by-3 matrix, it is usually faster to compute the determinant using row
reduction.
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5 Vocabulary

Keywords from today’s lecture:

1. Upper-triangular matrix.

A square matrix of the form


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 with zeros in all positions below the main diagonal.

2. Lower-triangular matrix.

A square matrix of the form


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 with zeros in all positions above the main diagonal.

The transpose of an upper-triangular matrix.

3. Triangular matrix.

A matrix that is either upper-triangular or lower-triangular.

4. Diagonal matrix.

A square matrix of the form


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 with zeros in all non-diagonal positions.

A matrix that is both upper-triangular and lower-triangular.
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