Name: \square

\square
\square
Email:

Lecture \& Tutorial: \square

Problem \#	Max points possible	Actual score
1	15	
2	15	
3	10	
4	15	
5	15	
6	15	
7	10	
8	10	
9	15	
Total	120	

You have $\mathbf{1 8 0}$ minutes to complete this exam.
No books, notes, or electronic devices can be used on the test.
Clearly label your answers by putting them in a box.
Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. $(3+3+3+3+3=15$ points) Write complete, precise definitions of the following italicised terms.
(1) a linear transformation T from a vector space V to a vector space W.
(2) the span of a finite set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in a vector space.
(3) a linearly independent set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in a vector space.
(4) a subspace W of a vector space V.
(5) a basis for a vector space V.

Problem 2. (15 points) In the following statements, A, B, C, etc., are matrices (with all real entries), and u, v, w, x, etc., are vectors in \mathbb{R}^{n}, unless otherwise noted.

Indicate which of the following is TRUE or FALSE.
One point will be given for each correct answer (no penalty for incorrect answers).
(1) Any system of n linear equations in n variables has at least n solutions.

TRUE FALSE

(2) If a linear system $A x=b$ has more than one solution, then so does $A x=0$.

TRUE FALSE
(3) If A and B are $n \times n$ matrices with $A B=0$, then $A=0$ or $B=0$.

TRUE FALSE
(4) If $A B=B A$ and A is invertible, then $A^{-1} B=B A^{-1}$.

TRUE FALSE
(5) If A is a square matrix, then $\operatorname{det}(-A)=-\operatorname{det} A$.

TRUE FALSE
(6) If A is a nonzero matrix then $\operatorname{det} A^{T} A>0$.

TRUE
 FALSE

(7) If A is $m \times n$ and the transformation $x \mapsto A x$ is onto, then $\operatorname{rank}(A)=m$.

TRUE

FALSE
(8) If V is a vector space and $S \subset V$ is a subset whose span is V, then some subset of S is a basis of V.

TRUE FALSE
(9) If A is square and contains a row of zeros, then 0 is an eigenvalue of A.

TRUE FALSE
(10) Each eigenvector of a square matrix A is also an eigenvector of A^{2}.

TRUE FALSE

(11) If A is diagonalisable, then the columns of A are linearly independent.

TRUE FALSE
(12) Every 2×2 matrix (with all real entries) has an eigenvector in \mathbb{R}^{2}.

TRUE FALSE
(13) Every 3×3 matrix (with all real entries) has an eigenvector in \mathbb{R}^{3}.

TRUE FALSE
(14) If $\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}$ then vectors $u, v \in \mathbb{R}^{m}$ are orthogonal.

TRUE FALSE
(15) If the columns of A are orthonormal then $A A^{T}$ is an identity matrix.
TRUE FALSE

Problem 3. ($5+5=10$ points)
(a) Compute the determinant of

$$
A=\left[\begin{array}{llll}
a & 0 & b & 0 \\
c & 0 & d & 0 \\
0 & a & 0 & b \\
0 & c & 0 & d
\end{array}\right]
$$

where a, b, c, d are real numbers.
For full credit, express your answer in as simple a form as possible.
(b) Find a matrix M such that $M\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $M\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}4 \\ 9\end{array}\right]$.

Problem 4. $(5+5+5=15$ points) Let \mathcal{V} be the vector space of 3×3 matrices.
Define $L: \mathcal{V} \rightarrow \mathcal{V}$ as the linear transformation $L(A)=A+A^{T}$.
(a) Find a basis for the subspace $\mathcal{N}=\{A \in \mathcal{V}: L(A)=0\}$. What is $\operatorname{dim} \mathcal{N}$?
(b) Find a basis for the subspace $\mathcal{R}=\{L(A): A \in \mathcal{V}\}$. What is $\operatorname{dim} \mathcal{R}$?
(c) Find two numbers $\lambda, \mu \in \mathbb{R}$ and two nonzero matrices $A, B \in \mathcal{V}$ such that $L(A)=\lambda A \quad$ and $\quad L(B)=\mu B$.

Problem 5. $(3+4+4+4=15$ points) Let

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In this problem A refers to a 3×3 matrix with all real entries satisfying

$$
(A-I)(A-2 I)(A-3 I)=0
$$

(a) Does there exist a 3×3 matrix A with $(A-I)(A-2 I)(A-3 I)=0$ which is not diagonal? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.
(b) Does there exist a 3×3 matrix A with $(A-I)(A-2 I)(A-3 I)=0$ which has exactly 2 distinct eigenvalues? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.
(c) Does there exist a 3×3 matrix A with $(A-I)(A-2 I)(A-3 I)=0$ which does not have any of the numbers 1,2 , or 3 as an eigenvalue? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.
(d) Does there exist a 3×3 matrix A with $(A-I)(A-2 I)(A-3 I)=0$ which is not diagonalisable? If there does, produce an example. Otherwise, give a short explanation for why no such matrix exists.

Problem 6. $(4+7+4=15$ points $)$
(a) Compute the distinct eigenvalues of the matrix $A=\left[\begin{array}{cc}.4 & -.3 \\ .4 & 1.2\end{array}\right]$.
(b) Again let $A=\left[\begin{array}{rr}.4 & -.3 \\ .4 & 1.2\end{array}\right]$.

Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(c) Continue to let $A=\left[\begin{array}{rr}.4 & -.3 \\ .4 & 1.2\end{array}\right]$.

Find real numbers a, b, c, d such that $\lim _{n \rightarrow \infty} A^{n}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Problem 7. ($5+5=10$ points $)$
(a) Find an orthonormal basis for the subspace of vectors of the form

$$
\left[\begin{array}{c}
a+2 b+3 c \\
2 a+3 b+4 c \\
3 a+4 b+5 c \\
4 a+5 b+6 c
\end{array}\right]
$$

where a, b, c are real numbers.
(b) Find the vector in $W=\mathbb{R}$-span $\{u, v\}$ which is closest to y where

$$
y=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right] \quad \text { and } \quad u=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right] .
$$

Problem 8. (10 points) Describe all least-squares solutions to the linear equation

$$
A x=b
$$

where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
7 \\
2 \\
3 \\
6 \\
5 \\
4
\end{array}\right]
$$

Problem 9. $(3+5+7=15$ points) Consider the matrix

$$
A=\left[\begin{array}{rr}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of $A^{T} A$.
(b) Find an orthonormal basis v_{1}, v_{2} for \mathbb{R}^{2} consisting of eigenvectors of $A^{T} A$.
(c) Find a singular value decomposition for A. In other words, find the singular values $\sigma_{1} \geq \sigma_{2}$ of A and then express A as a product

$$
A=U \Sigma V^{T}
$$

where U and V are invertible matrices with

$$
U^{-1}=U^{T} \quad \text { and } \quad V^{-1}=V^{T} \quad \text { and } \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

