MATH 2121 — Linear algebra (Fall 2018) Lecture 13

1 Last time: vector spaces

A (real) vector space V is a set containing a zero vector, denoted 0, with vector addition and scalar
multiplication operations that let us produce new vectors u +v € V and cv € V from given elements
u,v € V and ¢ € R. Several conditions must be satisfied so that these operations behave exactly like
vector addition and scalar multiplication for R™. Most importantly, we require that

Lutv=v+u.

2. v —v = 0 where we define u —v =u+ (—1)v.
3.v+0=v

4. cv=vifec=1.

There are a few other more technical conditions to give the full definition (see the notes from last time).
R™ and any subspace of R™ are vector spaces.

The definitions of a subspace of a vector space and of linear transformations between vector spaces are
identical to the ones we have already seen for subspaces of R™ and linear transformations R™ — R™.

Most vector spaces that do not arise as subspaces of R™ are subspaces of the following general construction.
Let X be a set and let V' be a vector space. Then the set Map(X, V) of all functions f : X — V is a
vector space once we define (f + g)(z) = f(z) + g(z) and (c¢f)(z) = cf(z) and 0(x) = 0 € V whenever
f,g: X -VandceRand z € X.

Example. The set of linear functions R™ — R™ is a subspace of Map(R"™,R™).

Such things as the span, linear combination, and linear independence of vectors in a general vector space
also have essentially the same definitions as their counterparts for vectors in R™.

A basis of a vector space V is, again, a linearly independent set of vectors whose span is V. The dimension
of a vector space is the number of elements in any of its bases (which all have the same size).

Example. Let n be a positive integer and let P,, be the set of polynomials in a variable x with coefficients
in R of degree at most n. Recall that a polynomial is a function like 3 or = or =7 + 322 + v/2x — 1.

The degree of a polynomial is the largest integer d such that z?% is a term with a nonzero coefficient.
Constant polynomials are defined to have degree 0. Another way to define the degree of a nonzero

polynomial f is as the unique integer d such that lim, . f;fj) exists and is nonzero. For example,

27 + 322 + v/2z — 1 has degree 7 since

0 if d>7
lim £Bebeol — 0 ifd=7

does not exist ifd < 7.

The set P, is a vector space: it is a subspace of Map(R™ R™) A basis is given by the polynomials
1=202 22,23 ...,2" and so dim P, = n + 1.

One natural way that we encounter vector spaces of functions is as the sets of solutions to (linear)
differential equations, like f” 4+ f = 0. When you study differential equations in another math or physics
course, abstract vector spaces will come up again.
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2 Eigenvectors and eigenvalues

We return to the concrete setting of R™ and its subspaces.

Let A be a square n X n matrix.

Definition. An eigenvector of A is a nonzero vector v € R™ such that Av = Av for a number A € R. (A
is the Greek letter “lambda.”) The number X is called the eigenvalue of A for the eigenvector v.

The etymology is German: “eigen” means “own” in the sense of “belonging to” or “possessed by.”

Example. If we are given A and v, it is easy to check whether v is an eigenvector: just compute Av and
inspect whether this vector is a scalar multiple of v.

1 6

6
5 2}andv—[_5}then

D ERE

so v is an eigenvector of A with eigenvalue —4.

For example, if A = [

Caution: Remember that only nonzero vectors can be eigenvectors. This is because the fact that
A0 = M0 for some number A is not interesting, as A0 = A0 = 0 is always true.

However, the number 0 can be an eigenvalue of A.

Example. What are the eigenvectors of the matrix

01 0 0
0 01 0
= ?
4 00 0 1|
0 0 0O
If v € R* were an eigenvector with eigenvalue A\ then
01 00 V1 V2 U1
{0 0 10 va | | wvg | V2
A=10 00 1| |w | "o | v
0 0 0 O V4 0 V4

The last equation implies that 0 = Avs and A\y = A\v3z and vs = Avy and vo = Avy. In other words,
0= )\1)4 == )\21}3 == )\31}2 = A4U1.

If A # 0 then this would mean that v; = vo = v3 = v4 = 0, but remember that v should be nonzero.
Therefore the only possible eigenvalue of A is A = 0. The eigenvectors of A with eigenvalue 0 are

where v is any nonzero real number.
To say that A is an eigenvalue of A means that there exists a nonzero vector z € R™ such that Ax = A\x.

Recall that I,, denotes the n x n identity matrix. Since n is usually a fixed number in this lecture, we
abbreviate by setting I = I,,.
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Proposition. A number A € R is an eigenvalue of A if and only if A — Al is not invertible.

Proof. The equation Az = Az has a nonzero solution z € R™ if and only if (A — Al)z = 0 has a
nonzero solution, which occurs if and only if Nul(A4 — AI) # {0}, which is equivalent to A — AI being not
invertible. 0

Example. If A = { g } then

(5 9108 102 ][} 2w

Since RREF(A — 71) # I, the matrix A — 71 is not invertible so 7 is an eigenvalue of A.

(a0

1

Ay

N O

Corollary. A number A € R is an eigenvalue of A if and only if det(A — AI) = 0.
Proof. Remember that A — AI is not invertible if and only if det(4 — AI) = 0. O

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue A are precisely the nonzero
elements of the nullspace Nul(A — AI). Since we know how to construct a basis for the nullspace of any
matrix, we also know how to find all eigenvectors of a matrix for any given eigenvalue.

1 —1

Example. In the previous example, RREF(A —71) = 0 0

} so Ax = Tz if and only if (A—7Iz =0

if and only if x = { il ] where z1 — x5 = 0. In this linear system, x5 is a free variable, and we can
2

rewrite x as z = [ iQ } = 9 [ } ] . This means [ } is a basis for Nul(A —7I), so the set of all nonzero
2

multiples of this vector give all the eigenvectors of A with eigenvalue 7.

One calls the set of all v € R™ with Av = Av the eigenspace of A for \. We also call this the A-eigenspace
of A. Note that this is just the nullspace of A — AI. A number is an eigenvalue of A if and only if the
corresponding eigenspace is nonzero (that is, contains a nonzero vector).

4 -1 6
Example. Suppose we were told that A = | 2 1 6 | has 2 as an eigenvalue.
2 -1 8

To find a basis for the 2-eigenspace of A, we row reduce

2 -1 6 2 -1 6 1 -1/2 3
A-2[=|2 -1 6 |~[0 0 O0]|~|0O 0 0 | =RREF(A—2I).
2 -1 7 0 00 0 0 0
T
Thus Ax = 2z if and only if z = | x5 | where x; — %:132 + 3x3 =0, i.e., if and only if
z3
%ZEQ — 31’3 1/2 -3
xr = T2 = I 1 + x3 0
I3 0 1
1/2 -3
The vectors 1 | and 0 | are then a basis for the 2-eigenspance of A.
0 1
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The (main) diagonal of an n x n matrix is the set of positions (1,1),(2,2),..., (n,n). The diagonal entries
are the entries in these positions. Recall that a matrix is triangular if its nonzero entries all appear on
or above the diagonal, or all appear on or below the diagonal.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. If A has diagonal entries dy,ds,...,d, then A — Al is triangular with diagonal entries d; — A,
dy— A\, ..., dp — A This means that det(A — ) = (dy — \)(d2 — A\) - - - (d,, — A) which is zero if and only

if A = d; for some 3. O
3 6 -8
Example. The eigenvalues of the matrix | 0 0 6 | are 3, 0, and 2.
0 0 2
4 0 0
The eigenvalues of | —2 1 0 | are 4 and 1.
5 3 4
Here is our second main result of today.
Theorem. If \j, Ao, ..., A\, are distinct eigenvalues for A and vy, v, ..., v, € R™ are the corresponding
eigenvectors, so that Av; = \jv; for i = 1,2,...,r, then the vectors v, vs, ... v, are linearly independent.
Proof. Suppose that the vectors vy, vs, ..., v, instead are linearly dependent. We will argue that this
leads to a logical contradiction, so is impossible.
Under this hypothesis, there must exist an index p > 0 such that vy, v9,...,v, are linearly independent
and vp41 is a linearly combination of vq,vs,...,vp. (If no such index existed then it would mean that
each of the sets {vi}, {v1,v2}, {v1,v2,v3}, ..., {v1,v2,...,0,.} were linearly independent. But we have
assume the contrary.)
Let c1,¢2,...,¢, € R be scalars such that vp41 = c1v1 + cava + - -+ + cpvp.

If we multiply both sides by A and use the fact that each vector is an eigenvector, it follows that
Apt1Ups1 = Avpr1 = A(crvrtcava+- - -+epvy) = crAvi+caAva+- - ~+cp Avy = 1 A\ v1+Cadova+ - -FcpApUp.
On the other hand, multiplying both sides by A,;1 gives

Ap+1Up4+1 = CLAp41V1 + C2App1V2 + -+ - + CpApy1Vp.
Subtracting the two equations gives

0= Apr1Vpt1 — Apt10Ups1 = c1(A1 — App1)vr + ca(A2 — Apy1)v2 + -+ cp(Ap — Apt1)vp.

Since the vectors vy, v, ..., v, are linearly independent, we must have

Cl()\l - )\p+1) = 62(/\2 — )\p-i-l) == Cp()\p — )\p+1) =0.
Remember that Aj, Ag, ..., A, are all distinct so the differences A\; — A, fori =1,2,...,p are all nonzero.
Therefore we must actually have ¢; = ¢ = --- ¢, = 0. But this implies that v,;; = 0, contradicting our

assumption that v, is an eigenvector and therefore nonzero.

We conclude from the contradiction that actually the vectors vy, vs, ..., v, are linearly independent. [

The characteristic equation of a square matrix A is the equation det(A — 2I) = 0 where z is a variable.
The expression det(A — x1) is a polynomial in x, which we call the characteristic polynomial of A.
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Corollary. A number A is an eigenvalue of A if and only if p(\) = 0 where p(z) = det(A — zI) is the

characteristic polynomial.

Example. The matrix

O O O Ut

has characteristic polynomial det(A — zI) = (5

— T

O O 0 O
= s O

2
3
0
0

YB3 —2)5b—2)(1—2)=(5—2)%(x —3)(1 —x).

Since this polynomial has two linear factors given by a constant multiple of 5 — z, i.e., since (5 — z)?
divides det(A — aI), we say that 5 is an eigenvalue of A with (algebraic) multiplicity 2.

The other eigenvalues 1 and 3 have multiplicity 1.
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3 Vocabulary

Keywords from today’s lecture:
1. Eigenvector for an n x n matrix A.
A nonzero vector v € R™ such that Av = \v for some real number )\ € R.

The number X is the eigenvalue of A for v.

1 0 2 0 0 2 0 1 2
Example: | 1 | isaneigenvec. for | 2 0 0 | witheigenval. 2as | 2 0 0 1| =12
1 0 0 2 0 0 2 1 2

2. Characteristic equation of a square matrix A.

The equation det(A — xI) = 0, where I is the identity matrix with the same size as A.

The solutions x for this equation give all eigenvalues of A.

0 2 0
Example: If A= | 2 0 0 | then
0 0 2

—x 2 0
det(A—zl)=det | 2 —=z 0| =02-2)2?>—4)=—-2-2)22+x) =
0 0 2—x
has solutions z = 2 and z = —2. These solutions are the eigenvalues for A.

3. M-eigenspace for an n x n matrix A, where A € R.

The subspace Nul(A — A\I) C R™ where I is the n x n identity matrix.
If A is not an eigenvalue of A, then this subspace is {0}.

But if A is an eigenvalue of A, then the subspace is nonzero.
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