1 Last time: least-squares problems

Definition. If A is an $m \times n$ matrix and $b \in \mathbb{R}^m$, then a *least-squares solution* to the linear system Ax = b is a vector $\hat{x} \in \mathbb{R}^n$ such that $||b - A\hat{x}|| \le ||b - Ax||$ for all $x \in \mathbb{R}^n$.

If Ax = b is a consistent linear system then every least-squares solution is an exact solution. For any linear system Ax = b, there is **always** one or more least-squares solutions.

Theorem. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. A vector $\hat{x} \in \mathbb{R}^n$ is a least-square solution to Ax = b if and only if $A^T A \hat{x} = A^T b$. The linear system $A^T A x = A^T b$ is always consistent.

Theorem. Let A be an $m \times n$ matrix. The following are then equivalent:

- (a) Ax = b has a unique least-squares solution for each $b \in \mathbb{R}^m$.
- (b) The columns of A are linearly independent.
- (c) $A^T A$ is invertible.

When these properties hold, the unique least-squares solution to Ax = b is the vector

$$\widehat{x} = (A^T A)^{-1} A^T b$$

(which is the unique exact solution to $A^T A x = A^T b$).

In applications, the matrix A usually has many more rows than columns, so m is much larger than n. In this case, the $n \times n$ matrix $A^T A$ is much smaller than A, and we can find a least-squares solution by row reducing $\begin{bmatrix} A^T A & A^T b \end{bmatrix}$ to echelon form to find the exact solutions to $A^T A x = A^T b$ in the usual way.

Example (Lines of best fit). Suppose we have *n* data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ that appear to be close to a line. We want to find parameters $\beta_0, \beta_1 \in \mathbb{R}$ such that $y = \beta_0 + \beta_1 x$ describes the *line of best fit* for this data. If our points are collinear, then for some $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \in \mathbb{R}^2$ we would have exactly

$$y_i = \beta_0 + \beta_1 x_i \quad \text{for } i = 1, 2, \dots, n,$$

meaning that there is an exact solution to the linear system $X\beta = Y$ where

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

If the given points are not already on a line, then no exact solution to $X\beta = Y$ exists, and we should instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5, 2), (7, 3), and (8, 3) so that

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

The least-squares solutions to $X\beta = Y$ are the exact solutions to $X^T X\beta = X^T Y$. We have

-

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

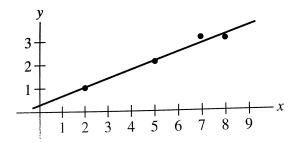
and

$$X^{T}Y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}.$$

The matrix $X^T X$ is invertible. (Why?) It follows that a least-squares solution $\beta \in \mathbb{R}^2$ is provided by

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$$

Thus our line of best fit for the data is $y = \frac{2}{7} + \frac{5}{14}x$:



2 Symmetric matrices

A matrix A is symmetric if $A^T = A$.

This happens if and only if A is square and $A_{ij} = A_{ji}$ for all i, j.

Example.
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7 \end{bmatrix}$ and $\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ are symmetric matrices.
 $\begin{bmatrix} 1 & -3 \\ 3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & -4 & 0 \\ -6 & 1 & -4 \\ 6 & -6 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix}$ are not symmetric.

Proposition. If A is a symmetric matrix and k is a positive integer then A^k is also symmetric.

Proof. If
$$A = A^T$$
 then $(A^k)^T = (AA \cdots A)^T = A^T \cdots A^T A^T = (A^T)^k = A^k$.

Proposition. If A is an invertible symmetric matrix then A^{-1} is also symmetric.

Proof. This is because
$$(A^{-1})^T = (A^T)^{-1}$$
.

Recall how we can diagonalize a matrix.

Example. Let
$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
.

Then det(A - xI) = (8 - x)(6 - x)(3 - x) so the eigenvalues of A are 8, 6, and 3. By constructing bases for the null spaces of A - 8I, A - 5I, and A - 3I, we find that the following are eigenvectors of A:

$$v_{1} = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \text{ with eigenvalue 8.}$$
$$v_{2} = \begin{bmatrix} -1\\ -1\\ 2 \end{bmatrix} \text{ with eigenvalue 6.}$$
$$v_{3} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \text{ with eigenvalue 3.}$$

These eigenvectors are actually an orthogonal basis for \mathbb{R}^3 .

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

$$u_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \qquad u_2 = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \qquad u_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}.$$

We then have $A = PDP^{-1}$ where

$$P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \text{ and } D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

(Why does this hold? It is enough to check that $PDP^{-1}v = Av$ for $v \in \{u_1, u_2, u_3\}$.) Since the columns of P are orthonormal, we actually have $P^T = P^{-1}$ so $A = PDP^T$.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of A are orthogonal. In other words, if A is $n \times n$ and $u, v \in \mathbb{R}^n$ are such that Au = au and Av = bv for numbers $a, b \in \mathbb{R}$ with $a \neq b$, then $u \bullet v = 0$.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where $a \neq b$. Then $au \bullet v = Au \bullet v = (Au)^T v = u^T A^T v = u^T Av = u \bullet Av = u \bullet bv$. But $au \bullet v = a(u \bullet v)$ and $u \bullet bv = b(u \bullet v)$, so this means $a(u \bullet v) = b(u \bullet v)$ and therefore $(a - b)(u \bullet v) = 0$. Since $a - b \neq 0$, it follows that $u \bullet v = 0$.

Definition. A matrix P is orthogonal if P is invertible and $P^{-1} = P^T$.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1} = PDP^{T}$.

When A is orthogonally diagonalizable and $A = PDP^{-1} = PDP^{T}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors form an orthonormal basis of \mathbb{R}^{n} .

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an $n \times n$ matrix A is orthogonally diagonalizable if and only if there is an orthogonal basis for \mathbb{R}^n consisting of eigenvectors for A.

Surprisingly, there is a much more direct characterisation of orthogonally diagonalizable matrices:

Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.

Proof. Note that if X, Y, Z are $n \times n$ matrices the $(XYZ)^T = Z^T(XY)^T = Z^TY^TX^T$. Suppose $A = PDP^T$ where D is diagonal. Then $D = D^T$ and $(P^T)^T = P$, so

$$A^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = PDP^{T} = A.$$

Lemma. All (complex) eigenvalues of an $n \times n$ symmetric matrix A with real entries belong to \mathbb{R} .

Proof. Suppose A is a symmetric $n \times n$ matrix with real entries, so that $A = A^T = \overline{A}$. Let $v \in \mathbb{C}^n$. Then $\overline{v}^T A v$ is some complex number.

For example, if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $v = \begin{bmatrix} 1+i \\ 1-i \end{bmatrix}$ then

$$\overline{v}^T A v = \begin{bmatrix} 1-i & 1+i \end{bmatrix} \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1+i\\ 1-i \end{bmatrix} = \begin{bmatrix} 3+i & 3-i \end{bmatrix} \begin{bmatrix} 1+i\\ 1-i \end{bmatrix} = (3+i)(1+i) + (3-i)(1-i) = 4.$$

In fact, the number $\overline{v}^T A v$ belongs to \mathbb{R} since $\overline{\overline{v}^T A v} = v^T A \overline{v} = (\overline{v}^T A v)^T = \overline{v}^T A v$.

(The last equality holds since both sides are 1×1 matrices, i.e., scalars.)

Now suppose $v \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\lambda \in \mathbb{C}$. Then $\overline{v}^T A v = \overline{v}^T (\lambda v) = \lambda(\overline{v}^T v) \in \mathbb{R}$. The complex number $\overline{v}^T v$ always belongs to \mathbb{R} (why?) so it must also hold that $\lambda \in \mathbb{R}$.

Lemma. An $n \times n$ matrix A with all real eigenvalues can be written as $A = URU^T$ where U is an $n \times n$ orthogonal matrix (i.e., has orthonormal columns) and R is an $n \times n$ upper-triangular matrix.

One calls $A = URU^T$ with U and R of this form a Schur factorization of A.

Proof. Suppose A is an $n \times n$ matrix with all real eigenvalues.

Let $u_1 \in \mathbb{R}^n$ be a unit eigenvector for A with eigenvalue $\lambda \in \mathbb{R}$.

Let $u_2, \ldots, u_n \in \mathbb{R}^n$ be any vectors such that u_1, u_2, \ldots, u_n is an orthonormal basis for \mathbb{R}^n . (One way to construct these vectors: let $u_1 = x_1, x_2, \ldots, x_n$ be any basis, apply Gram-Schmidt to get $u_1 = v_1, v_2, \ldots, v_n$, then convert each v_i to a unit vector.)

Define $U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$ so that $U^T = U^{-1}$.

By considering the product $U^T A U e_i$ for i = 1, 2, ..., n, one finds that $U^T A U$ has the form

$$U^T A U = \left[\begin{array}{cc} \lambda & * \\ 0 & B \end{array} \right]$$

for some $(n-1) \times (n-1)$ matrix B. Here, * stands for n-1 arbitrary entries.

The matrix $U^T A U = U^{-1} A U$ has the same characteristic polynomial as A.

This polynomial is $(\lambda - x) \det(B - xI)$, i.e., $\lambda - x$ times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic polynomial of B. Thus B must also have all real eigenvalues.

$$V^T B V = \left[\begin{array}{cc} \mu & * \\ 0 & C \end{array} \right]$$

The matrix $\begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$ is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)

It follows for the orthogonal matrix $W = U \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$ that $W^T A W = \begin{bmatrix} \lambda & * & * \\ 0 & \mu & * \\ 0 & 0 & C \end{bmatrix}$.

By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular matrix R such that $X^T A X = R$, in which case $A = X X^T A X X^T = X R X^T$.

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.

Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factorization $A = URU^T$. We then have $A^T = (URU^T)^T = UR^TU^T$ but also $A^T = A = URU^T$. Since $U^T = U^{-1}$, it follows that $R = R^T$. Since R is upper-triangular, this can only hold if R is diagonal.

But if R is diagonal then $A = URU^T$ is orthogonally diagonalizable.

To orthogonally diagonalize an $n \times n$ symmetric matrix A, we just need to find an orthogonal basis of eigenvectors v_1, v_2, \ldots, v_n for \mathbb{R}^n . Then $A = UDU^T$ with $U = \begin{bmatrix} u_1 & u_2 & \ldots & u_n \end{bmatrix}$ where $u_i = \frac{1}{\|v_i\|}v_i$ and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to apply the Gram-Schmidt process to covert this basis to one which is orthogonal.

Corollary. If $A = UDU^T$ where $U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$ has orthonormal columns and

	λ_1	,		
D =		λ_2		
	_		•••	λ_n

is diagonal, then $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T$.

Each product $u_i u_i^T$ is an $n \times n$ matrix of rank 1. One calls this expression a spectral decomposition of A.

Example. Let
$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$$
. A spectral decomposition of A is given by

$$A = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= 8 \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 3 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= \begin{bmatrix} 32/5 & 16/5 \\ 16/5 & 8/5 \end{bmatrix} + \begin{bmatrix} 3/5 & -6/5 \\ -6/5 & 12/5 \end{bmatrix}.$$

3 Vocabulary

Keywords from today's lecture:

1. Symmetric matrix.

A matrix A that is equal to its transpose, so that $A = A^T$. Such a matrix is square.

Symmetric matrices are precisely the square matrices A that are *orthogonally diagonalizable*, i.e., that can be expressed as

 $A = PDP^T$

where D is a diagonal matrix and P is an invertible matrix with $P^{-1} = P^T$.

Example: $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ or any diagonal matrix.

2. Schur factorization of an $n \times n$ matrix A.

A decomposition $A = URU^T$ where R is an $n \times n$ upper triangular matrix and U is an orthogonal matrix (i.e., U is invertible with $U^{-1} = U^T$).