MATH 2121 — Linear algebra (Fall 2018) Lecture 14

1 Last time: eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n X n matrix.

Let I denote the n X n identity matrix.

Definition. A vector v € R™ is an eigenvector for A with eigenvalue A € R if v # 0 and Av = Av.
The set of all v € R" with Av = A\v is the A-eigenspace of A for A\. This is just the nullspace of A — AI.

Proposition. Let A be a number. The following are equivalent:
1. There exists an eigenvector v € R™ for A with eigenvalue .
2. The matrix A — Al is not invertible.
3. det(A— M) =0.
4. The M-eigenspace for A contains a nonzero vector.

Let = be a variable. Then det(A — zI) is a polynomial in z, called the characteristic polynomial of A.
The eigenvalues of A are precisely the solutions to the equation

det(A—2I)=0

which we call the characteristic equation for A.

Last time we proved two nontrivial theorems:

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers
are dy,ds,...,d, then the characteristic polynomial of A is (d; — z)(d2 — ) - - - (d,, — ).

Theorem. Suppose v1,v9,...,v, € R™ are nonzero vectors. Assume each v; is an eigenvector for an

n X n matrix A. Let A; be the eigenvalue corresponding to v;, so that Av; = A\v;. If Ay, Ao, ..., A, are all
distinct, meaning that A; # A; if ¢ # 7, then the vectors vy, vs, ... v, are linearly independent.

To illustrate these results and motivate the new topics today, let’s look at a detailed example.

Example. Consider the matrix

A:

S O =
O N Ot

4
0
3

—~

Since A is triangular, its characteristic polynomial is (1 — z)(2 — z)(3 — x) and its eigenvalues are 1,2, 3.

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A — I).

0 5 4 0 1 0 01 0 0 1 0
A-T= 1 0|~ 5 4 |~ 0 4|~ 0 1 | =RREF(A—1I).
2 2 2 0
1 1 1 1
This shows that z € Nul(A —I) if and only if v = | 22 | = 0] =z1|0|,s0| 0| isa basis
x3 0 0 0
1
for Nul(A — I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of | 0
0
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2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A — 27).

-1 5 4 1 -5 0
A—2I = 00|~ 0 1 | =RREF(A—2I).
1 0
T 5%‘2 5 5
This shows that € Nul(A — 2]) ifand only if z = | 2o | = To | =x2| 1 |,s0 | 1 | is a basis
T3 0 0 0
5
for Nul(A — 2I). All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of | 1
0

3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of Nul(A — 31).

-2 5 4 -2 0 4 1 0
A-31= -1 0 | ~ 1 0|~ 1
0 00 0
T 2x3
This shows that € Nul(A—3I) ifandonlyif z = | 22 | =
I3 I3

for Nul(A — 3I). All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of | 0

1 5
Since 1, 2, 3, are distinct, the second theorem implies that | 0 |, | 1
0 0

-2
0 | =RREF(A — 3I).
0
2 2
=x3| 0 [ so | O | is a basis
1 1
1
2
, | 0 | arelinearly independent.
1

Consider the matrix whose columns are given by these linearly independent vectors:

P =

O O =
S = Ot
—_ O N

Since the columns of P are linearly independent, P is invertible. Recall that

1 0
e1=10 and ea =11 and
0 0
The product Pe; is the ith column of P, so
1 5
Pe;=10 and Pes=11 and
0 0

Since Pz = y means that P~y = P~ Pz = Iz = x, it follows that

1 5
Pllo|=e and Pl 1| =e and
0 0

Combining these identities shows that

0
€3 = 0
1
2
P€3: 0
1
2
P10 | =es.
1
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1 1
PilA.Pel:PilA 0 =p! 0 = e1.
| 0 | 0
C 5] F 5]
P 'APe; =P 'A| 1 | =2P7 1| 1 | = 2.
L 0 - L 0 -
9] F 9]
PflAPeg =PlA| 0 =3p! 0 = 3es.
1 1

These calculations determine the columns of the matrix P~1AP.

If fact, we see that P~ AP = D where D is the diagonal matrix

10 0
D:[Gl 262 363]: 0 2 0
00 3
This means that A = P(P7'AP)P~' = PDP~ ! ie,
1 5 4 1 5 2 10 0 15 277"
020]=|010 02 0 01 0
00 3 00 1 00 3 00 1

One application of this decomposition: we can derive a simple formula for an arbitrary power A™ of A.

Define A =1, A' = A, A2 = AA, A3 = AAA, and so on.
Lemma. For any integer n > 0 we have A" = (PDP~!)" = PD"P~1.

Proof. Do some small examples and convince yourself that the pattern continues:
A? = AA=PDP'PDP~! =PDIDP~! = PD?P!
A3 = A2A = PD?P~'PDP~!' = PD?IDP~! = PD3P!
A* = A3A = PD3P'PDP~! = PD3IDP~! = PD*P~!

and so on. 0

Lemma. For any integer n > 0 we have

1™ 0 0 1 0 0
D" = o2 0|=[02" 0
0o o0 3" 0o o0 3"

Proof. This is true since to multiply diagonal matrices we just multiply the entries in the corresponding
diagonal positions:

1 Y1 T1Y1
To Y2 T2Y2

T Yk TrYk

Therefore to evaluate D™ = DD --- D, we just raise each diagonal entry to the nth power. O
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1 -5 =2
Finally, by the usual algorithm we can compute P~! = 1 0
1

(I’'m skipping the details — check that this is the correct inverse!)
Putting everything together gives the identity

1 5 2 1 0 0 1 -5 -2
A" =PD"P~'=10 1 0 0 2" 0 1 0
0 0 1 0o 0 3 1

(1 5.27 2.3" 1 -5 -2 1 52" —1) 2(3"—1)

=10 on 0 1 0|=1|0 on 0

|0 0 3n 1 0 0 3

We've done all these calculations for their own sake as a means of illustrating some key concepts. But
these calculations would also come up in the solution of the following discrete dynamical system. Suppose
ag, a1, a2, .- ., bg,b1,be,..., and ¢y, cy,ca, ... are sequences of numbers. For each integer n > 1, suppose

Ap = Ap_1 + 5bp_1 +4cpn_1 and bp = 2b,_1 and Ccp = 3Cp_1. (*)

How could we find a formula for a,, b,, and ¢, in terms of n and the sequences’ initial values ag, bg, co?
Note that (*) is equivalent to

ap, 1 5 4 Qn—1 (p—1 (p—2 ap
b, | =10 2 0 bpor | =A| bpoy | =A% bypo | =---=A"| by
Cn 0 0 3 Cn-1 Cn—1 Cn—2 o

Thus, our formula for A™ gives
an = ag+5(2" — 1)by 4+ 2(3" — 1)cg and b, = 2"bg and cn = 3"¢o.
If ag = bg = ¢g = 1 then a1g = 123212 and b9 = 1024 and c19 = 59049. Moreover,

ag + 5(2” — l)bo + 2(3” — 1)60

n—oo 3N n—00 3n

= 200.

2 Similar matrices

Definition. Two n x n matrices X and Y are similar if there exists an invertible n x n matrix P with
X = PY P! In this case observe that Y = P"'PYP 1P = P71XP. If X and Y are similar, then we
say that “X is similar to Y” and “Y is similar to X.” (Each statement implies the other.)

1 5 4 1 00

In the previous example we showed that A= | 0 2 0 | and D= | 0 2 0 | are similar matrices.
0 0 3 0 0 3

Proposition. An n x n matrix A is always similar to itself.

Proof. Since I = I™! we have A = PAP~! for P = 1. O

Proposition. Suppose A, B, C are n X n matrices. Assume A and B are similar. Assume B and C' are
also similar. Then A and C are similar.
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Proof. If A= PBP~! and B = QCQ~! where P,(Q are invertible n x n matrices, then
A=PQCQ'P!'=(PQ)C(PQ)™' = ROR™*

for the invertible matrix R = PQ. O

Theorem. If A and B are similar n X n matrices then A and B have the same characteristic polynomial
and so have the same eigenvalues.

Proof. We just need to remember that det(XY) = det(X) det(Y) and det(l) = 1.
If A= PBP ! then A— 2l = PBP! — 2l = PBP~! —aPIP~! = P(B—2I)P~'.
Therefore if A= PBP~! then

det(A — ) = det(P(B — 2I)P~') = det(P) det(B — =) det(P™1).

But note that det(P)det(P~1) = det(PP~1) = det(I) = 1, so det(A — zI) = det(B — xI). O

Caution. Matrices may have the same eigenvalues but not be similar.

The implication goes in one direction only:

similar = same eigenvalues.

2 0 2 1
A_{OQ} and B—{02]

both have eigenvalues 2,2 but are not similar.

Since A = 2I we have PAP~! =2PIP~! =2PP~! = 2] = A # B for all invertible matrices P.

For example, the matrices

Caution. Row equivalence of matrices # similarity of matrices.

Row operations usually change eigenvalues, whereas similar matrices always have the same eignenvalues.

Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix, i.e., there exists a
diagonal matrix

A1
A2
D =

An
and an invertible matrix P such that X = PDP~!.

1 5 4
In our long example in the last section, we saw that A= | 0 2 0 [ is diagonalizable.

0 0 3

Theorem. An n X n matrix A is diagonalizable if and only if the set of eigenvectors of A spans all of
R™, or equivalently contains a subset of n linearly independent vectors.

More precisely, suppose D is an n X n diagonal matrix with diagonal entries A1, A2,..., A, and P is an
n x n invertible matrix with columns v1,vs,...,v,. Then A = PDP~! if and only if A1, Ag,..., A, are
the eigenvalues of A and vy, vs, ..., v, are eigenvectors of A such that Av; = \ju; for i =1,2,...,n.
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Proof. We have
A1
A2
An
Then Pe; = v; so P~ 'v; = e; and De; = \e;, so

PDP~'v; = PDe; = \;Pe; = \v;

foreach i =1,2,...,n.
Therefore if A = PDP~! then vy, vs,...,v, are eigenvectors for A with corresponding eigenvalues
A1y A2, ..., An. In this case, as P is invertible, the columns v, vs,...,v, must be linearly independent,

so A has n linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors vy, va, . . ., v, with eigenvalues A1, Ag, ..., A,.
Define

A1
A2
D = ) and P:[vl Vg v vn]
An
as before. Since Pe; = v; and P~ lv; = e;, we have

PilA.Pei = PilAUi = Pil(Ai'I}i) = )\ipil’()i = )\16Z

This calculates the ith column of P~'AP. Since );e; is also the i column of the diagonal matrix D, we
deduce that P~*AP = D. Therefore A = P(P"'AP)P~! = PDP~! is diagonalizable. O

Not every matrix is diagonalizable. It takes some work to decide if a given matrix is diagonalizable. Here
is one easy criterion, which is sufficient but not necessary:

Corollary. An n x n matrix with n distinct eigenvalues is diagonalizable.

Proof. Suppose A has n distinct eigenvalues. By the theorem last time, any choice of eigenvectors for
A corresponding to these eigenvalues will be linearly independent, so A will have n linearly independent

eigenvectors. O
5 -8 1

Example. The matrix A= | 0 0 7 | is triangular so has eigenvalues 5,0, —2.
0o 0 -2

These are distinct numbers, so A is diagonalizable.

Next time: how to “diagonalize” (that is, find P such that A = PDP~!) a diagonalizable matrix.
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3 Vocabulary

Keywords from today’s lecture:

1. Similar matrices.
Two n x n matrices A and B are similar if there exists an invertible n x n matrix M with
A=MBM™!.

If A and B are similar and B and C are similar, then A and C are similar.

-1

100 3 00 0 0 1 100 0 0 1
Example: | 0 2 0 | issimilarto [ O 2 0 | =1]0 1 0 0 2 0 0 1 0
0 0 3 0 0 1 100 0 0 3 1 00

2. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix. An n X n matrix is diagonalizable if and only if it
has n linearly independent eigenvectors. One way this can happen is if the matrix has n distinct
eigenvalues.
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