FINAL EXAMINATION SOLUTIONS - MATH 2121, FALL 2017.
$\square$
Name:
$\square$
$\square$
Email:

Lecture \& Tutorial: $\square$

| Problem \# | Max points possible | Actual score |
| :--- | :---: | :--- |
| 1 | 15 |  |
| 2 | 15 |  |
| 3 | 10 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| 6 | 15 |  |
| 7 | 10 |  |
| 8 | 10 |  |
| 9 | 15 |  |
| Total | 120 |  |

You have $\mathbf{1 8 0}$ minutes to complete this exam.
No books, notes, or electronic devices can be used on the test.
Clearly label your answers by putting them in a box.
Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. $(3+3+3+3+3=15$ points) Write complete, precise definitions of the following italicised terms.
(1) a linear transformation $T$ from a vector space $V$ to a vector space $W$.

A linear transformation $T: V \rightarrow W$ is a function with the following properties: (1) $T(u+v)=T(u)+T(v)$ for all $u, v \in V$ and (2) $T(c v)=c T(v)$ for all $c \in \mathbb{R}$ and $v \in V$.
(2) the span of a finite set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in a vector space.

The span of $v_{1}, v_{2}, \ldots, v_{n}$ is the set of all vectors of the form

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

where $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$.
(3) a linearly independent set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in a vector space.

The vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent if whenever $c_{1}, c_{2}, \ldots, c_{n} \in$ $\mathbb{R}$ and $c_{1} v_{1}+c_{2} v_{2}+\ldots c_{n} v_{n}=0$, it holds that $c_{1}=c_{2}=\cdots=c_{n}=0$.
(4) a subspace $W$ of a vector space $V$.

A subspace $W$ of a vector space $V$ is a subset containing the zero vector in $V$, such that (1) if $u, v \in W$ then $u+v \in W$ and (2) if $c \in \mathbb{R}$ and $v \in W$ then $c v \in W$.
(5) a basis for a vector space $V$.

A basis for a vector space $V$ is a linearly independent set of vectors whose span is $V$.

Problem 2. (15 points) In the following statements, $A, B, C$, etc., are matrices (with all real entries), and $u, v, w, x$, etc., are vectors in $\mathbb{R}^{n}$, unless otherwise noted.

Indicate which of the following is TRUE or FALSE.
One point will be given for each correct answer (no penalty for incorrect answers).
(1) Any system of $n$ linear equations in $n$ variables has at least $n$ solutions.

FALSE (such a system could have 0 solutions)
(2) If a linear system $A x=b$ has more than one solution, then so does $A x=0$.

TRUE $\quad($ if $A x=A y=b, x \neq y$, then $A(x-y)=0$ and $A(0)=0)$
(3) If $A$ and $B$ are $n \times n$ matrices with $A B=0$, then $A=0$ or $B=0$.

$$
\text { FALSE } \quad\left(\text { take } A=\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

(4) If $A B=B A$ and $A$ is invertible, then $A^{-1} B=B A^{-1}$.

$$
\text { TRUE } \quad\left(B A^{-1}=A^{-1}(A B) A^{-1}=A^{-1}(B A) A^{-1}=A B^{-1}\right)
$$

(5) If $A$ is a square matrix, then $\operatorname{det}(-A)=-\operatorname{det} A$.

$$
\text { FALSE } \left.\quad \text { (if } A \text { is } n \times n \text {, then } \operatorname{det}(-A)=(-1)^{n} \operatorname{det} A\right)
$$

(6) If $A$ is a nonzero matrix then $\operatorname{det} A^{T} A>0$.

## FALSE

(if $A$ is square then $\operatorname{det} A^{T} A=\left(\operatorname{det} A^{T}\right)(\operatorname{det} A)=(\operatorname{det} A)^{2} \geq 0$; this is zero when $A$ is not invertible)
(7) If $A$ is $m \times n$ and the transformation $x \mapsto A x$ is onto, then $\operatorname{rank}(A)=m$.

$$
\text { TRUE } \quad\left(\text { onto } \Rightarrow \operatorname{Col} A=\mathbb{R}^{m} \Rightarrow \operatorname{rank}(A)=\operatorname{dim} \operatorname{Col} A=m\right)
$$

(8) If $V$ is a vector space and $S \subset V$ is a subset whose span is $V$, then some subset of $S$ is a basis of $V$.

TRUE (take a minimal subset of $S$ that's linearly indep.)
(9) If $A$ is square and contains a row of zeros, then 0 is an eigenvalue of $A$.

## TRUE

( $A^{T}$ has a column of zeros, so $A^{T}$ is not invertible, so $A^{T}$ has 0 as an eigenvalue, and $A$ has same eigenvalues as $A^{T}$ )
(10) Each eigenvector of a square matrix $A$ is also an eigenvector of $A^{2}$.

$$
\text { TRUE } \left.\quad \text { (if } A v=\lambda v \text { then } A^{2} v=A(\lambda v)=\lambda A v=\lambda^{2} v\right)
$$

(11) If $A$ is diagonalisable, then the columns of $A$ are linearly independent.

FALSE (any zero matrix is diagonal and diagonalisable)
(12) Every $2 \times 2$ matrix (with all real entries) has an eigenvector in $\mathbb{R}^{2}$.

## FALSE

(the matrix $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ has eigenvalues $i$ and $-i$ and no real eigenvectors)
(13) Every $3 \times 3$ matrix (with all real entries) has an eigenvector in $\mathbb{R}^{3}$.

TRUE
(the characteristic polynomial of such a matrix factors as

$$
\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right)\left(\lambda_{3}-x\right)
$$

for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$ and if $\lambda \in\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ then $\bar{\lambda} \in\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$. Some $\lambda \in\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ must therefore have $\lambda=\bar{\lambda} \in \mathbb{R}$, and this real eigenvalue must have a real eigenvector)
(14) If $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}$ then vectors $u, v \in \mathbb{R}^{m}$ are orthogonal.

TRUE
(since $\|u-v\|^{2}=(u-v) \bullet(u-v)=\|u\|^{2}+\|v\|^{2}-2(u \bullet v)$ )
(15) If the columns of $A$ are orthonormal then $A A^{T}$ is an identity matrix.

## FALSE

orthonormal columns $\Rightarrow A^{T} A$ is the identity matrix. the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ has orthonormal columns and

$$
A A^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \neq I .
$$

Problem 3. ( $5+5=10$ points)
(a) Compute the determinant of

$$
A=\left[\begin{array}{llll}
a & 0 & b & 0 \\
c & 0 & d & 0 \\
0 & a & 0 & b \\
0 & c & 0 & d
\end{array}\right]
$$

where $a, b, c, d$ are real numbers.
For full credit, express your answer in as simple a form as possible.

## Solution:

$$
\begin{aligned}
\operatorname{det} A & =-\operatorname{det}\left[\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right] \\
& =-\operatorname{det}\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]=-(a d-b c)^{2}
\end{aligned}
$$

(b) Find a matrix $M$ such that $M\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $M\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}4 \\ 9\end{array}\right]$.

## Solution:

Such a matrix has $M\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 2 & 9\end{array}\right]$.
The matrix $A=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ has $\operatorname{det} A=16-15=1$ so is invertible with

$$
A^{-1}=\left[\begin{array}{rr}
8 & -5 \\
-3 & 2
\end{array}\right]
$$

Therefore $M=\left[\begin{array}{ll}1 & 4 \\ 2 & 9\end{array}\right]\left[\begin{array}{rr}8 & -5 \\ -3 & 2\end{array}\right]=\left[\begin{array}{rr}-4 & 3 \\ -11 & 8\end{array}\right]$.
Final step: check that $M\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $M\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}4 \\ 9\end{array}\right]$.

Problem 4. $(5+5+5=15$ points) Let $\mathcal{V}$ be the vector space of $3 \times 3$ matrices.
Define $L: \mathcal{V} \rightarrow \mathcal{V}$ as the linear transformation $L(A)=A+A^{T}$.
(a) Find a basis for the subspace $\mathcal{N}=\{A \in \mathcal{V}: L(A)=0\}$. What is $\operatorname{dim} \mathcal{N}$ ?

## Solution:

$$
\begin{gathered}
\text { Consider a generic } 3 \times 3 \text { matrix } A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \text {. We have } \\
L(A)=A+A^{T}=\left[\begin{array}{rrr}
2 a & b+d & c+g \\
b+d & 2 e & f+h \\
c+g & f+h & 2 i
\end{array}\right] .
\end{gathered}
$$

We have $L(A)=0$ if and only if

$$
a=e=i=0, \quad b=-d, \quad c=-g, \quad \text { and } \quad f=-h,
$$

i.e., if

$$
A=b\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+c\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]+f\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

The matrices
$\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right], \quad\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$
$\operatorname{span} \mathcal{N}$ and are linearly independent, so they form a basis, and $\operatorname{dim} \mathcal{N}=3$.
(b) Find a basis for the subspace $\mathcal{R}=\{L(A): A \in \mathcal{V}\}$. What is $\operatorname{dim} \mathcal{R}$ ?

Solution:The matrices
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
span $\mathcal{R}$ and are linearly independent, so they form a basis, and $\operatorname{dim} \mathcal{R}=6$.
(c) Find two numbers $\lambda, \mu \in \mathbb{R}$ and two nonzero matrices $A, B \in \mathcal{V}$ such that

$$
L(A)=\lambda A \quad \text { and } \quad L(B)=\mu B
$$

## Solution:

We have $L(A)=\lambda A$ for $\lambda=2$ and $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We have $L(B)=\mu B$ for $\mu=0$ and $B=\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Problem 5. $(3+4+4+4=15$ points $)$ Let

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In this problem $A$ refers to a $3 \times 3$ matrix with all real entries satisfying

$$
(A-I)(A-2 I)(A-3 I)=0
$$

(a) Does there exist a $3 \times 3$ matrix $A$ with $(A-I)(A-2 I)(A-3 I)=0$ which is not diagonal? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

## Solution:

The diagonal matrix $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ has $(D-I)(D-2 I)(D-3 I)=0$.
Any similar matrix $A=P D P^{-1}$ has $(A-I)(A-2 I)(A-3 I)=0$. Take

$$
P=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { so that } P^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and set

$$
A=P D P^{-1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

(b) Does there exist a $3 \times 3$ matrix $A$ with $(A-I)(A-2 I)(A-3 I)=0$ which has exactly 2 distinct eigenvalues? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

## Solution:

Take the diagonal matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(c) Does there exist a $3 \times 3$ matrix $A$ with $(A-I)(A-2 I)(A-3 I)=0$ which does not have any of the numbers 1,2 , or 3 as an eigenvalue? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

## Solution:

Suppose $A$ is a $3 \times 3$ with $(A-I)(A-2 I)(A-3 I)=0$. Then $\operatorname{det}(A-$ $I) \operatorname{det}(A-2 I) \operatorname{det}(A-3 I)=\operatorname{det}((A-I)(A-2 I)(A-3 I))=\operatorname{det}(0)=0$ so one of $\operatorname{det}(A-I)$ or $\operatorname{det}(A-2 I)$ or $\operatorname{det}(A-3 I)$ must be zero. Therefore at least one of the numbers 1, 2, and 3 must therefore be an eigenvalue of $A$.

Hence no matrix with the given properties exists.
(d) Does there exist a $3 \times 3$ matrix $A$ with $(A-I)(A-2 I)(A-3 I)=0$ which is not diagonalisable? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

## Solution:

Assume $A$ is a 3-by-3 matrix with $(A-I)(A-2 I)(A-3 I)=0$.
If 1,2 , and 3 are all eigenvalues of $A$ then $A$ is diagonalisable.
Recall that $\lambda$ is not an eigenvalue if and only if $A-\lambda I$ is invertible. If exactly one of the numbers $\lambda \in\{1,2,3\}$ is an eigenvalue then $A-\mu I$ would be invertible for the other two numbers $\mu \in\{1,2,3\}$, so we could cancel factors in the equation

$$
(A-I)(A-2 I)(A-3 I)=0
$$

to deduce that $A-\lambda I=0$, and hence that $A=\lambda I$ is diagonal and diagonalisable.

The final case to consider is that exactly two numbers $\lambda, \mu \in\{1,2,3\}$ are eigenvalues. It would then follow as in the previous paragraph that $(A-\lambda I)(A-\mu I)=0$. The only way that $A$ could fail to be diagonalisable is if the eigenspaces of $\lambda$ and $\mu$ both have dimension one. In this event, we would have $\operatorname{dim} \operatorname{Nul}(A-\lambda I)=\operatorname{dim} \operatorname{Nul}(A-\mu I)=1$ and $\operatorname{dim} \operatorname{Col}(A-\lambda I)=$ $\operatorname{dim} \operatorname{Col}(A-\mu I)=2$ by the rank-nullity theorem. But the only way we can have $(A-\lambda I)(A-\mu I)=0$ is if $\operatorname{Col}(A-\mu I) \subset \operatorname{Nul}(A-\lambda I)$, which is impossible if $\operatorname{dim} \operatorname{Nul}(A-\lambda I)<\operatorname{dim} \operatorname{Col}(A-\mu I)$.

We conclude that $A$ must be diagonalisable.

Problem 6. $(4+7+4=15$ points)
(a) Compute the distinct eigenvalues of the matrix $A=\left[\begin{array}{cc}.4 & -.3 \\ .4 & 1.2\end{array}\right]$.

## Solution:

The characteristic polynomial of $A$ is $(.4-x)(1.2-x)+0.12=0.48-$ $1.6 x+x^{2}+0.12=0.60-1.6 x+x^{2}=(1-x)(0.6-x)$ so the eigenvalues of $A$ are 1 and 0.6 .
(b) Again let $A=\left[\begin{array}{rr}.4 & -.3 \\ .4 & 1.2\end{array}\right]$. Find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=P D P^{-1}$.

## Solution:

An eigenvector for the eigenvalue 1 of $A$ is a nonzero element of the null space of

$$
A-I=\left[\begin{array}{rr}
-.6 & -.3 \\
.4 & .2
\end{array}\right]
$$

The first column is twice the second, so such an eigenvector $\left[\begin{array}{r}1 \\ -2\end{array}\right]$.
An eigenvector for the eigenvalue 0.6 of $A$ is a nonzero element of the null space of

$$
A-.6 I=\left[\begin{array}{rr}
-.2 & -.3 \\
.4 & .6
\end{array}\right]
$$

The second column is 1.5 times the first, so such an eigenvector $\left[\begin{array}{r}-1.5 \\ 1\end{array}\right]$.
One choice for the invertible matrix $P$ and diagonal matrix $D$ is then

$$
P=\left[\begin{array}{rr}
1 & -1.5 \\
-2 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & .6
\end{array}\right]
$$

(c) Continue to let $A=\left[\begin{array}{rr}.4 & -.3 \\ .4 & 1.2\end{array}\right]$.

Find real numbers $a, b, c, d$ such that $\lim _{n \rightarrow \infty} A^{n}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

## Solution:

The inverse of $P$ in the previous part is $P^{-1}=-\frac{1}{2}\left[\begin{array}{rr}1 & 1.5 \\ 2 & 1\end{array}\right]$ and we have

$$
A^{n}=\left(P D P^{-1}\right)^{n}=P D^{n} P^{-1}=P\left[\begin{array}{rr}
1 & 0 \\
0 & .6
\end{array}\right]^{n} P^{-1}=P\left[\begin{array}{rr}
1 & 0 \\
0 & .6^{n}
\end{array}\right] P^{-1}
$$

If we take the limit as $n \rightarrow \infty$, this becomes

$$
\begin{aligned}
P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1} & =-\frac{1}{2}\left[\begin{array}{rr}
1 & -1.5 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lr}
1 & 1.5 \\
2 & 1
\end{array}\right] \\
& =-\frac{1}{2}\left[\begin{array}{rr}
1 & 0 \\
-2 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1.5 \\
2 & 1
\end{array}\right] \\
& =-\frac{1}{2}\left[\begin{array}{rr}
1 & 1.5 \\
-2 & -3
\end{array}\right] \\
& =\left[\begin{array}{rr}
-.5 & -.75 \\
1 & 1.5
\end{array}\right]
\end{aligned}
$$

So we have $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{rr}-.5 & -.75 \\ 1 & 1.5\end{array}\right]$.

Problem 7. ( $5+5=10$ points $)$
(a) Find an orthonormal basis for the subspace of vectors of the form

$$
\left[\begin{array}{c}
a+2 b+3 c \\
2 a+3 b+4 c \\
3 a+4 b+5 c \\
4 a+5 b+6 c
\end{array}\right]
$$

where $a, b, c$ are real numbers.

## Solution:

The subspace is the span of $x_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], x_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right], x_{3}=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 6\end{array}\right]$.
Since $x_{2}-x_{1}=x_{3}-x_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$, it follows that $x_{3}=2 x_{2}-x_{1}$, so the space is spanned by just $x_{1}$ and $x_{2}$.

We use the Gram-Schmidt process to covert these vectors to an orthogonal basis $v_{1}, v_{2}$.

First, we have $v_{1}=x_{1}$. Second, we have

$$
\begin{aligned}
v_{2} & =x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]-\frac{2+6+12+20}{1+4+9+16}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]-\frac{4}{3}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{r}
2 / 3 \\
1 / 3 \\
0 \\
-1 / 3
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{r}
2 \\
1 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

We must normalize $v_{1}, v_{2}$ to get an orthonormal basis $u_{1}, u_{2}$.
Specifically, we have

$$
u_{1}=\frac{1}{\sqrt{30}}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad \text { and } \quad u_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
2 \\
1 \\
0 \\
-1
\end{array}\right]
$$

(b) Find the vector in $W=\mathbb{R}$-span $\{u, v\}$ which is closest to $y$ where

$$
y=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right] \quad \text { and } \quad u=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right] .
$$

## Solution:

The desired vector is the orthogonal projection of $y$ onto $W$. The vectors $u$ and $v$ are orthogonal, so a formula for this projection is

$$
\frac{y \bullet u}{u \bullet u} u+\frac{y \bullet v}{v \bullet v} v=\frac{30}{10}\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right]+\frac{26}{26}\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{r}
3 \\
-6 \\
-3 \\
6
\end{array}\right]+\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-5 \\
-3 \\
9
\end{array}\right] .
$$

Problem 8. (10 points) Describe all least-squares solutions to the linear equation

$$
A x=b
$$

where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
7 \\
2 \\
3 \\
6 \\
5 \\
4
\end{array}\right]
$$

## Solution:

The least-squares solutions to $A x=b$ are the exact solutions to $A^{T} A x=A^{T} b$. We have

$$
A^{T} A=\left[\begin{array}{lll}
6 & 3 & 3 \\
3 & 3 & 0 \\
3 & 0 & 3
\end{array}\right] \quad \text { and } \quad A^{T} b=\left[\begin{array}{l}
27 \\
12 \\
15
\end{array}\right]
$$

To solve $A^{T} A x=A^{T} b$, we row reduce
$\left[\begin{array}{lll|l}6 & 3 & 3 & 27 \\ 3 & 3 & 0 & 12 \\ 3 & 0 & 3 & 15\end{array}\right] \sim\left[\begin{array}{lll|l}2 & 1 & 1 & 9 \\ 1 & 1 & 0 & 4 \\ 1 & 0 & 1 & 5\end{array}\right] \sim\left[\begin{array}{rrr|r}0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 1 & 0 & 1 & 5\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 0 & 1 & 5 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
This means that $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is a least squares solution if and only if $x_{1}+x_{3}=5$
and $x_{2}-x_{3}=-1$, i.e., when $x=\left[\begin{array}{r}5-c \\ c-1 \\ c\end{array}\right]$ for any $c \in \mathbb{R}$.

Problem 9. $(3+5+7=15$ points) Consider the matrix

$$
A=\left[\begin{array}{rr}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of $A^{T} A$.

## Solution:

The matrix $A^{T} A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ is diagonal, so its eigenvalues are 2 and 3 .
(b) Find an orthonormal basis $v_{1}, v_{2}$ for $\mathbb{R}^{2}$ consisting of eigenvectors of $A^{T} A$.

## Solution:

Since $A^{T} A$ is diagonal, an orthonormal basis of eigenvectors is
$\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(c) Find a singular value decomposition for $A$. In other words, find the singular values $\sigma_{1} \geq \sigma_{2}$ of $A$ and then express $A$ as a product

$$
A=U \Sigma V^{T}
$$

where $U$ and $V$ are invertible matrices with

$$
U^{-1}=U^{T} \quad \text { and } \quad V^{-1}=V^{T} \quad \text { and } \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

## Solution:

Let $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=\sqrt{2}$ be the singular values of $A$. Then let

$$
v_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

be the corresponding orthonormal eigenvectors of $A^{T} A$.
Next define $u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. An orthonormal vector orthogonal to $u_{1}$ and $u_{2}$ is

$$
u_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

The desired matrices $U, \Sigma$, and $V$ are then

$$
U=\left[\begin{array}{rrr}
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & \sqrt{2} \\
0 & 0
\end{array}\right], \quad V=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

