MATH 2121 — Linear algebra (Fall 2018) Lecture 15

1 Last time: similar and diagonalizable matrices

Let n be a positive integer. Suppose A is an n X n matrix, v € R™, and A € R.

Recall that v an eigenvector for A with eigenvalue X\ if v # 0 and Av = v, or equivalently if v is a
nonzero element of Nul(A — AI). The number ) is an eigenvalue of A if there exists some eigenvector
with this eigenvalue.

If the nullspace Nul(A — AI) is nonzero, then it is called the A-eigenspace of A.

The eigenvalues of A are the solutions to the polynomial equation det(A — 1) = 0.
Important fact. Any set of eigenvectors of A with all distinct eigenvalues is linearly independent.
Two n x n matrices A and B are similar if there is an invertible n x n matrix P such that A = PBP~!,

Similar matrices have the same eigenvalues but usually different eigenvectors.

-1

1 2 3 0 0 1 0 0 1 9 8 7
Example. The matrix A= | 4 5 6 | issimilarto | 0 1 0 |A| 0 1 O =6 5 4

7 8 9 10 0 1 0 0 3 21
A matrix is diagonal if all of its nonzero entries appear in diagonal positions (1,1),(2,2),..., or (n,n).
A matrix A is diagonalizable if it is similar to a diagonal matrix.
In other words, A is diagonalizable if we can write A = PDP~! where

A1
A2
D =
An

is a diagonal matrix. In this case A1, A9, ..., A, are the eigenvalues of A are if P = [ v1 Vg ... Up }
then Av; = \;v; for each i = 1,2,...,n, i.e., the columns of P are a basis for R" of eigenvectors of A.

We proved these results last time:

Theorem. An n x n matrix A is diagonalizable if and only if R™ has a basis whose elements are all
eigenvectors of A.

Theorem. If A is an n X n matrix with n distinct eigenvalues then A is diagonalizable.

2 Diagonalization and Fibonacci numbers

Knowing how to diagonalize matrices will let us prove an exact formula for the Fibonacci numbers.

The sequence f,, of Fibonacci numbers starts as

fo=0, fi=1, fo=1[f3=2, fa=3, fo3=5 [fe=8 [fr=13
For n > 2, the sequence is defined by f, = fn_2 + fr_1.
We have f1p = 55 and f190 = 354224848179261915075.

The sequence grows exponentially. Write log for the natural logarithm. Then
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L 1og fio = 0.40073.. ..
s 1og fioo = 0.47316.. ..
ﬁ log fi000 = 0.48040. ..
m log fi0000 = 0.481131.. ..
m log f1000000 = 0.481211 ...
These numbers seem to be converging to something.

In fact, if we set # = 0.481211... and e = 2.718... (so that loge = 1) then (2¢% —1)? = 4.999995 - - - ~ 5.

Can we explain this?

Define a,, = f2,, and b, = fa,, 11 for n > 0.

If n > 0 then
an = f2n = f2n—2 + f2n—1 =ap_1+bp_1.

Similarly, we compute that if n > 0 then
bn - f2n+1 - an—l + f2n - bn—l +a, = ap—1+ 2bn—1~

We can put these two equations together into one matrix equation:

HEEEt

Since this holds for all n > 0, we have
2 3 n
ap, | |1 1 an—1 | |1 1 n—2 | | 1 1 apn-3 | _ 1 1 ag
b | |1 2 bt | |1 2 boo | |1 2 boos | T |1 2 bo |

In other words,
an ] _[1 17%T0
by | |1 2 1|

Thus if we could get an exact formula for the matrix

111"
1 2
then we could derive a formula for a,, = fa, and b, = fo,+1, which would determine f, for all n.

The best way we know to compute A™ for large values of n is to diagonalize A, that is, to find an invertible
matrix P and a diagonal matrix D such that A = PDP~!, since then A = PD"P~!. Note, however,
that at the outset it’s not clear if this is even possible.

1 1
-[11)
To determine if A is diagonalizable, our first step is to compute its eigenvalues, which are the roots of
the polynomial

Define the matrix

1—=z 1

det(A—xI):det[ 1 29—

]:(1—x)(2—m)—1:m2—3x+1.

By the quadratic formula, the values of x where this polynomial is zero are

3+V5 35
o= 5 and 8= 5
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These numbers are the eigenvalues of A.

Since o — f = /5 # 0, these eigenvalues are distinct so A is diagonalizable. Note that
af=0B-V5)@B+V5)/4=(9-5)/4=1.

Our next step is to find bases for the a- and (-eigenspaces of A.

To find an eigenvector for A with eigenvalue «, we row reduce

Aﬂﬂ:[lﬁ 2—&]”{1—; 2?}N[é 1—@—axﬁﬂ3]:[é 2%}:RMHAﬂﬂ)

The second equality holds since

2-a)(1—a)=(1-V5)(-1-V5)/4=(~1+5)/4=1.

This computation shows that « € Nul(A — o) if and only if x = [ o

] where 1 + (2 — a)zs =0, so
€2

| a—=2
v 1

is an eigenvector for A with Av = awv.

To find an eigenvector for A with eigenvalue 3, we similarly row reduce

aor= [0 Ly [ memmd e [0

The second equality holds since also (2 — §)(1 — ) = 1.

o™

] — RREF(A—BI).

By algebra identical to the previous case, we deduce that

o[

is an eigenvector for A with Av = fv.

This means that for

P=[v w]z[a_f B_f} and D:[% g}

we have A = PDP~!. Since P is 2 x 2 with det P = (o — 2) — (8 — 2) = a — 3 = /5, we have
n_|a* 0 o b 1 2-0
D —[ 0 ﬂ"} and P —\/5{1 a2 |

We therefore have

R e R R IR S [

Before computing anything further, it helps to make a few simplifications. Note that

-1 11—
:%ﬁ:l—ﬁ and B—2=J:1—a

_9
@ 2
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Hence LT I
sl S
1 [1-8 1—al[a® 0 a—1
VA 1 1__06"}{1—6}
:i_l—ﬂ l—a ]| (a—l)a"}
V5 L 1 L[ =(B-1)p"
:1'(a1)(6n1)(6”a””.
VL (a=Dla"—=(8-1)8

Since (a —1)(B—1) = w = 14 = 1, rewriting this matrix equation gives
(1) f2n = an = % (an - Bn)
(i) fon41 =bn = % ((a=1)a™ = (B —1)B").

We now make one more unexpected observation:

2
s (145 1+2V5+5 3+4/5
2 4 2
and )
1-v56 1-25+5 3-5
_ 1 2 = = = = .
FERTE EV R s
Thus (i) and (ii) become
fan = = ((a=1)"" = (B-1)*") (*)
and
font1 = % ((a _ 1)2n+1 _ (ﬁ . 1)2n+1) ) (**)
Putting (*) and (**) together gives a common formula for f,, for all n. Since
04—1:1—'_\/5 and ﬁ—lzl_\/g
2 2
we get:

Theorem. For all integers n > 0 it holds that

1 1+v5)" 1-v5) n "
fn—\/g<< . )( 5 >>z0.447(1.618 — (—0.618)")

(Check that this holds even when n =0 and n = 1.)

How does this explain our original numeric observations?

Well, since 1_2‘/5 = —0.618... has absolute value less than 1, it follows that if n is very large then

log f,, = log (\}g (1 +2\/§> ) = log (\}5) + nlog <1 +2\/5> .

SO
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Therefore
1 1 1 1 1
lim —log f, = hm —log| — | + n log V5 = log V5 .
n—oo M —oo | n V5 n 2 2
—_—
—0 =1
And indeed
1+5 1
1 = 0.481211- —_— .
og ( 5 ) 0.48 ~ 1000000 log f1000000

Moreover, if z = log (HI) then e® = (1++/5)/2 so (2¢* —1)2 = 5.

3 Diagonalizing matrices whose eigenvalues are not distinct

If an » X n matrix A has n distinct eigenvalues with corresponding eigenvectors vy, v, ..., v,, then the
matrix P = [ V1 Vg ... Up } is automatically invertible since its columns are hnearly independent,
and the matrix D = P~ 1AP is diagonal such that A = PDP~!.

When A is diagonalizable but has fewer than n distinct eigenvalues, we can still build up P in such a
way that P is automatically invertible and P~' AP is automatically diagonal.

Recall that if A is an eigenvalue of A then Nul(A — A\I) is the A-eigenspace of A.

The multiplicity of the eigenvalue ) is the largest integer m > 1 such that we can write the characteristic
polynomial of A as the product det(A — zI) = (A — z)™p(x) for some polynomial p(z).

0 -1

For example, if A = [ 1 9

} then

- -1

det(A—xI):det{ 1 29— »

} =(-2)2-2)+1l=a=2%-22+1=(z— 1)
so 1 is an eigenvalue of A with multiplicity 2.
Theorem. Let A be an n x n matrix. Suppose A has distinct eigenvalues A, Aa,..., A, where p < n.
The following properties then hold:
(a) For each i =1,2,...,p, the dimension of the A;-eigenspace of A is at most the multiplicity of \;.

(b) A is diagonalizable if and only if the sum of the dimensions of the eigenspaces of A is n.

(c) Suppose A is diagonalizable and B; is a basis for the A;-eigenspace. Then the union B, UByU---UB,
is a basis for R™ consisting of eigenvectors of A. If the elements of this union are the vectors
V1,2, ...,V, then the matrix P = [ v Uz ... Up ] is invertible and P! AP is diagonal.

Proof. Fix an index i € {1,2,...,p}.
Let A = A; and suppose A has multiplicity m and Nul(A — AI) has dimension d.
Let vy, v, ...,vq be a basis for Nul(A — AI).

One of the corollaries we saw for the dimension theorem is that it is always possible to choose vectors
Vdt1, Vd42,y - - - » U € R™ such that vy, ve, ..., 04, V441, Vat2, - - .,V is a basis for R™.

Define @) = [ v1 V3 ... Up ] The columns of this matrix are linearly independent, so @ is invertible
with Qe; = v; and Q7 'v; = e, for all j =1,2,...,n. Define B = Q 'AQ.

If j € {1,2,...,d} then the jth column of B is
Be; = Q1 AQe; = Q1 Av; = AQ v, = e
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This means that the first d columns of B are

A
A
A
0 0 0
| 0 0 0 |
so B has the block-triangular form
F ) -
A
B = Aok ox L. %k :{)\18 }Zf}
0O 0 ... 0 % *x ... =x
L0 0 ... 0 * % ... * |

where Y is an arbitrary d X (n — d) matrix and Z is an arbitrary (n — d) x (n — d) matrix.
Now, we want to deduce that
det(B — ) = (A — )% det(Z — «I).

Since det(A — zI) = det(B — «I) as A and B are similar, and since det(Z — zI) is a polynomial in z, we
see that det(A — xI) can be written as (A — z)%p(x) for some polynomial p(z). Since m is maximal such
that det(A — aI) = (A — z)™p(x), it must hold that d < m. This proves part (a).

To prove parts (b) and (c), suppose v},v?, ... ,Uf"’ is a basis for the \;-eigenspace of A for each i =
1,2,...,p. Let B; = {v},v3,... mf’i}. We claim that By UBy U ... B, is a linearly independent set.
To prove this, suppose Y ¢_; Z§=1 cg vf = 0 for some coefficients cg eR.

It suffices to show that every ¢/ = 0.

Let w; = Z§=1 cﬁvf € R™. We then have w; + w2 + -+ +wp = 0.

Each w; is either zero or an eigenvector of A with eigenvalue \;. (Why?)

Since eigenvectors of A with distinct eigenvalues are linearly independent, we must have
wy =wg = -+ =wp, =0.

But since each set B; is linearly independent, this implies that CZ =0 for all 4, j.

We conclude that By UB2 U... B, is a linearly independent set.

If the sum of the dimensions of the eigenspaces of A is n then B; UBa U --- U B, is a set of n linearly
independent eigenvectors of A, so A is diagonalizable.

If A is diagonalizable then A has n linearly independent eigenvectors. Among these vectors, the number
that can belong to any particular eigenspace of A is necessarily the dimension of that eigenspace, so it
follows that sum of the dimensions of the eigenspaces of A at least n. This sum cannot be more than n
since the sum is the size of the linearly independent set By U Bz U --- U B, C R™. This proves part (b).

To prove part (c), note that if A is diagonalizable then By UByU---UB,, is a set of n linearly independent
vectors in R™, so is a basis for R". O
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Example. Consider the lower-triangular matrix

5)
0 5
A= 1 4 -3
1 -2 0 -3

Its characteristic polynomial is det(A — x1) = (5 — x)?(—z — 3)%.

The eigenvalues of A are therefore 5 and —3, each with multiplicity 2.

Since
0 1 0 8 16
0 0 01 -4 -4
A-sl=| | | ¢ ~lo o o ol=RREFA=5]
-1 -2 0 -8 0 0 0 0
it follows that x € Nul(A — 51) if and only if
T —81}3 — 16%‘4 —8 —16
_ | T2 o dxs + 4zy _ 4 4
T = 2y | = N T3 1 + x4 0
Ty Ty 0 1
so
-8 71 [ —16
4 4| . .
E 0| B8 basis for Nul(A — 51).
0 | 1
Since _ -
8 1 0 0 O
0 8 01 00
A—(=3)I=A+3l=| | | | ~1 0 0 o o |=BREF(A+3])
| -1 -2 0 0 00 0 0]
it follows that « € Nul(A + 3I) if and only if
Ty | [0 0 0 ]
U I I A B B O
o I3 o I3 - 1 4 0
Ty | | L4 0 1 d
so
0 [0 ]
0 01 . .
1l 82 basis for Nul(A + 3I).
0 | 1]

Each eigenspace has dimension 2, so the sum of the dimensions of the eigenspaces of A is 2+2 =4 =n.
Thus A is diagonalizable.

In particular, if

-8 =16 0 O

4 4 0 0

P= 1 010
0 1 01
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then P is invertible and

PlAP = and A=P P
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