
MATH 2121 — Linear algebra (Fall 2018) Lecture 18

1 Last time: properties of eigenvalues

The trace of a square matrix A is the sum of its diagonal entries.

We denote that by the symbol tr(A).

For 2× 2 matrices we have tr

([
a b
c d

])
= a+ d.

Suppose A and B are n× n matrices. Although in general tr(AB) 6= tr(A)tr(B), we have both

tr(AB) = tr(BA) and det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

Theorem. Suppose λ1, λ2, . . . , λn ∈ C are complex numbers such that

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).

Then det(A) = λ1λ2 · · ·λn and tr(A) = λ1 + λ2 + · · ·+ λn.

In words: the product of the eigenvalues of A, repeated with multiplicity, is the determinant of A, while
the sum of the eigenvalues of A, repeated with multiplicity, is the trace of A.

We also noted a few other properties of an n× n matrix A:

• The matrices A and AT have the same eigenvalues.

• The matrix A is invertible if and only if 0 is not one of its eigenvalues.

• Assume A is invertible. Then A and A−1 have the same eigenvectors, but v is an eigenvector of A
with eigenvalue λ if and only if v is an eigenvector of A−1 with eigenvalue 1/λ.

• If A is invertible and diagonalizable then A−1 is diagonalizable.

• If A is diagonalizable then AT is diagonalizable.

2 Inner products and orthogonality

Definition. The inner product or dot product of two vectors

u =


u1
u2
...

un

 and


v1
v2
...

vn


in Rn is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = uT v = vTu = v • u.

For example,

[
a
b

]
•
[
−b
a

]
= −ab+ ab = 0 for any a, b ∈ R.

Definition. The length of a vector v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

Essential properties of length and inner product.

Let u, v, w ∈ Rn and c ∈ R.

(a) u • v = v • u and (u+ v) • w = u • w + v • w and (cv) • w = c(v • w), while ‖cv‖ = |c|‖v‖.
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(b) v • v = v21 + v22 + · · ·+ v2n ≥ 0 and ‖v‖ ≥ 0.

(c) v • v = 0 if and only if ‖v‖ = 0 if and only if v = 0 ∈ Rn.

The distance between two vectors u, v ∈ Rn is the length of the their difference ‖u− v‖.

A unit vector is a vector u ∈ Rn with ‖v‖ = 1.

If v ∈ Rn is any nonzero vector, then the unit vector in the direction of v is u = 1
‖v‖v ∈ Rn.

Example. The unit vector is the direction of

v =


1
1
1
1

 is u = 1√
12+12+12+12

v =


1/2
1/2
1/2
1/2

 .

Definition. Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

When u and v are orthogonal we also say that “u is orthogonal to v.”’

Proposition. If u, v ∈ R2 are nonzero vectors that are orthogonal to each other, so that u• v = 0. Then
u and v, drawn as arrows in the xy-plane, belong to perpendicular lines through the origin. In other
words, these vectors are perpendicular in the usual sense of planar geometry.

Concretely, u, v ∈ R2 are orthogonal and u =

[
a
b

]
, then v is a scalar multiple

[
−b
a

]
, which is the

vector obtained by rotating u counterclockwise by 90 degrees.

Proof. Write u =

[
a
b

]
and v =

[
x
y

]
. Then u • v = ax+ by = 0.

If a = 0 then b 6= 0 since u 6= 0, so y = −a
bx = 0 and v =

[
x
0

]
= −x

b

[
−b

0

]
.

If a 6= 0 then x = −b
a y so v =

[
− b

ay
y

]
= y

a

[
−b
a

]
.

Thus v is a scalar multiple of

[
−b
a

]
.

To see that

[
a
b

]
and

[
−b
a

]
are perpendicular, draw a picture. Consider the triangles with vertices

(0, 0), (a, 0), (a, b) and (0, 0), (−b, 0), (−b, a). These triangles are congruent, and the angle between

[
−b

0

]
and

[
−b
a

]
plus the angle between

[
a
0

]
and

[
a
b

]
must be 90 degrees.

3 Orthogonal complements

Suppose V ⊂ Rn is a subspace. The orthogonal complement of V is the set

V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

Pronounce “V ⊥” as “vee perp.”
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Proposition. If V ⊂ Rn is a subspace then its orthogonal complement V ⊥ ⊂ Rn is also a subspace.

Proof. Since v • 0 = 0 for all v ∈ Rn it holds that 0 ∈ V ⊥.

If x, y ∈ V ⊥ and c ∈ R then v • cx = c(v • x) = 0 and v • (x+ y) = v • x+ v • y = 0 + 0 = 0 for all v ∈ V
so cx and x+ y both belong to V ⊥. Hence V ⊥ is a subspace.

The operation (·)⊥ relates the column space, null space, and transpose of a matrix in the following way:

Theorem. Suppose A is an m× n matrix. Then (ColA)⊥ = Nul(AT ).

Proof. Write A =
[
a1 a2 . . . an

]
where ai ∈ Rm. Let v ∈ Rn.

If v ∈ (ColA)⊥ then we must have v • ai = aTi v = 0 for all i.

Conversely, if v • ai = aTi v = 0 for all i then

(c1a1 + c2a2 + · · ·+ cnan) • v = c1(a1 • v︸ ︷︷ ︸
=0

) + c2(a2 • v︸ ︷︷ ︸
=0

) + · · ·+ cn(an • v︸ ︷︷ ︸
=0

) = 0

for any scalars c1, c2, . . . , cn ∈ R so v ∈ (ColA)⊥.

Then v ∈ (ColA)⊥ if and only if v • ai = aTi v = 0 for all i. This holds if and and only if

AT v =


aT1
aT2
...

aTn

 v =


a1 • v
a2 • v

...
an • v

 = 0 ∈ Rm,

i.e., if and only if v ∈ Nul(AT ).

Lemma. Let V ⊂ Rn be a subspace. If w ∈ V ∩ V ⊥ then w = 0.

Proof. If w ∈ V and w ∈ V ⊥ then w • w = 0 so w = 0.

Proposition. Let V ⊂ Rn be a subspace. If S ⊂ V and T ⊂ V ⊥ are two sets of linearly independent
vectors, then S ∪ T is also linearly independent.

Proof. Suppose there was a nontrivial linear dependence among the elements of S ∪ T equal to zero.
Rewrite this linear dependence so that the terms from S are on the left side of = and the terms from T
are on the other side. Then we would have an equation of the form

a1v1 + · · ·+ akvk︸ ︷︷ ︸
∈V

= b1w1 + · · ·+ blwl︸ ︷︷ ︸
∈V ⊥

where v1, . . . , vk ∈ S and w1, . . . , wl ∈ T , for some coefficients a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R which are
not all zero. But such an equation would imply that a nonzero element of V is equal to a nonzero element
of V ⊥, which is impossible by the lemma.

Corollary. If V ⊂ Rn is a subspace then dimV ⊥ ≤ n− dimV .

Proof. If S is a basis for V and T is a basis for V ⊥ then dimV + dimV ⊥ = |S| + |T | = |S ∪ T |. Since
S ∪ T is a set of linearly independent vectors in Rn, its size must be at most n.
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4 Orthogonal bases and orthogonal projections

Proposition (Generalized Pythagorean theorem). Two vectors u, v ∈ Rn are orthogonal if and only if

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. The proof is just a little algebra:

‖u+v‖2 = (u+v)• (u+v) = u• (u+v) +v • (u+v) = u•u+u•v+v •u+v •v = ‖u‖2 +‖v‖2 + 2(u•v).

Then ‖u+ v‖2 = ‖u‖2 + ‖v‖2 if and only if u • v = 0.

The equivalence of this proposition to the classical Pythagorean theorem boils down to our observation
earlier that orthogonal vectors in R2 form the sides of a right triangle.

A collection of vectors u1, u2, . . . , up ∈ Rn is orthogonal if ui • uj = 0 whenever 1 ≤ i < j ≤ p.

In particular, an orthogonal basis of Rn is a basis in which any two vectors are orthogonal.

Theorem. Suppose the vectors u1, u2, . . . , up ∈ Rn are orthogonal and all nonzero. Then u1, u2, . . . , up
are linearly independent.

Proof. Suppose c1u1 + c2u2 + · · ·+ cpup = 0 for some coefficients c1, c2, . . . , cp ∈ R.

For each i = 1, 2, . . . , p, we then have

0 = (c1u1 + c2u2 + · · ·+ cpup) • ui = c1(u1 • ui) + c2(u2•i) + · · ·+ cp(up • ui) = ci‖ui‖2

since uj •ui = 0 if i 6= j. But since ui is nonzero, ‖ui‖2 6= 0, so it must hold that ci = 0. As this argument
applies to each index i, we deduce that c1 = c2 = · · · = cp = 0.

In other words, the only way we can have c1u1 + c2u2 + · · ·+ cpup = 0 is if all of the coefficients are zero,
which is the definition of linear independence.

Corollary. Any set of nonzero, orthogonal vectors is an orthogonal basis for the subspace they span.

Any set of n nonzero, orthogonal vectors in Rn is an orthogonal basis for Rn.

Proposition. Suppose u1, u2, . . . , up is an orthogonal basis for a subspace V ⊂ Rn.

Let y ∈ V . Then we can write y = c1u1 + c2u2 + · · ·+ cpup where

ci =
y • ui
ui • ui

=
y • ui
‖ui‖2

.

Proof. A basis must span V , so y = c1u1 + c2u2 + · · ·+ cpup for some coefficients c1, c2, . . . , cp ∈ R.

Since y • ui = ci(ui • ui) for each i = 1, 2, . . . , p, the result follows.

Example. Suppose u1 =

 3
1
1

 and u2 =

 −1
2
1

 and u3 =

 −1/2
−2
7/2

.

You can check that these three vectors form as orthogonal subset of R3.

For example, u1 • u3 = −3/2− 2 + 7/2 = 0.
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The vectors are therefore linearly independent, so are an orthogonal basis for R3.

For y =

 6
1
8

 we have y • u1 = 11 and y • u2 = −12 and y • u3 = −33.

We also have u1 • u1 = 11 and u2 • u2 = 6 and u3 • u3 = 33/2.

Therefore y = u1 − 2u2 − 2u3.

Let u ∈ Rn be a nonzero vector. Suppose y ∈ Rn is any vector.

Definition. The orthogonal projection of y onto u is the vector

ŷ =
y • u
u • u

u.

Note that this vector is scalar multiple of u, and can be zero.

The component of y orthogonal to u is the vector

z = y − ŷ = y − y • u
u • u

u.

By construction it holds that y = ŷ + z. Moreover, as its name suggests, we have z • u = 0 since

z • u = y • u− y • u
u • u

u • u = y • u− y • u = 0.

Observation. The vectors ŷ and z do not change if u is replaced by a nonzero scalar multiple: if we
change u to cu for some 0 6= c ∈ R then all the factors of c cancel:

y • cu
cu • cu

cu =
c(y • u)

c2(u • u)
cu =

y • u
u • u

u = ŷ.

Let L = R-span{u}. Then ŷ and z may also be called the orthogonal projection of y onto L the component

of y orthogonal to L. We will write projL(y) = ŷ ∈ L.

In R2, the distance from a point (x, y) to a line L = R-span{u} is the length∥∥∥∥[ x
y

]
− projL

([
x
y

])∥∥∥∥ .
(Try drawing a picture to explain this.)

Example. To find the distance from the point (x, y) = (7, 6) to the line L defined by y = 1
2x, note that

L contains the vector u =

[
4
2

]
. Let w =

[
7
6

]
. Then

projL

([
7
6

])
=
w • u
u • u

u =
28 + 12

16 + 4
u =

40

20
u = 2u =

[
8
4

]
so the distance is ∥∥∥∥[ 7

6

]
−
[

8
4

]∥∥∥∥ =

∥∥∥∥[ −1
2

]∥∥∥∥ =
√

1 + 4 =
√

5.
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5 Vocabulary

Keywords from today’s lecture:

1. Inner product of vectors u, v ∈ Rn.

The scalar u • v = uT v ∈ R.

Example:

 1
2
3

 •
 −1
−10
−100

 = −1− 20− 300 = −321.

2. Length of a vector v ∈ Rn and distance between u, v ∈ Rn.

The length of v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ vnn where v =


v1
v2
...

vn

.

The distance from u ∈ Rn to v ∈ Rn is ‖u− v‖.

3. Unit vector.

A unit vector is a vector in Rn with length 1.

The unit vector in the same direction as a nonzero vector v ∈ Rn is u = 1
‖v‖v.

4. Orthogonal vectors.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

A group of more than two vectors in Rn is orthogonal if any two of the vectors are orthogonal.

A basis of a subspace is orthogonal if any two vectors in the basis are orthogonal.

Example: In R2, the vectors

[
a
b

]
and

[
−b
a

]
are always orthogonal.

5. Orthogonal complement of a subspace V ⊂ Rn.

The subspace V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

Example: If V = R-span{e1, e2, . . . , ei} ⊂ Rn then V ⊥ = R-span{ei+1, ei+2, . . . , en}.

If V = Rn then V ⊥ = {0}. If V = {0} ⊂ Rn then V ⊥ = Rn.

6. Orthogonal projection of a vector y ∈ Rn onto a line L = R-span{u} where 0 6= u ∈ Rn.

The unique vector ŷ ∈ L such that y − ŷ is orthogonal to u (and also to all other vectors in L).

This vector has the formula ŷ = y•u
u•uu.

Note that the value of ŷ given by this formula does not change if u is replaced by cu for 0 6= c ∈ R.

Example: if u =

[
1
1

]
and y =

[
a
b

]
then ŷ = 1

2

[
a+ b
a+ b

]
.
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