
MATH 2121 — Linear algebra (Fall 2018) Lecture 22

1 Last time: symmetric matrices

A matrix A is symmetric if AT = A.

This happens if and only if A is square and Aij = Aji for all i, j.

Example.

[
1 2
2 3

]
is symmetric but

[
1 2
3 2

]
is not.

A matrix U is orthogonal if U is invertible and U−1 = UT .

This happens precisely when U is square with orthonormal columns.

An n×n matrix A is orthogonally diagonalizable if there is an orthogonal matrix U and a diagonal matrix
D such that A = UDU−1 = UDUT . In this case, the columns of U are an orthonormal basis for Rn
consisting of eigenvectors for A, and the eigenvalues of these eigenvectors are the diagonal entries of D.

The following summarizes the main results from last time:

Theorem.

(1) A square matrix is orthogonally diagonalizable if and only if it is symmetric.

(2) Eigenvectors with distinct eigenvalues of a symmetric matrix are orthogonal.

(3) All (complex) eigenvalues of a symmetric matrix A are real, i.e., the characteristic polynomial of
A has all real roots and can be expressed as det(A − xI) = (λ1 − x)(λ2 − x) · · · (λn − x) for some
not-necessarily-distinct real numbers λ1, λ2, . . . , λn ∈ R.

Example. Suppose A =

[
a b
b a

]
for some a, b ∈ R.

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

det(A− xI) = det

[
a− x b

b a− x

]
= (a− x)2 − b2 = (a− b− x)(a+ b− x),

the eigenvalues of A are a− b and a+ b.

It’s not too hard to guess the eigenvectors corresponding to these eigenvectors just by looking, though
the usual method of finding eigenvectors by row reducing A−λI to find a basis for Nul(A−λI) will also
produce the answer:

The vector

[
1
−1

]
is an eigenvector for A with eigenvalue a− b.

The vector

[
1
1

]
is an eigenvector for A with eigenvalue a+ b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by
multiplying each vector by the reciprocal of its length. This gives the eigenvectors

1√
2

[
1
−1

]
and 1√

2

[
1
1

]
which form an orthonormal basis for R2.

It follows that A = UDU−1 = UDUT where U = 1√
2

[
1 1
−1 1

]
and D =

[
a− b 0

0 a+ b

]
.
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2 Singular value decomposition

Today, we’ll apply the results from last time to prove the existence of singular value decompositions,
which give a sort of approximate orthogonal diagonalization for any matrix, not just symmetric ones.

Let A be an m× n matrix.

Then ATA is a symmetric n× n matrix, since (ATA)T = AT (AT )T = ATA.

It follows from our results last time that ATA has all real eigenvalues. A stronger statement holds:

Lemma. All eigenvalues of ATA are nonnegative real numbers.

If λ is an eigenvalue of ATA and v ∈ Rn is a unit vector with ATAv = λ, then λ = ‖Av‖2.

Proof. If v ∈ Rn has ‖v‖ = 1 and ATAv = λv then

0 ≤ ‖Av‖2 = (Av) • (Av) = (Av)T (Av) = vTATAv = vT (λv) = λ(vT v) = λ‖v‖2 = λ.

The preceding lemma allows us to make the following definition.

Definition. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA arranged in decreasing order. Define
σi =

√
λi for i = 1, 2, . . . , n. We call the numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 the singular values of A.

In other words, the singular values of a matrix A are the squares roots of the eigenvalues of ATA, which
are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

Example. Suppose A =

[
4 11 14
8 7 −2

]
. Then ATA =

 80 100 40
100 170 140
40 140 200

.

This matrix ATA has characteristic polynomial

det(ATA− xI) = (360− x)(90− x)x

so the eigenvalues of ATA are λ1 = 360, λ2 = 90, and λ3 = 0.

The singular values of A are therefore σ1 =
√

360 = 6
√

10, σ2 =
√

90 = 3
√

10, and σ3 = 0.

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of ATA.

Theorem. Suppose v1, v2, . . . , vn is an orthonormal basis of Rn composed of eigenvectors of ATA, ar-
ranged so that if λi ∈ R is the eigenvalue of vi then λ1 ≥ λ2 ≥ · · · ≥ λn.

Assume A has r nonzero singular values.

Then Av1, Av2, . . . , Avr is an orthogonal basis for the column space of A and consequently rankA = r.

Proof. Choose indices i 6= j. Then vi • vj = 0 so also vi • λjvj = 0. Then

(Avi)
TAvj = vTi A

TAvj = vTi (λjvj) = vi • λjvj = 0.

This shows that Av1, Av2, . . . , Avr are orthogonal vectors in ColA.

Since ‖Avi‖ =
√
λi > 0, these vectors are all nonzero and therefore are linearly independent.

2



MATH 2121 — Linear algebra (Fall 2018) Lecture 22

To see that these vectors span the column space of A, suppose y ∈ ColA. Then y = Ax for some vector
x ∈ Rn, which we can write as x = c1v1 + c2v2 + · · · + cnvn for some coefficients c1, c2, . . . , cn ∈ R. If
i > r then Avi = 0 since ‖Avi‖ =

√
λi = 0. Therefore

y = Ax = c1Av1 + c2Av2 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn︸ ︷︷ ︸
=0

= c1Av1 + c2Av2 + · · ·+ crAvr.

We conclude that Av1, Av2, . . . , Avr is a basis for ColA.

Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today’s main result.

Theorem (Existence of SVDs). Let A be an m× n matrix with rank r.

Suppose σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of A.

Then we can write A = UΣV T where

U is some m×m orthogonal matrix.

V is some n× n orthogonal matrix.

Σ is the m× n matrix Σ =

[
D 0
0 0

]
where D =


σ1

σ2

. . .

σr

.

Comments. The three zeros in the matrix defining Σ represent blocks of zeros: the upper right 0 stands
for an r × (n− r) zero submatrix, the lower right 0 stands for an (m− r)× (n− r) zero submatrix, and
the lower left 0 stands for an (m− r)× r zero submatrix.

Another way to think of Σ: place the diagonal matrix D in the upper left corner of an m×n matrix, and
then fill all of the remaining entries with zeros.

Definition. A factorization A = UΣV T with U , V , Σ as above is a singular value decomposition of A.

We sometimes abbreviate by writing SVD instead of singular value decomposition.

The matrices U and V in an SVD A = UΣV T are not uniquely determined by A, but Σ is. The columns
of U are the left singular vectors of A while the columns of V are the right singular vectors of A.

Proof that an SVD of A exists. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the decreasing list of eigenvalues of ATA.

Note that σi =
√
λi for each i = 1, 2, . . . , n.

Let v1, v2, . . . , vn be a list of corresponding orthonormal eigenvectors for ATA.

Then we have λr+1 = λr+2 = · · · = λn = 0 and Av1, Av2, . . . , Avr is an orthogonal basis for ColA.

For each i = 1, 2, . . . , r, define ui = 1
‖Avi‖Avi = 1√

λi
Av = 1

σi
Avi.

Then u1, u2, . . . , ur is an orthonormal basis for ColA.

We can choose vectors ur+1, ur+2, . . . , um ∈ Rm such that the extended list of vectors u1, u2, . . . , um is
an orthonormal basis for Rm. Make any such choice, and define

U =
[
u1 u2 . . . um

]
and V =

[
v1 v2 . . . vn

]
.
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These matrices are orthogonal by construction, and

AV =
[
Av1 Av2 . . . Avn

]
=
[
Av1 Av2 . . . Avr 0 . . . 0

]
=
[
σ1u1 σ2u2 . . . σrur 0 . . . 0

]
.

If Σ is the matrix given in the theorem, then we also have

UΣ =
[
σ1u1 σ2u2 . . . σrur 0 . . . 0

]
= AV

so UΣV T = AV V T = AI = A, which confirms the theorem statement.

We conclude this lecture with a small example, continuing from before.

Example. Again suppose A =

[
4 11 14
8 7 −2

]
.

To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalization of ATA.

In this case ATA is a 3 × 3 matrix, and by the usual methods (of row reducing A − λI to find a
basis for Nul(A− λI) for each eigenvalue λ), you can find that

v1 =

 1/3
2/3
2/3

 , v2 =

 −2/3
−1/3

2/3

 , and v3 =

 2/3
−2/3

1/3


is an orthonormal basis of R3 consisting of eigenvectors of ATA, with corresponding eigenvalues
λ1 = 360, λ2 = 90, and λ3 = 0.

2. Set up V and Σ.

Following the proof of the theorem, we have

V =
[
v1 v2 v3

]
=

1

3

 1 −2 2
2 −1 −2
2 2 1

 and D =

[
σ1 0
0 σ2

]

for σ1 =
√
λ1 =

√
360 and σ2 =

√
λ2 =

√
90.

Since Σ must have the same size as A, we get

Σ =

[ √
360 0 0

0
√

90 0

]
.

3. Construct U .

We have U =
[
u1 u2

]
where ui = 1

σi
Avi.

In this case you can compute that

u1 =
1√
360

[
18
6

]
and u2 =

1√
90

[
3
−9

]
which means that we can write

U =
1√
10

[
3 1
1 −3

]
.
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Putting everything together produces the singular value decomposition

A = UΣV T =

[
3/
√

10 1/
√

10

1/
√

10 −3/
√

10

] [ √
360 0 0

0
√

90 0

] 1/3 2/3 2/3
−2/3 −1/3 2/3

2/3 −2/3 1/3

 . (*)

Be careful to note that the third matrix factor is the transpose V T rather than V .

One application of singular value decompositions is to show the existence of pseudo-inverses:

Definition. A pseudo-inverse of an m× n matrix A is an n×m matrix A+ such that

AA+A = A and A+AA+ = A+.

Example: If A is a square, invertible matrix, then A+ = A−1 is the pseudo-inverse of A.

Theorem. Every matrix A has a pseudo-inverse. If A = UΣV T is a singular value decomposition, and
Σ+ is the matrix formed by transposing Σ and then replacing all of its nonzero entries by their reciprocals,
then A+ = V Σ+UT is a pseudo-inverse for A.

If A is as in (*) then a pseudo-inverse is provided by

A+ =

 1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 1/
√

360 0

0 1/
√

90
0 0

[ 3/
√

10 1/
√

10

1/
√

10 −3/
√

10

]
.

One can show that the pseudo-inverse is unique (but we won’t prove this in these notes).

Proof. We have
AA+A = (UΣV T )(V Σ+UT )(UΣV T ) = UΣΣ+ΣV T

and
A+AA+ = (V Σ+UT )(UΣV T )(V Σ+UT ) = V Σ+ΣΣ+UT

so it suffices to check that ΣΣ+Σ = Σ and Σ+ΣΣ+ = Σ+. This is an exercise. For example, we have

[
a 0 0
0 b 0

] 1/a 0
0 1/b
0 0

[ a 0 0
0 b 0

]
=

[
1 0
0 1

] [
a 0 0
0 b 0

]
=

[
a 0 0
0 b 0

]

and  1/a 0
0 1/b
0 0

[ a 0 0
0 b 0

] 1/a 0
0 1/b
0 0

 =

 1 0 0
0 1 0
0 0 0

 1/a 0
0 1/b
0 0

 =

 1/a 0
0 1/b
0 0


whenever a 6= 0 and b 6= 0.
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3 Vocabulary

Keywords from today’s lecture:

1. Singular values of an m× n matrix A.

The square roots of the eigenvalues of ATA, which are all nonnegative real numbers.

Example: if A is diagonal then its singular values are the absolute values of its diagonal entries.

2. Singular value decomposition of an m× n matrix A.

A decomposition A = UΣV T where U is an m×m matrix with U−1 = UT , V is an n× n matrix
with V −1 = V T , and Σ is the m×n matrix whose first r diagonal entries are the singular values of
A in decreasing order, and whose other entries are all zero.

There may be more than one singular value decomposition for A.

Example:

[
4 11 14
8 7 −2

]
︸ ︷︷ ︸

=A

=

[
3/
√

10 1/
√

10

1/
√

10 −3/
√

10

]
︸ ︷︷ ︸

=U

[ √
360 0 0

0
√

90 0

]
︸ ︷︷ ︸

=Σ

 1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

T
︸ ︷︷ ︸

=V T

.

3. Pseudo-inverse of an m× n matrix A.

An n×m matrix A+ with AA+A = A and A+AA+ = A+.

Example: a pseudo-inverse for

 1 0 0
0 2 0
0 0 0

 is

 1 0 0
0 1/2 0
0 0 0

.
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