MIDTERM - MATH 2121, FALL 2017.

Problem \#	Max points possible	Actual score
1	15	
2	20	
3	15	
4	20	
5	20	
6	10	
Total	100	

You have $\mathbf{1 2 0}$ minutes to complete this exam.
No books, notes, or electronic devices can be used on the test.
Clearly label your answers by putting them in a box.
Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. $(2+9+4=15$ points $)$
(a) Write down the augmented matrix of the linear system

$$
\begin{aligned}
2 x_{1}+x_{3}+21 x_{4} & =5 \\
x_{1}+9 x_{2}+8 x_{3}+3 x_{4} & =6 \\
3 x_{1}-12 x_{4} & =0 .
\end{aligned}
$$

(b) Compute the reduced echelon form of the matrix in (a).
(c) How many solutions does our linear system

$$
\begin{aligned}
2 x_{1}+x_{3}+21 x_{4} & =5 \\
x_{1}+9 x_{2}+8 x_{3}+3 x_{4} & =6 \\
3 x_{1}-12 x_{4} & =0
\end{aligned}
$$

have? To receive full credit, explain how you derive your answer.

Problem 2. $\left(2+2+\ldots+2=20\right.$ points) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. Let A be a matrix. Indicate which of the following is TRUE or FALSE.
(1) If T is linear then its range is equal to its codomain.
(2) If T is linear and one-to-one then $n \geq m$.
(3) If T is linear and onto then $n \geq m$.
(4) If T is linear and invertible then $n \geq m$.
(5) If T is linear and invertible, then its inverse is linear and invertible.
(6) If T is linear, and A is its standard matrix, then A has size $n \times m$.
(7) If T is linear, and A is its standard matrix, and $T(v)=0$ for a nonzero vector $v \in \mathbb{R}^{n}$, then the columns of A are not linearly independent.
(8) If B is a matrix with the same size as A and $A v=B v$ whenever v is a vector such that the products $A v$ and $B v$ are both defined, then $A=B$.
(9) If A is not invertible, then $A B$ is not the identity matrix for any matrix B.
(10) If T is linear, and A is its standard matrix, and the range of T is not all of \mathbb{R}^{m}, then not every column of A is a pivot column.

Each part will be graded as follows: 0 points for a wrong answer, 1 point for no answer, 2 points for the correct answer. Explanations are not required for answers.

Solution:

(1)	TRUE	FALSE
(2)	TRUE	FALSE
(4)	TRUE	FALSE
(5)	TRUE	FALSE
(6)	TRUE	FALSE
(7)	TRUE	FALSE
(8)	TRUE	FALSE
(9)	TRUE	FALSE
(10)	TRUE	FALSE

Problem 3. $(5+10=15$ points $)$
(a) For what values of x is the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & x & 0 \\
-1 & 5 & 0 & 8 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

invertible?
(b) Assuming x is such that

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & x & 0 \\
-1 & 5 & 0 & 8 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

is invertible, derive a formula for A^{-1}.

Problem 4. $(1+9+4+4+2=20$ points) Consider the matrix

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

Remember that

- The column space of A is the span of its columns.
- The null space of A is the set of vectors v with $A v=0$.
(a) What are the values of m and n such that $\operatorname{Col} A \subset \mathbb{R}^{m}$ and $\operatorname{Nul} A \subset \mathbb{R}^{n}$?
(b) Compute the reduced echelon form of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

(c) Find a basis for the column space of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

(d) Find a basis for the null space of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

(e) What are the dimensions of the column space and null space of A ?

Problem 5. $(5+5+5+5=20$ points $)$
(a) Does there exist a 3×3 matrix whose column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \text { but not }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.
(b) Does there exist a 3×3 matrix whose null space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \text { but not }\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.
(c) Does there exist a 3×3 matrix whose null space and column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.
(d) Does there exist a 3×3 matrix whose null space and column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.

Problem 6. (10 points) Find all 2×2 matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

such that $2 a$ is a positive integer, b, c, d are real numbers, and $A^{T}=A^{-1}$.
Hint: for any square matrix B, recall that $\operatorname{det}\left(B B^{T}\right)=\operatorname{det}(B) \operatorname{det}\left(B^{T}\right)=\operatorname{det}(B)^{2}$.

