
MATH 2121 — Linear algebra (Fall 2018) Lecture 20

1 Last time: orthonormal vectors, projections, orthogonal bases

Vectors u1, u2, . . . , up are orthonormal if each ui is a unit vector and any two vectors ui and uj (with
i 6= j) are orthogonal. In other words, if ui • uj = 0 when i 6= j and ui • ui = 1 for all i = 1, 2, . . . , p.

The standard basis e1, e2, . . . , en of Rn consists of orthonormal vectors.

If v1, v2, . . . , vp are orthogonal and all nonzero then 1
‖v1‖v1,

1
‖v2‖v2, . . . ,

1
‖vp‖vp are orthonormal.

Theorem. Let U be an m×n matrix. The columns of U are orthonormal vectors if and only if UTU = In.
If this happens then (Ux) • (Uy) = x • y for all x, y ∈ Rn.

Let V ⊂ Rn be any subspace. Recall that V ⊥ = {w ∈ Rn : w • v = 0 for all v ∈ V }.

We showed last time that V ∩ V ⊥ = {0} and dimV + dimV ⊥ = n.

Theorem (Orthogonal projections). If W ⊂ Rn is a subspace and y ∈ Rn then there is a unique vector
projW (y) ∈W such that y − projW (y) ∈W⊥.

We call projW (y) the orthogonal projection of y onto W .

If u1, u2, . . . , up is any orthogonal basis of W then

projW (y) =
y • u1

u1 • u1
u1 +

y • u2

u2 • u2
u2 + · · ·+ y • up

up • up
up.

This formula does not depend on the choice of orthogonal basis for W : choose another basis, apply the
same formula, and you’ll end up with the same vector projW (y) ∈W .

Properties of orthogonal projections

We have projW (y) = y if and only if y ∈W .

We have projW (y) = 0 if and only if y ∈W⊥.

It holds that ‖y − projW (y)‖ < ‖y − v‖ for all v ∈W with v 6= projW (y).

Theorem. Every nonzero subspace of Rn has an orthogonal basis.

The Gram-Schmidt process is an algorithm that takes a basis for a subspace W ⊂ Rn as input and
produces an orthogonal basis for W as output.

Gram-Schmidt process.

Let W ⊂ Rn be a subspace. Suppose x1, x2, . . . , xp is a basis for W .

Define v1, v2, . . . , vp ∈W inductively by the following formulas:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.
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v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

− xp • v2
v2 • v2

− xp • v3
v3 • v3

− · · · − xp • vp−1
vp−1 • vp−1

vp−1.

For each i = 1, 2, . . . , p, the vectors v1, v2, . . . , vi are an orthogonal basis for the subspace

R-span{x1, x2, . . . , xi} = R-span{v1, v2, . . . , vi} ⊂W.

Consequently vi+1 is just xi+1 minus the orthogonal projection of vi+1 onto this subspace.

The full list of vectors v1, v2, . . . , vp is an orthogonal basis for W .

Example. Let W = Nul
([

1 1 1 1
])

= {w ∈ R4 : w1 + w2 + w3 + w4 = 0}.

A basis for W is given by x1 =


1
−1

0
0

, x2 =


0
1
−1

0

, x3 =


0
0
1
−1

.

To find an orthogonal basis, we let

v1 = x1 =


1
−1

0
0

.

v2 = x2 −
x2 • v1
v1 • v1

v1 =


0
1
−1

0

− 0− 1 + 0 + 0

1 + 1 + 0 + 0


1
−1

0
0

 =


0
1
−1

0

+
1

2


1
−1

0
0

 =


1/2
1/2
−1

0

.

v3 = x3 −
x3 • v1
v1 • v1︸ ︷︷ ︸

=0

v1 −
x3 • v2
v2 • v2

v2 =


0
0
1
−1

+
2

3


1/2
1/2
−1

0

 =


1/3
1/3
1/3
−1

 .

Thus


1
−1

0
0

,


1/2
1/2
−1

0

,


1/3
1/3
1/3
−1

 are an orthogonal basis for W .

The rescaled vectors


1
−1

0
0

,


1
1
−2

0

,


1
1
1
−3

 are also an orthogonal basis for W .

In general, the Gram-Schmidt process applied to the basis

x1 = e1 − e2, x2 = e2 − e3, x3 = e3 − e4, . . . , xn−1 = en−1 − en

of Nul
([

1 1 1 . . . 1
])

will produce the orthogonal basis
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v1 = e1 − e2.

v2 = 1
2e1 + 1

2e2 − e3.

v3 = 1
3e1 + 1

3e2 + 1
3e3 − e4.

...

vn−1 = 1
n−1e1 + 1

n−1e2 + · · ·+ 1
n−1en−1 − en.

2 Least-squares problems

Many linear systems Ax = b that arise in applications are overdetermined (meaning they have more
equations than variables, or equivalently that the matrix A has more rows than columns) and often
inconsistent (meaning they have no exact solution x ∈ Rn).

For example, b ∈ Rm might be a vector of measurements and each row of Ax might provide a linear
approximation to what we expect these measurements to be in terms of certain inputs x ∈ Rn.

Because measurements are noisy and because our linear approximations are inexact, there may be no
input vector x ∈ Rn such that Ax = b. When no exact solution is available, the next best thing to provide
is an input vector x ∈ Rn such that Ax is as “close” to the vector b ∈ Rm as possible.

In general, there are many reasonable ways to quantify how close two vectors are to each other. One
of the most common is the distance function we have already seen: define the distance between vectors
u, v ∈ Rn to be ‖u−v‖ =

√
(u− v) • (u− v). Two vectors are close if their distance in this sense is small.

The distance function ‖ · ‖ is called the Euclidean distance or L2-distance. In two and three dimensions,
this distance corresponds to the usual way that we measure distance between points in space.

Definition. If A is an m × n matrix and b ∈ Rm, then a least-squares solution to the linear system
Ax = b is a vector x̂ ∈ Rn such that ‖b−Ax̂‖ ≤ ‖b−Ax‖ for all x ∈ Rn.

In other words, a least-squares solution to Ax = b is a vector x̂ ∈ Rn that minimizes ‖b−Ax̂‖.

A vector that minimizes ‖b − Ax̂‖ will also minimize ‖b − Ax̂‖2, which is the sum of the squares of the
entries in the vector b−Ax̂. This accounts for the name “least-squares.”

Least-squares problems (that is, problems requiring us to find a least-squares solution to some linear
system) arise all over the place in engineering and statistics. Being able to solve such problems is maybe
one of the most important applications of the material covered in this course. Our goal today is to
describe the general solution to the least-squares problem. Here are the keys points:

• If Ax = b is a consistent linear system then every least-squares solution will be an exact solution.

• There may be more than one least-squares solution to a given linear system Ax = b.

• However, in contrast to exact solutions, there is always at least one least-squares solution.

The last fact is not immediately obvious from the definition of a least-squares solution.

Solving least-squares problems in general.

Fix an m× n matrix A and a vector b ∈ Rm

A least-squares solution x̂ ∈ Rn to Ax = b is a vector such that ‖Ax̂− b‖ is as small as possible.

If x̂ ∈ Rn then we necessarily have Ax̂ ∈ ColA.
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Suppose b̂ ∈ ColA minimizes the distance ‖b̂− b‖. From results last time, b̂ must then be the projection

b̂ = projColA(b).

We conclude that:

Lemma. The least-squares solutions to Ax = b are precisely those x̂ ∈ Rn such that Ax̂ = b̂.

Using this lemma, we can prove something even more explicit:

Theorem. The set of least-squares solutions to Ax = b is the set of exact solutions to the linear system
ATAx = AT b. This new linear system is always consistent so its set of solutions is nonempty.

Proof. Since b− b̂ ∈ (ColA)⊥ = NulAT , we have AT (b− b̂) = 0 and AT b̂ = AT b.

Thus, if x̂ ∈ Rn satisfies Ax̂ = b̂ then ATAx̂ = AT b̂ = AT b.

Conversely, if x̂ ∈ Rn satisfies ATAx̂ = AT b, then AT (Ax̂ − b) = 0 so Ax̂ − b ∈ NulAT = (ColA)⊥. In

this case, it follows by the uniqueness of orthogonal projections that Ax̂ = projColA(b) = b̂.

This shows that the set of exact solutions to Ax = b̂, which is precisely the set of least-squares solutions
to Ax = b, is the same as the set of exact solutions to ATAx = AT b.

The last thing we need to show is that the linear system ATAx = AT b is always consistent. This holds
since b̂ ∈ ColA so, by the definition of the column space, there must exist some x̂ ∈ Rn such that Ax̂ = b̂,
and it then holds that ATAx̂ = AT b̂ = AT b.

Example. Here is a simple, somewhat contrived example.

Let A =

 4 0
0 2
1 1

 and b =

 2
0

11

.

To find a least-squares solution to Ax = b, we compute

ATA =

[
4 0 1
0 2 1

] 4 0
0 2
1 1

 =

[
17 1
1 5

]
and AT b =

[
4 0 1
0 2 1

] 2
0

11

 =

[
19
11

]
.

The least-squared solutions we want are the exact solutions to ATAx = AT b. Solve this by row reducing:[
17 1 19
1 5 11

]
∼
[

1 5 11
17 1 19

]
∼
[

1 5 11
0 −84 −168

]
∼
[

1 5 11
0 1 2

]
∼
[

1 0 1
0 1 2

]
.

In this case ATAx = AT b has a unique solution

x̂ =

[
1
2

]
which is also the unique least-squares solution to Ax = b. Note that Ax̂ 6= b as

‖Ax̂− b‖ =

∥∥∥∥∥∥
 4

4
3

−
 2

0
11

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 2

4
−8

∥∥∥∥∥∥ =
√

4 + 16 + 64 =
√

84.

Geometrically, we interpret the least-squares solution as meaning that

Ax̂ =

 2
4
−8


is the point in the plane spanned by the columns of A in R3 that is closest to b.
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A linear system Ax = b has a unique solution for every b ∈ Rm if and only if the matrix A is invertible.
The following theorem describes, analogously, when Ax = b has a unique least-squares solution.

Theorem. Let A be an m× n matrix. The following are then equivalent:

(a) Ax = b has a unique least-squares solution for each b ∈ Rm.

(b) The columns of A are linearly independent.

(c) ATA is invertible.

When these properties hold, the unique least-squares solution to Ax = b is the vector

x̂ = (ATA)−1AT b

(which is the unique exact solution to ATAx = AT b).

Remark. In practice, the product (ATA)−1AT b is never computed directly for a large linear system. It
is more efficient to find x̂ by solving the system ATAx = AT b via row reduction.

Proof. If x̂ ∈ Rn is a least-squares solution to Ax = b, then x̂ + v is also a least-squares solution for any
v ∈ NulA since ‖Ax̂− b‖ = ‖A(x̂+ v)− b‖. Therefore if (a) holds then we must have NulA = {0} so (b)
must also hold.

If v ∈ Rn then ATAv = 0 if and only if Av ∈ ColA ∩ NulAT = ColA ∩ (ColA)⊥ = {0}. Therefore
Nul(ATA) = Nul(A). Hence if (b) holds then Nul(ATA) = NulA = {0}, which means that ATA is
invertible since this matrix if square.

Finally, if (c) holds then the linear system ATAx = AT b has a unique solution so (a) holds by the previous
theorem. The chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (a) shows that the properties are equivalent.

It is often a lot easier to compute a least-squares solution to Ax = b if the columns of A are orthogonal.
The following example illustrates this.

Example. Suppose A =


1 −6
1 −2
1 1
1 7

 and b =


−1

2
1
6

. The columns of A are orthogonal.

The orthogonal projection of b onto ColA is therefore

b̂ = projColA(b) =


−1

2
1
6

 •


1
1
1
1




1
1
1
1

 •


1
1
1
1




1
1
1
1

+


−1

2
1
6

 •

−6
−2

1
7



−6
−2

1
7

 •

−6
−2

1
7




−6
−2

1
7

 = 2


1
1
1
1

+
1

2


−6
−2

1
7

 .

We deduce that x̂ =

[
2

1/2

]
is a least-squares solution to Ax = b since Ax̂ = b̂.
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3 Vocabulary

Keywords from today’s lecture:

1. Overdetermined linear system.

A linear system with more equations than variables.

2. Least-squares solution to a linear system Ax = b.

Assume A is an m×n matrix and b ∈ Rm. A vector x̂ ∈ Rn is a least-squares solution to Ax = b if

‖b−Ax̂‖ ≤ ‖b−Ax‖

for all vectors x ∈ Rn.

The least-squares solutions to Ax = b are the exact solutions to the linear system ATAx = AT b,
which is always consistent.
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