FINAL EXAMINATION SOLUTIONS - MATH 2121, FALL 2017.

Name:	
ID#:	
Email:	
Lectu	re & Tutorial:

Problem #	Max points possible	Actual score
1	15	
2	15	
3	10	
4	15	
5	15	
6	15	
7	10	
8	10	
9	15	
Total	120	

You have **180 minutes** to complete this exam.

No books, notes, or electronic devices can be used on the test.

Clearly label your answers by putting them in a box .

Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. (3 + 3 + 3 + 3 + 3 = 15 points) Write complete, precise definitions of the following italicised terms.

(1) a *linear transformation* T from a vector space V to a vector space W.

A linear transformation $T : V \to W$ is a function with the following properties: (1) T(u+v) = T(u) + T(v) for all $u, v \in V$ and (2) T(cv) = cT(v) for all $c \in \mathbb{R}$ and $v \in V$.

(2) the *span* of a finite set of vectors v_1, v_2, \ldots, v_n in a vector space.

The span of v_1, v_2, \ldots, v_n is the set of all vectors of the form

 $c_1v_1 + c_2v_2 + \dots + c_nv_n$

where $c_1, c_2, \ldots, c_n \in \mathbb{R}$.

(3) a *linearly independent* set of vectors v_1, v_2, \ldots, v_n in a vector space.

The vectors v_1, v_2, \ldots, v_n are linearly independent if whenever $c_1, c_2, \ldots, c_n \in \mathbb{R}$ and $c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$, it holds that $c_1 = c_2 = \cdots = c_n = 0$.

(4) a *subspace* W of a vector space V.

A subspace W of a vector space V is a subset containing the zero vector in V, such that (1) if $u, v \in W$ then $u + v \in W$ and (2) if $c \in \mathbb{R}$ and $v \in W$ then $cv \in W$.

(5) a *basis* for a vector space *V*.

A basis for a vector space V is a linearly independent set of vectors whose span is V.

Problem 2. (15 points) In the following statements, A, B, C, etc., are matrices (with all real entries), and u, v, w, x, etc., are vectors in \mathbb{R}^n , unless otherwise noted.

Indicate which of the following is TRUE or FALSE.

One point will be given for each correct answer (no penalty for incorrect answers).

(1) Any system of *n* linear equations in *n* variables has at least *n* solutions.

FALSE (such a system could have 0 solutions)

(2) If a linear system Ax = b has more than one solution, then so does Ax = 0.

TRUE (if
$$Ax = Ay = b$$
, $x \neq y$, then $A(x-y) = 0$ and $A(0) = 0$)

(3) If *A* and *B* are $n \times n$ matrices with AB = 0, then A = 0 or B = 0.

FALSE (take
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$)

(4) If AB = BA and A is invertible, then $A^{-1}B = BA^{-1}$.

TRUE
$$(BA^{-1} = A^{-1}(AB)A^{-1} = A^{-1}(BA)A^{-1} = AB^{-1})$$

(5) If *A* is a square matrix, then det(-A) = -det A.

FALSE (if A is $n \times n$, then $det(-A) = (-1)^n det A$)

(6) If *A* is a nonzero matrix then det $A^T A > 0$.

FALSE

(if A is square then det $A^T A = (\det A^T)(\det A) = (\det A)^2 \ge 0$; this is zero when A is not invertible)

(7) If *A* is $m \times n$ and the transformation $x \mapsto Ax$ is onto, then rank(A) = m.

TRUE (onto
$$\Rightarrow$$
 Col $A = \mathbb{R}^m \Rightarrow$ rank $(A) = \dim$ Col $A = m$)

(8) If *V* is a vector space and $S \subset V$ is a subset whose span is *V*, then some subset of *S* is a basis of *V*.

TRUE (take a minimal subset of *S* that's linearly indep.)

(9) If *A* is square and contains a row of zeros, then 0 is an eigenvalue of *A*.

TRUE

 $(A^T$ has a column of zeros, so A^T is not invertible, so A^T has 0 as an eigenvalue, and A has same eigenvalues as A^T)

(10) Each eigenvector of a square matrix A is also an eigenvector of A^2 .

TRUE (if $Av = \lambda v$ then $A^2v = A(\lambda v) = \lambda Av = \lambda^2 v$)

(11) If *A* is diagonalisable, then the columns of *A* are linearly independent.

FALSE (any zero matrix is diagonal and diagonalisable)

(12) Every 2×2 matrix (with all real entries) has an eigenvector in \mathbb{R}^2 .

FALSE

(the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ has eigenvalues i and -i and no real eigenvectors)

(13) Every 3×3 matrix (with all real entries) has an eigenvector in \mathbb{R}^3 .

TRUE

(the characteristic polynomial of such a matrix factors as

$$(\lambda_1 - x)(\lambda_2 - x)(\lambda_3 - x)$$

for some $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ and if $\lambda \in {\lambda_1, \lambda_2, \lambda_3}$ then $\overline{\lambda} \in {\lambda_1, \lambda_2, \lambda_3}$. Some $\lambda \in {\lambda_1, \lambda_2, \lambda_3}$ must therefore have $\lambda = \overline{\lambda} \in \mathbb{R}$, and this real eigenvalue must have a real eigenvector)

(14) If $||u - v||^2 = ||u||^2 + ||v||^2$ then vectors $u, v \in \mathbb{R}^m$ are orthogonal.

TRUE

(since
$$||u - v||^2 = (u - v) \bullet (u - v) = ||u||^2 + ||v||^2 - 2(u \bullet v)$$
)

(15) If the columns of A are orthonormal then AA^T is an identity matrix.

FALSE

orthonormal columns $\Rightarrow A^T A$ is the identity matrix.

the matrix
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 has orthonormal columns and
 $AA^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq I$

Problem 3. (5 + 5 = 10 points)

(a) Compute the determinant of

$$A = \left[\begin{array}{rrrr} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & a & 0 & b \\ 0 & c & 0 & d \end{array} \right]$$

where a, b, c, d are real numbers.

For full credit, express your answer in as simple a form as possible.

Solution:

$$\det A = -\det \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$
$$= -\det \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} = \underline{[-(ad-bc)^2]}$$

(b) Find a matrix M such that $M\begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $M\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 4\\9 \end{bmatrix}$. Solution: Such a matrix has $M\begin{bmatrix} 2&5\\3&8 \end{bmatrix} = \begin{bmatrix} 1&4\\2&9 \end{bmatrix}$.

The matrix $A = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$ has det A = 16 - 15 = 1 so is invertible with $A^{-1} = \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$. Therefore $M = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ -11 & 8 \end{bmatrix}$. Final step: check that $M \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $M \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$. **Problem 4.** (5 + 5 + 5 = 15 points) Let \mathcal{V} be the vector space of 3×3 matrices.

Define $L: \mathcal{V} \to \mathcal{V}$ as the linear transformation $L(A) = A + A^T$.

(a) Find a basis for the subspace $\mathcal{N} = \{A \in \mathcal{V} : L(A) = 0\}$. What is dim \mathcal{N} ? Solution:

Consider a generic 3 × 3 matrix
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
. We have
$$L(A) = A + A^{T} = \begin{bmatrix} 2a & b + d & c + g \\ b + d & 2e & f + h \\ c + g & f + h & 2i \end{bmatrix}.$$

We have L(A) = 0 if and only if

a=e=i=0, b=-d, c=-g, and f=-h, i.e., if

·											
	0	1	0		0	0	1		0	0	0
A = b	-1	0	0	+c	0	0	0	+f	0	0	1
	0	0	0		-1	0	0		0	-1	0

The matrices

$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$	$\left[\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right]$
--	--	---

span N and are linearly independent, so they form a basis, and dim N = 3.

(b) Find a basis for the subspace $\mathcal{R} = \{L(A) : A \in \mathcal{V}\}$. What is dim \mathcal{R} ?

Solution: The matrices

Γ	0	1	0]	0	0	1]	0	0	0]	[1]	0	0]	0	0	0]	0	0	0]
	1	0	0	,	0	0	0	,	0	0	1	,	0	0	0	,	0	1	0	,	0	0	0
	0	0	0		[1	0	0		0	1	0		0	0	0		0	0	0		0	0	1

span \mathcal{R} and are linearly independent, so they form a basis, and dim $\mathcal{R} = 6$.

(c) Find two numbers $\lambda, \mu \in \mathbb{R}$ and two nonzero matrices $A, B \in \mathcal{V}$ such that $L(A) = \lambda A$ and $L(B) = \mu B$.

Solution:

We have
$$L(A) = \lambda A$$
 for $\lambda = 2$ and $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
We have $L(B) = \mu B$ for $\mu = 0$ and $B = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Problem 5. (3 + 4 + 4 + 4 = 15 points) Let

$$I = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

In this problem A refers to a 3×3 matrix with all real entries satisfying

$$(A - I)(A - 2I)(A - 3I) = 0.$$

(a) Does there exist a 3×3 matrix A with (A - I)(A - 2I)(A - 3I) = 0 which is not diagonal? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

Solution:

The diagonal matrix
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 has $(D-I)(D-2I)(D-3I) = 0$

Any similar matrix $A = PDP^{-1}$ has (A - I)(A - 2I)(A - 3I) = 0. Take

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ so that } P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and set

	[1]	1	0]	[1]	-1	0 -		1	1	0]
$A = PDP^{-1} =$	0	1	0	0	2	0	=	0	2	0
	0	0	1	0	0	3 _		0	0	3

(b) Does there exist a 3×3 matrix A with (A - I)(A - 2I)(A - 3I) = 0 which has exactly 2 distinct eigenvalues? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

Solution:

		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	
Take the diagonal matrix	A =		T	0	•
-		0	0	2 _	

(c) Does there exist a 3×3 matrix A with (A - I)(A - 2I)(A - 3I) = 0 which does not have any of the numbers 1, 2, or 3 as an eigenvalue? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

Solution:

Suppose *A* is a 3×3 with (A - I)(A - 2I)(A - 3I) = 0. Then $\det(A - I) \det(A - 2I) \det(A - 3I) = \det((A - I)(A - 2I)(A - 3I)) = \det(0) = 0$ so one of $\det(A - I)$ or $\det(A - 2I)$ or $\det(A - 3I)$ must be zero. Therefore at least one of the numbers 1, 2, and 3 must therefore be an eigenvalue of *A*.

Hence no matrix with the given properties exists.

(d) Does there exist a 3 × 3 matrix A with (A − I)(A − 2I)(A − 3I) = 0 which is not diagonalisable? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

Solution:

Assume A is a 3-by-3 matrix with (A - I)(A - 2I)(A - 3I) = 0.

If 1, 2, and 3 are all eigenvalues of A then A is diagonalisable.

Recall that λ is not an eigenvalue if and only if $A - \lambda I$ is invertible. If exactly one of the numbers $\lambda \in \{1, 2, 3\}$ is an eigenvalue then $A - \mu I$ would be invertible for the other two numbers $\mu \in \{1, 2, 3\}$, so we could cancel factors in the equation

$$(A - I)(A - 2I)(A - 3I) = 0$$

to deduce that $A - \lambda I = 0$, and hence that $A = \lambda I$ is diagonal and diagonalisable.

The final case to consider is that exactly two numbers $\lambda, \mu \in \{1, 2, 3\}$ are eigenvalues. It would then follow as in the previous paragraph that $(A - \lambda I)(A - \mu I) = 0$. The only way that *A* could fail to be diagonalisable is if the eigenspaces of λ and μ both have dimension one. In this event, we would have dim Nul $(A - \lambda I) = \dim Nul(A - \mu I) = 1$ and dim $Col(A - \lambda I) = \dim Col(A - \mu I) = 2$ by the rank-nullity theorem. But the only way we can have $(A - \lambda I)(A - \mu I) = 0$ is if $Col(A - \mu I) \subset Nul(A - \lambda I)$, which is impossible if dim Nul $(A - \lambda I) < \dim Col(A - \mu I)$.

We conclude that *A* must be diagonalisable.

Problem 6. (4 + 7 + 4 = 15 points)

(a) Compute the distinct eigenvalues of the matrix $A = \begin{bmatrix} .4 & -.3 \\ .4 & 1.2 \end{bmatrix}$.

Solution:

The characteristic polynomial of *A* is $(.4 - x)(1.2 - x) + 0.12 = 0.48 - 1.6x + x^2 + 0.12 = 0.60 - 1.6x + x^2 = (1 - x)(0.6 - x)$ so the eigenvalues of *A* are 1 and 0.6.

(b) Again let $A = \begin{bmatrix} .4 & -.3 \\ .4 & 1.2 \end{bmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Solution:

An eigenvector for the eigenvalue 1 of *A* is a nonzero element of the null space of

$$A - I = \left[\begin{array}{cc} -.6 & -.3 \\ .4 & .2 \end{array} \right].$$

The first column is twice the second, so such an eigenvector $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

An eigenvector for the eigenvalue 0.6 of A is a nonzero element of the null space of

$$A - .6I = \left[\begin{array}{rr} -.2 & -.3 \\ .4 & .6 \end{array} \right].$$

The second column is 1.5 times the first, so such an eigenvector $\begin{bmatrix} -1.5\\1 \end{bmatrix}$.

One choice for the invertible matrix P and diagonal matrix D is then

$P = \left[\begin{array}{rr} 1 & -1.5 \\ -2 & 1 \end{array} \right]$	and	$D = \left[\right]$	1 0	$\begin{bmatrix} 0\\.6 \end{bmatrix}$
---	-----	----------------------	--------	---------------------------------------

(c) Continue to let
$$A = \begin{bmatrix} .4 & -.3 \\ .4 & 1.2 \end{bmatrix}$$
.

Find real numbers a, b, c, d such that $\lim_{n \to \infty} A^n = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Solution:

The inverse of *P* in the previous part is $P^{-1} = -\frac{1}{2} \begin{bmatrix} 1 & 1.5 \\ 2 & 1 \end{bmatrix}$ and we have $A^{n} = (PDP^{-1})^{n} = PD^{n}P^{-1} = P \begin{bmatrix} 1 & 0 \\ 0 & .6 \end{bmatrix}^{n} P^{-1} = P \begin{bmatrix} 1 & 0 \\ 0 & .6^{n} \end{bmatrix} P^{-1}.$

If we take the limit as $n \to \infty$, this becomes

$$P\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} P^{-1} = -\frac{1}{2} \begin{bmatrix} 1 & -1.5\\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1.5\\ 2 & 1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} 1 & 0\\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1.5\\ 2 & 1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} 1 & 1.5\\ -2 & -3 \end{bmatrix}$$
$$= \begin{bmatrix} -.5 & -.75\\ 1 & 1.5 \end{bmatrix}.$$
So we have
$$\begin{bmatrix} a & b\\ c & d \end{bmatrix} = \begin{bmatrix} -.5 & -.75\\ 1 & 1.5 \end{bmatrix}.$$

Problem 7. (5 + 5 = 10 points)

(a) Find an orthonormal basis for the subspace of vectors of the form

$$a+2b+3c$$

$$2a+3b+4c$$

$$3a+4b+5c$$

$$4a+5b+6c$$

where a, b, c are real numbers.

Solution:

The subspace is the span of
$$x_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix}$, $x_3 = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}$.
Since $x_2 - x_1 = x_3 - x_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, it follows that $x_3 = 2x_2 - x_1$, so the

space is spanned by just x_1 and x_2 .

We use the Gram-Schmidt process to covert these vectors to an orthogonal basis v_1, v_2 .

First, we have $v_1 = x_1$. Second, we have

$$v_{2} = x_{2} - \frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} = \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix} - \frac{2+6+12+20}{1+4+9+16} \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix} - \frac{4}{3} \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} = \begin{bmatrix} 2/3\\1/3\\0\\-1/3 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 2\\1\\0\\-1 \end{bmatrix}.$$

We must normalize v_1, v_2 to get an orthonormal basis u_1, u_2 .

Specifically, we have

	[1]			$\begin{bmatrix} 2 \end{bmatrix}$	
1	2	and	1	1	
$u_1 = \overline{\sqrt{30}}$	3		$u_2 = \overline{\sqrt{6}}$	0	•
•	4		• -	-1	

(b) Find the vector in $W = \mathbb{R}$ -span $\{u, v\}$ which is closest to y where

$$y = \begin{bmatrix} 3\\-1\\1\\13 \end{bmatrix} \quad \text{and} \quad u = \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix}.$$

Solution:

The desired vector is the orthogonal projection of y onto W. The vectors u and v are orthogonal, so a formula for this projection is

$$\frac{y \bullet u}{u \bullet u}u + \frac{y \bullet v}{v \bullet v}v = \frac{30}{10} \begin{bmatrix} 1\\ -2\\ -1\\ 2 \end{bmatrix} + \frac{26}{26} \begin{bmatrix} -4\\ 1\\ 0\\ 3 \end{bmatrix} = \begin{bmatrix} 3\\ -6\\ -3\\ 6 \end{bmatrix} + \begin{bmatrix} -4\\ 1\\ 0\\ 3 \end{bmatrix} = \begin{bmatrix} -1\\ -5\\ -3\\ 9 \end{bmatrix}.$$

Problem 8. (10 points) Describe all least-squares solutions to the linear equation

$$Ax = b$$

where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4 \end{bmatrix}$$

Solution:

The least-squares solutions to Ax = b are the exact solutions to $A^T Ax = A^T b$. We have

$$A^{T}A = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \text{ and } A^{T}b = \begin{bmatrix} 27 \\ 12 \\ 15 \end{bmatrix}.$$

To solve $A^T A x = A^T b$, we row reduce

$$\begin{bmatrix} 6 & 3 & 3 & | & 27 \\ 3 & 3 & 0 & | & 12 \\ 3 & 0 & 3 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & | & 9 \\ 1 & 1 & 0 & | & 4 \\ 1 & 0 & 1 & | & 5 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & -1 & | & -1 \\ 0 & 1 & -1 & | & -1 \\ 1 & 0 & 1 & | & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

This means that $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is a least squares solution if and only if $x_1 + x_3 = 5$ and $x_2 - x_3 = -1$, i.e., when $x = \begin{bmatrix} 5-c \\ c-1 \\ c \end{bmatrix}$ for any $c \in \mathbb{R}$.

Problem 9. (3 + 5 + 7 = 15 points) Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{array} \right].$$

(a) Find the eigenvalues of $A^T A$.

Solution:

The matrix $A^T A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ is diagonal, so its eigenvalues are 2 and 3.

(b) Find an orthonormal basis v_1, v_2 for \mathbb{R}^2 consisting of eigenvectors of $A^T A$.

Solution:

Since $A^T A$ is diagonal, an orthonormal basis of eigenvectors is

1		0]
0	,	1	

(c) Find a singular value decomposition for *A*. In other words, find the singular values $\sigma_1 \ge \sigma_2$ of *A* and then express *A* as a product

$$A = U\Sigma V^T$$

where U and V are invertible matrices with

$$U^{-1} = U^T$$
 and $V^{-1} = V^T$ and $\Sigma = \begin{bmatrix} \sigma_1 & 0\\ 0 & \sigma_2\\ 0 & 0 \end{bmatrix}$.

Solution:

Let $\sigma_1 = \sqrt{3}$ and $\sigma_2 = \sqrt{2}$ be the singular values of *A*. Then let

$$v_1 = \begin{bmatrix} 0\\1 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 1\\0 \end{bmatrix}$

be the corresponding orthonormal eigenvectors of $A^T A$.

Next define
$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$. An orthonormal vector orthogonal to u_1 and u_2 is

.

$$u_3 = \frac{1}{\sqrt{6}} \left[\begin{array}{c} 1\\ -2\\ 1 \end{array} \right]$$

The desired matrices U, Σ , and V are then

U =	$\left[\begin{array}{c} 1/\sqrt{3}\\ 1/\sqrt{3}\\ 1/\sqrt{3} \end{array}\right]$	$\frac{1/\sqrt{2}}{0}\\-1/\sqrt{2}$	$\begin{bmatrix} 1/\sqrt{6} \\ -2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix},$	$\Sigma = \begin{bmatrix} \sqrt{3} \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ \sqrt{2}\\ 0 \end{bmatrix},$	$V = \left[\right]$	$\begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{array}{c} 1\\ 0\end{array}$].
-----	--	-------------------------------------	--	---	---	----------------------	---------------------------------------	-------------------------------------	----

18