MATH 2121 — Linear algebra (Fall 2018) Lecture 19

1 Last time: orthogonal vectors and projections

The inner product or dot product of two vectors

Uy U1

U2 V2
u= and

Unp Un

in R™ is the scalar u ® v = u1v1 + Ugvs + - - + Upvy = uTv =vTu =v e 1.

The length of a vector v € R" is |[v]| = Vv e v = \/v? +v3 + - + v2.

A vector with length 1 is a unit vector. Note that ||v]|? = v e v.
Two vectors u,v € R™ are orthogonal if wev = 0.
Pythagorean Theorem. Two vectors u,v € R" are orthogonal if and only if ||u + v||? = ||ul|® + ||v|*.

In R?, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

The orthogonal complement of a subspace V' C R™ is the subspace V+ whose elements are the vectors
w € R™ such that w e v = 0 for all v € V. The only vector that is in both V and V+ is the zero vector.

We have {0}* = R™ and (R")* = {0}. If A is an m x n matrix then (Col A)* = Nul(AT). We also
showed last time that that dimV+ <n —dim V.

A list of vectors uy,us,...,u, € R is orthogonal if u; ® u; = 0 whenever 1 <1 < j < p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis
of the subspace they span.

If w1, ug, ..., up is an orthogonal basis for a subspace V' C R™ and y € V, then y = ciua+cous+- - -+ cpup
where the coefficients ¢, ¢, ..., ¢, € R are defined by
yeu;
C; = .
U; ® U;
Example. Let’s work through this statement for the standard orthogonal basis ey, es, ..., e, for R™. If
Y1
Y2
Y= .| =er tyeat ot Ynen
Yn
then y = cieq +cgea + -+ - +cpe, where ¢; = £2%. But e; ee; = 1 and y e e; = y;, so we just have ¢; = ;.

e;®¢e; "

Let L C R™ be a one-dimensional subspace.
Then L = R-span{u} for any nonzero vector u € L.

Let y € R™. The orthogonal projection of y onto L is the vector

proj.(y) = yeu, for any 0 # u € L.
uewu

The value of proj; (y) does not dependent on the choice of the nonzero vector w.

The component of y orthogonal to L is the vector z = y — proj; (y).
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Proposition. The only vector 3 € L with y — 7 € L* is the orthogonal projection § = proj; (y).

Proof. If w € L is nonzero then y — proj; (y) = y — L2%u and it holds that

ueu

yeu yeu
(y— u)ouzyou— ueu=yeou—yeu=>0.
ueu ueu
To see that proj; (y) is the only vector in L with this property, suppose 7 € L is such that y — 3 € L.
Then (y —y)ey=yoey—yey=0s0oyey=7yey. But then y= L%y =proj, (y) foru=g5€ L. O

ueu

Example. If y = [ 7 ] and L = R-span { { ;L } } then

o L

Check that

2 Orthonormal vectors

A set of vectors uq, ug, .. ., up is orthonormal if the vectors are orthogonal and each vector is a unit vector.
In other words, if u; ® u; = 0 when ¢ # j and u; ® u; = 1 for all 4.

An orthonormal basis of a subspace is a basis which is orthonormal.

Example. The standard basis e, €3, ..., e, is an orthonormal basis for R".
3 -1 -1
Example. The vectors v; = \/% } , Uy = % ? , and vy = \/% —4; form another or-

thonormal basis for R3.

Theorem. Let U be an m xn matrix. The columns of U are orthonormal vectors if and only if UTU = I,,.
If U is square then its columns are orthonormal if and only if U7 = U~

Proof. Suppose U = [ Uy Uz ... Uy ] where each u; € R". The entry in position (i,5) of UTU is
then ufuj = u; ® uj. Therefore u; @ u; = 1 and u; ® u; = 0 for all ¢ # j if and only if UTU is the n x n
identity matrix. O

Theorem. Let U be an m X n matrix with orthonormal columns. Suppose z,y € R”.
L U] = ]l
2. (Uz)e(Uy)==xey.
3. (Uz) e (Uy)=0if and only if z ey = 0.

Proof. The first and third statements are special cases of the second since |[Uz| = ||z| if and only if
(Uz)e(Ux) = wex. The second statement holds since (Uz)e(Uy) = 2T UTUy = 2T I,y = 2Ty = vey. O

Somewhat confusingly, a square matrix U with orthonormal columns is called an orthogonal matriz.
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3 Orthogonal projections onto subspaces

We have already seen that if y € R™ and L C R" is a 1-dimensional subspace then y can be written
uniquely as y = J + z where § € L and z € L*.

This generalises to arbitrary subspaces as follows:

Theorem. Let W C R™ be any subspace. Let y € R™. Then there are unique vectors §j € W and
z € W+ such that y =3 + 2.

If ui,u2,...,up is an orthogonal basis for W then
R X7 X7 (X7 ~
y:y 1ul—l—y 2u2+-~-+y7pup and z=y—1. (*)
Uy ® Uy Uz ® U2 Up @ Up

It doesn’t matter which orthogonal basis is chosen for W; this formula gives the same value for 7 and z.

Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact
will be proved later in this lecture. Fix one such basis w1, u2,...,u, € W.

Define § by the given formula. Then y € W and
[ ] ’LLZ*

U; ® Uj

(Yy—y)ou;=you; — u; o u; =0

for each i =1,2,...,p,soy —y € W,

To show uniqueness, suppose iy = 4 +v where 4 € W and v € W+. Then 4 —j =v — z. But 4 — 7 is in
W while v — z is in W+, so both expressions must be zero as W N W+ = {0}. This means we must have
u=yand v =z O

Definition. The vector y, defined relative to y and W by the formula (*) in the preceding theorem, is
the orthogonal projection of y onto W. From now on we will usually write

projy (y) =¥

to refer to this vector.
Corollary. If W C R" is any subspace then dim W+ = n — dim W.

Proof. The preceding theorem shows that W and W+ together span R™. Therefore the union of any
basis for W with a basis for W also spans R™. This size of such a union is at most dim W + dim W+
(since dim W and dim W= are the sizes of the two bases that we are combining) and at least n (since
fewer than n vectors cannot span R™), so n < dim W + dim WL, This means that dim W+ > n — dim W.
We showed last time that dim W+ < n — dim W, so dim W+ =n—dimW. O

Properties of orthogonal projections onto a subspace W C R”.

Fact. If y € W then projy (y) = y. If y € W+ then projy, (y) = 0.

Proposition. If v € W and y € R” and v # projy, (y) then ||y — projy (v)|| < ||y — v||. In words: the
projection projy,(y) is the vector in W which is closest to y.

Proof. Let § = projyy (y). Then y — v = (y — §) + (¥ — v). The first term in parentheses is in W+ while
the second term is in W. Therefore by the Pythagorean theorem we have

ly = oll* = lly = 71 + 17— »lI* > ly - 71I*
since ||y — v|| > 0. 0
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Fact. Suppose ui,ug, ..., u, is an orthonormal basis of W. Then

projy (y) = (y e ur)uy + (y @ ug)ug + -+ + (y @ up)y,.

IfU = [ Ul Uz ... Up ] then projy, (y) = UUTy.

4 The Gram-Schmidt process

The Gram-Schmidt process is an important algorithm which takes an arbitrary basis for some subspace
of R™ as input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let W C R"™ be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we exclude this trivial case.)

Gram-Schmidt process. Suppose 1, Z2,...,T, is any basis for W. Then an orthogonal basis is given
by the vectors vy, vs,...,v, defined by the following formulas:
V1 = 21.
o ® U1
Vo = X9 —
V1 ® U1
I3 ® U1 I3 @ Uy
V3 = T3 — v —
V1 ® U1 Vg ® U2
Ty ® VU1 Ty ® Vg Ty ® V3
V4 = X4 — U1 — V2 —
V1 ® U1 Vo ® U2 V3 ® U3
T, e vy Ty ® Uy Tp @ Up_1
vy =T, — L vy — -2 vg— e — —2 L g .
V1 ® U1 Vg ® U2 Up—1 L] Up—1
These formulas are inductive: to compute any v;, you have to have already computed vi,vo,...,v;_1.

More strongly, we can say the following. Let W; = R-span{v;,va,...,v;} for each i = 1,2,...,p. Then
v1,V2,...,; is an orthogonal basis for W;, and viy1 = z;41 — projy, (Xig1)-

Proof. Our proof of the existence of orthogonal projections relies on this theorem.

To avoid circular arguments, define

yeu yeu yeu;

projy, (y) = v + Vg + e+ V4
V1 ® U1 Vg ® VU2 V; ® V;
fori=1,2,...,pand y € R™.
We want to show that vy, vs,...,v; is an orthogonal basis for W; for each 1.

If we assume that this is true for any particular value of i, then the formula v; 11 = x;11 — projy, (zi41)
automatically holds, which means that v;11 € Wi so vy, v2,...,v;,v,41 is also an orthogonal set, and
therefore an orthogonal basis for W;, ;.
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The single vector v; = 1 is necessarily an orthogonal basis for W7 = R-span{w; }.

Therefore vy, v is an orthogonal basis for W5, which means that vy, vs, v3 is an orthogonal basis for Wj;

continuing in this way, we deduce that v, vs, ..., v; is an orthogonal basis for W; for each i =1,2,...,p.
In particular vy, vs,...,v, is an orthogonal basis for W, = W. O
Remark. To find an orthonormal basis for a subspace W, first find an orthogonal basis v1,v2,...,vp.
Then replace each vector v; by u; = ﬁ% The vectors ui,ug, ..., u, will then be an orthonormal basis.
1 0 0
1 1 0
Example. Suppose z1 = 1 and zo = 1 and z3 = 1
1 1 1

These vectors are linearly independent and so are a basis for the subspace W = R-span{xy, z2, 23}

To compute an orthogonal basis for W, we carry out the Gram-Schmit process as follows:

1
) 1
1. First let v = 1 = 1
1
0 1 —3/4
2. Next let vo = 2o — %Ul = 1 - % i - 1;3
1 1 1/4
0 1 —3/4 0
. T30V T30V 0 1 1/4 —2/3
3. Finally let vy = @3 — {35001 — $252 02 = 1 —3 1 -3 1§4 - 1;3
1 1 1/4 1/3
The vectors
1 —3/4 0
! _ 1/4 _ | —2/3
V] = 1 , U= 1/4 » U3 = 1/3
1 1/4 1/3

then form an orthogonal basis for W.

We note one final result related to the Gram-Schmidt process.

Theorem (QR factorization). Let A be an m x n matrix with linearly independent columns. Then
A = QR where @ is an m X n matrix whose columns are an orthonormal basis for Col A and R is an
n x n upper-triangular matrix with positive entries on the diagonal.

One calls the decomposition A = QR a QR factorization of A.

Proof. Let A = [ Ty Ty ... Tn ] where each x; € R™.
Perform the Gram-Schmidt process on x1,xs, ..., z, to get an orthogonal basis vy, vs, ..., v, for Col A.
Then define Q = [ UL Uz ... Up ] where ui:ﬁvi fori=1,2,...,n.

These vectors have the property that R-span{uj,us,...,ur} = R-span{zy,xs,...,2;} for each k =
1,2,...,n, and x; € ||v;]ju; + R-span{uy,us,...,u;—1}. It follows that A = QR for an upper-triangular
matrix R of the desired form. O
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5 Vocabulary

Keywords from today’s lecture:

1. Orthonormal vectors.

Two vectors u,v € R™ are orthogonal if wev = 0.
A set of vectors in R” is orthogonal if any two of the vectors are orthogonal.

A set of vectors in R™ is orthonormal if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis eq, e, ..., e, of R™ is orthonormal.

2. Orthogonal projection of a vector y € R™ onto a subspace W C R™.

The unique vector projy, (y) € W such that y — projy, (y) is orthogonal to every element of W.

If ui, ug, ..., up is an orthonormal basis for W then projy, (y) = (yeur)ui+(yous)us+- - -+ (youy)yp.

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would
be “orthonormal matrix,” but this term is not commonly used.

Equivalently, a matrix U is orthogonal if and only if U is invertible and U~ = U7 .

cosf) —sinf

E le: tati tri i
xample: every rotation matrix { sinf  cosf

] is orthogonal.

4. Gram-Schmidt process.

An algorithm whose input is an arbitrary basis 1, z2, . .., x, for a subspace of R™ and whose output
is an orthogonal basis vy, v2,..., v, for the same subspace. Explicitly:
V1 =21
o ® VU1
Vg =Ty — ———U
V1 @ U1

I3 @ Uy I3 ® Uy
V1 —

U3 = T3 — 1 V2
V1 ® U1 Vo @ U2y
T4 @V Ty ® Vo T4 ®U3
Vg = T4 — v — Vo — V3.
V1 eV V2 ® U2 U3 ® U3
Ty @V Tp ® V2 Tp ® Up—1
Up = Tp — — — = Up—1
V1 ® V1 Vo ® Vg Up—1 @ Up_1
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