MIDTERM - MATH 2121, FALL 2017.

Name:	
Email:	

Problem #	Max points possible	Actual score
1	15	
2	20	
3	15	
4	20	
5	20	
6	10	
Total	100	

You have **120 minutes** to complete this exam.

No books, notes, or electronic devices can be used on the test.

Clearly label your answers by putting them in a box.

Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. (2 + 9 + 4 = 15 points)

(a) Write down the augmented matrix of the linear system

$$2x_1 + x_3 + 21x_4 = 5$$

$$x_1 + 9x_2 + 8x_3 + 3x_4 = 6$$

$$3x_1 - 12x_4 = 0.$$

(b) Compute the reduced echelon form of the matrix in (a).

(c) How many solutions does our linear system $2r_1 + r_2 + 21r_4 = 1$

$$2x_1 + x_3 + 21x_4 = 5$$
$$x_1 + 9x_2 + 8x_3 + 3x_4 = 6$$
$$3x_1 - 12x_4 = 0$$

have? To receive full credit, explain how you derive your answer.

Problem 2. (2 + 2 + ... + 2 = 20 points) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a function. Let *A* be a matrix. Indicate which of the following is TRUE or FALSE.

- (1) If *T* is linear then its range is equal to its codomain.
- (2) If *T* is linear and one-to-one then $n \ge m$.
- (3) If *T* is linear and onto then $n \ge m$.
- (4) If *T* is linear and invertible then $n \ge m$.
- (5) If *T* is linear and invertible, then its inverse is linear and invertible.
- (6) If *T* is linear, and *A* is its standard matrix, then *A* has size $n \times m$.
- (7) If *T* is linear, and *A* is its standard matrix, and T(v) = 0 for a nonzero vector $v \in \mathbb{R}^n$, then the columns of *A* are not linearly independent.
- (8) If *B* is a matrix with the same size as *A* and Av = Bv whenever *v* is a vector such that the products Av and Bv are both defined, then A = B.
- (9) If *A* is not invertible, then *AB* is not the identity matrix for any matrix *B*.
- (10) If *T* is linear, and *A* is its standard matrix, and the range of *T* is not all of \mathbb{R}^m , then not every column of *A* is a pivot column.

Each part will be graded as follows: 0 points for a wrong answer, 1 point for no answer, 2 points for the correct answer. Explanations are not required for answers.

Solution:

(1)	TRUE	FALSE
(2)	TRUE	FALSE
(3)	TRUE	FALSE
(4)	TRUE	FALSE
(5)	TRUE	FALSE
(6)	TRUE	FALSE
(7)	TRUE	FALSE
(8)	TRUE	FALSE
(9)	TRUE	FALSE
(10)	TRUE	FALSE

MIDTERM - MATH 2121, FALL 2017.

6

Problem 3. (5 + 10 = 15 points)

(a) For what values of x is the matrix

$$A = \left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 \\ 0 & 3 & x & 0 \\ -1 & 5 & 0 & 8 \\ 1 & 2 & 2 & 4 \end{array} \right]$$

invertible?

(b) Assuming x is such that

$$A = \left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 \\ 0 & 3 & x & 0 \\ -1 & 5 & 0 & 8 \\ 1 & 2 & 2 & 4 \end{array} \right]$$

is invertible, derive a formula for A^{-1} .

8

Problem 4. (1 + 9 + 4 + 4 + 2 = 20 points) Consider the matrix

$$A = \left[\begin{array}{rrrr} 5 & -1 & 6 & -4 \\ 2 & 3 & 16 & -5 \\ 0 & 2 & 8 & -2 \end{array} \right].$$

Remember that

- The *column space* of *A* is the span of its columns.
- The *null space* of A is the set of vectors v with Av = 0.
- (a) What are the values of *m* and *n* such that $ColA \subset \mathbb{R}^m$ and $NulA \subset \mathbb{R}^n$?

(b) Compute the reduced echelon form of

A =	5	$^{-1}$	6	-4	
A =	2	3	16	-5	
	0	2	8	-2	

(c) Find a basis for the column space of

A =	5	-1	6	-4	
A =	2	3	16	-5	
	0	2	8	-2	

(d) Find a basis for the null space of

$$A = \begin{bmatrix} 5 & -1 & 6 & -4 \\ 2 & 3 & 16 & -5 \\ 0 & 2 & 8 & -2 \end{bmatrix}.$$

(e) What are the dimensions of the column space and null space of *A*?

Problem 5. (5 + 5 + 5 + 5 = 20 points)

(a) Does there exist a 3×3 matrix whose column space contains

1		[1]		[1]	
2	and	0	but not	1	?
-3		1		1	

If there is, give an example. If there isn't, explain why not.

14

(b) Does there exist a 3×3 matrix whose null space contains

1		[1]		[1]	
2	and	0	but not	-2	?
-3		1		1	

If there is, give an example. If there isn't, explain why not.

(c) Does there exist a 3×3 matrix whose null space *and* column space contains

If there is, give an example. If there isn't, explain why not.

(d) Does there exist a 3×3 matrix whose null space *and* column space contains

[1]		1	
2	and	0	?
-3		1	

If there is, give an example. If there isn't, explain why not.

Problem 6. (10 points) Find all 2×2 matrices

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

such that 2a is a positive integer, b, c, d are real numbers, and $A^T = A^{-1}$.

Hint: for any square matrix B*, recall that* $det(BB^T) = det(B) det(B^T) = det(B)^2$.

MIDTERM - MATH 2121, FALL 2017.