
MATH 2121 — Linear algebra (Fall 2018) Lecture 13

1 Last time: vector spaces

A (real) vector space V is a set containing a zero vector, denoted 0, with vector addition and scalar
multiplication operations that let us produce new vectors u + v ∈ V and cv ∈ V from given elements
u, v ∈ V and c ∈ R. Several conditions must be satisfied so that these operations behave exactly like
vector addition and scalar multiplication for Rn. Most importantly, we require that

1. u+ v = v + u.

2. v − v = 0 where we define u− v = u+ (−1)v.

3. v + 0 = v

4. cv = v if c = 1.

There are a few other more technical conditions to give the full definition (see the notes from last time).

Rn and any subspace of Rn are vector spaces.

The definitions of a subspace of a vector space and of linear transformations between vector spaces are
identical to the ones we have already seen for subspaces of Rn and linear transformations Rn → Rm.

Most vector spaces that do not arise as subspaces of Rn are subspaces of the following general construction.
Let X be a set and let V be a vector space. Then the set Map(X,V ) of all functions f : X → V is a
vector space once we define (f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x) and 0(x) = 0 ∈ V whenever
f, g : X → V and c ∈ R and x ∈ X.

Example. The set of linear functions Rn → Rm is a subspace of Map(Rn,Rm).

Such things as the span, linear combination, and linear independence of vectors in a general vector space
also have essentially the same definitions as their counterparts for vectors in Rn.

A basis of a vector space V is, again, a linearly independent set of vectors whose span is V . The dimension
of a vector space is the number of elements in any of its bases (which all have the same size).

Example. Let n be a positive integer and let Pn be the set of polynomials in a variable x with coefficients
in R of degree at most n. Recall that a polynomial is a function like 3 or x or x7 + 3x2 +

√
2x− 1.

The degree of a polynomial is the largest integer d such that xd is a term with a nonzero coefficient.
Constant polynomials are defined to have degree 0. Another way to define the degree of a nonzero

polynomial f is as the unique integer d such that limx→∞
f(x)
xd exists and is nonzero. For example,

x7 + 3x2 +
√

2x− 1 has degree 7 since

lim
x→∞

x7+3x2+
√
2x−1

xd =


0 if d > 7

1 if d = 7

does not exist if d < 7.

The set Pn is a vector space: it is a subspace of Map(Rn,Rn) A basis is given by the polynomials
1 = x0, x, x2, x3, . . . , xn, and so dimPn = n+ 1.

One natural way that we encounter vector spaces of functions is as the sets of solutions to (linear)
differential equations, like f ′′+ f = 0. When you study differential equations in another math or physics
course, abstract vector spaces will come up again.
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2 Eigenvectors and eigenvalues

We return to the concrete setting of Rn and its subspaces.

Let A be a square n× n matrix.

Definition. An eigenvector of A is a nonzero vector v ∈ Rn such that Av = λv for a number λ ∈ R. (λ
is the Greek letter “lambda.”) The number λ is called the eigenvalue of A for the eigenvector v.

The etymology is German: “eigen” means “own” in the sense of “belonging to” or “possessed by.”

Example. If we are given A and v, it is easy to check whether v is an eigenvector: just compute Av and
inspect whether this vector is a scalar multiple of v.

For example, if A =

[
1 6
5 2

]
and v =

[
6
−5

]
then

Av =

[
1 6
5 2

] [
6
−5

]
=

[
−24

20

]
= −4v

so v is an eigenvector of A with eigenvalue −4.

Caution: Remember that only nonzero vectors can be eigenvectors. This is because the fact that
A0 = λ0 for some number λ is not interesting, as A0 = λ0 = 0 is always true.

However, the number 0 can be an eigenvalue of A.

Example. What are the eigenvectors of the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

?

If v ∈ R4 were an eigenvector with eigenvalue λ then

Av =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



v1
v2
v3
v4

 =


v2
v3
v4
0

 = λ


v1
v2
v3
v4

 .
The last equation implies that 0 = λv4 and λ4 = λv3 and v3 = λv2 and v2 = λv1. In other words,

0 = λv4 = λ2v3 = λ3v2 = λ4v1.

If λ 6= 0 then this would mean that v1 = v2 = v3 = v4 = 0, but remember that v should be nonzero.
Therefore the only possible eigenvalue of A is λ = 0. The eigenvectors of A with eigenvalue 0 are

v =


v1
0
0
0


where v1 is any nonzero real number.

To say that λ is an eigenvalue of A means that there exists a nonzero vector x ∈ Rn such that Ax = λx.

Recall that In denotes the n × n identity matrix. Since n is usually a fixed number in this lecture, we
abbreviate by setting I = In.
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Proposition. A number λ ∈ R is an eigenvalue of A if and only if A− λI is not invertible.

Proof. The equation Ax = λx has a nonzero solution x ∈ Rn if and only if (A − λI)x = 0 has a
nonzero solution, which occurs if and only if Nul(A− λI) 6= {0}, which is equivalent to A− λI being not
invertible.

Example. If A =

[
1 6
5 2

]
then

A− 7I =

[
1 6
5 2

]
−
[

7 0
0 7

]
=

[
−6 6

5 −5

]
∼
[

1 −1
1 −1

]
∼
[

1 −1
0 0

]
= RREF(A− 7I).

Since RREF(A− 7I) 6= I, the matrix A− 7I is not invertible so 7 is an eigenvalue of A.

Corollary. A number λ ∈ R is an eigenvalue of A if and only if det(A− λI) = 0.

Proof. Remember that A− λI is not invertible if and only if det(A− λI) = 0.

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue λ are precisely the nonzero
elements of the nullspace Nul(A− λI). Since we know how to construct a basis for the nullspace of any
matrix, we also know how to find all eigenvectors of a matrix for any given eigenvalue.

Example. In the previous example, RREF(A− 7I) =

[
1 −1
0 0

]
so Ax = 7x if and only if (A− 7I)x = 0

if and only if x =

[
x1
x2

]
where x1 − x2 = 0. In this linear system, x2 is a free variable, and we can

rewrite x as x =

[
x2
x2

]
= x2

[
1
1

]
. This means

[
1
1

]
is a basis for Nul(A−7I), so the set of all nonzero

multiples of this vector give all the eigenvectors of A with eigenvalue 7.

One calls the set of all v ∈ Rn with Av = λv the eigenspace of A for λ. We also call this the λ-eigenspace
of A. Note that this is just the nullspace of A − λI. A number is an eigenvalue of A if and only if the
corresponding eigenspace is nonzero (that is, contains a nonzero vector).

Example. Suppose we were told that A =

 4 −1 6
2 1 6
2 −1 8

 has 2 as an eigenvalue.

To find a basis for the 2-eigenspace of A, we row reduce

A− 2I =

 2 −1 6
2 −1 6
2 −1 7

 ∼
 2 −1 6

0 0 0
0 0 0

 ∼
 1 −1/2 3

0 0 0
0 0 0

 = RREF(A− 2I).

Thus Ax = 2x if and only if x =

 x1
x2
x3

 where x1 − 1
2x2 + 3x3 = 0, i.e., if and only if

x =

 1
2x2 − 3x3

x2
x3

 = x2

 1/2
1
0

+ x3

 −3
0
1

 .

The vectors

 1/2
1
0

 and

 −3
0
1

 are then a basis for the 2-eigenspance of A.
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The (main) diagonal of an n×n matrix is the set of positions (1, 1), (2, 2), . . . , (n, n). The diagonal entries
are the entries in these positions. Recall that a matrix is triangular if its nonzero entries all appear on
or above the diagonal, or all appear on or below the diagonal.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. If A has diagonal entries d1, d2, . . . , dn then A − λI is triangular with diagonal entries d1 − λ,
d2− λ, . . . , dn− λ. This means that det(A− λI) = (d1− λ)(d2− λ) · · · (dn− λ) which is zero if and only
if λ = di for some i.

Example. The eigenvalues of the matrix

 3 6 −8
0 0 6
0 0 2

 are 3, 0, and 2.

The eigenvalues of

 4 0 0
−2 1 0

5 3 4

 are 4 and 1.

Here is our second main result of today.

Theorem. If λ1, λ2, . . . , λr are distinct eigenvalues for A and v1, v2, . . . , vr ∈ Rn are the corresponding
eigenvectors, so that Avi = λivi for i = 1, 2, . . . , r, then the vectors v1, v2, . . . vr are linearly independent.

Proof. Suppose that the vectors v1, v2, . . . , vr instead are linearly dependent. We will argue that this
leads to a logical contradiction, so is impossible.

Under this hypothesis, there must exist an index p > 0 such that v1, v2, . . . , vp are linearly independent
and vp+1 is a linearly combination of v1, v2, . . . , vp. (If no such index existed then it would mean that
each of the sets {v1}, {v1, v2}, {v1, v2, v3}, . . . , {v1, v2, . . . , vr} were linearly independent. But we have
assume the contrary.)

Let c1, c2, . . . , cp ∈ R be scalars such that vp+1 = c1v1 + c2v2 + · · ·+ cpvp.

If we multiply both sides by A and use the fact that each vector is an eigenvector, it follows that

λp+1vp+1 = Avp+1 = A(c1v1+c2v2+· · ·+cpvp) = c1Av1+c2Av2+· · ·+cpAvp = c1λ1v1+c2λ2v2+· · ·+cpλpvp.

On the other hand, multiplying both sides by λp+1 gives

λp+1vp+1 = c1λp+1v1 + c2λp+1v2 + · · ·+ cpλp+1vp.

Subtracting the two equations gives

0 = λp+1vp+1 − λp+1vp+1 = c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp.

Since the vectors v1, v2, . . . , vp are linearly independent, we must have

c1(λ1 − λp+1) = c2(λ2 − λp+1) = · · · = cp(λp − λp+1) = 0.

Remember that λ1, λ2, . . . , λr are all distinct so the differences λi−λp+1 for i = 1, 2, . . . , p are all nonzero.
Therefore we must actually have c1 = c2 = · · · cp = 0. But this implies that vp+1 = 0, contradicting our
assumption that vp+1 is an eigenvector and therefore nonzero.

We conclude from the contradiction that actually the vectors v1, v2, . . . , vr are linearly independent.

The characteristic equation of a square matrix A is the equation det(A− xI) = 0 where x is a variable.
The expression det(A− xI) is a polynomial in x, which we call the characteristic polynomial of A.
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Corollary. A number λ is an eigenvalue of A if and only if p(λ) = 0 where p(x) = det(A − xI) is the
characteristic polynomial.

Example. The matrix

A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1


has characteristic polynomial det(A− xI) = (5− x)(3− x)(5− x)(1− x) = (5− x)2(x− 3)(1− x).

Since this polynomial has two linear factors given by a constant multiple of 5 − x, i.e., since (5 − x)2

divides det(A− xI), we say that 5 is an eigenvalue of A with (algebraic) multiplicity 2.

The other eigenvalues 1 and 3 have multiplicity 1.
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3 Vocabulary

Keywords from today’s lecture:

1. Eigenvector for an n× n matrix A.

A nonzero vector v ∈ Rn such that Av = λv for some real number λ ∈ R.

The number λ is the eigenvalue of A for v.

Example:

 1
1
1

 is an eigenvec. for

 0 2 0
2 0 0
0 0 2

 with eigenval. 2 as

 0 2 0
2 0 0
0 0 2

 1
1
1

 =

 2
2
2

.

2. Characteristic equation of a square matrix A.

The equation det(A− xI) = 0, where I is the identity matrix with the same size as A.

The solutions x for this equation give all eigenvalues of A.

Example: If A =

 0 2 0
2 0 0
0 0 2

 then

det(A− xI) = det

 −x 2 0
2 −x 0
0 0 2− x

 = (2− x)(x2 − 4) = −(2− x)2(2 + x) = 0

has solutions x = 2 and x = −2. These solutions are the eigenvalues for A.

3. λ-eigenspace for an n× n matrix A, where λ ∈ R.

The subspace Nul(A− λI) ⊂ Rn where I is the n× n identity matrix.

If λ is not an eigenvalue of A, then this subspace is {0}.

But if λ is an eigenvalue of A, then the subspace is nonzero.
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