TLDR

Quick summary of today's notes. Lecture starts on next page.

- A linear equation is an equation that can be written in the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$ where the a_{i} 's and b are numbers and the x_{i} 's are variables. Like $4 x_{1}+5 x_{2}-\pi x_{3}=-1$ or $x_{1}=x_{2}+3$ or $0=0$ or even $0=1$, but NOT $x_{1}^{2}+x_{2}^{2}=1$ or $\left|x_{1}\right|+3 x_{2}=0$ or $\sin \left(x_{1}\right)=\sqrt{2} / 2$ or $2^{x_{1}+x_{2}}=4$.
- A linear system is a list of linear equations.
- A solution to a linear system is a list of values we can assign the variables that make all equations in the system true. Like $\left(x_{1}, x_{2}\right)=(3,4)$ is a solution to the linear system with two equations $x_{1}+x_{2}=7$ and $x_{2}-x_{1}=1$. Two linear systems are equivalent if they have the same solutions.
- Any linear system has 0,1 , or infinitely many solutions. If a linear system has two different solutions then it has infinitely many. If a linear system has no solutions then it is inconsistent.
- A matrix is a rectangular array of numbers like $[\sqrt{2}]$ or $\left[\begin{array}{rr}1.1 & -1.1 \\ 1.1 & 1.2\end{array}\right]$ or $\left[\begin{array}{rrr}1 & 7 & -1 \\ 0 & 4 & 3\end{array}\right]$.
- A matrix with m rows and n columns is $m \times n$ or " m-by- n."
- There are two important matrices associated to a linear system: the coefficient matrix and the augmented matrix. Best defined by example:

$$
\begin{array}{r}
3 x_{1}+x_{3}=8 \\
x_{2}-x_{3}=0 \\
-4 x_{2}+2 x_{3}=1
\end{array} \leadsto\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & 1 & -1 \\
5 & 4 & 2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rrrr}
3 & 0 & 1 & 8 \\
0 & 1 & -1 & 0 \\
5 & 4 & 2 & 1
\end{array}\right] .
$$

- There are three row operations we can perform on a matrix: (1) add a multiple of one row to another row, (2) multiply a row by a nonzero number, (3) swap two rows. For example:

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right] \xrightarrow{\text { row op. (1) }}\left[\begin{array}{rr}
10 & 20 \\
1 & 2
\end{array}\right] \xrightarrow{\text { row op. (2) }}\left[\begin{array}{rr}
-5 & -10 \\
1 & 2
\end{array}\right] \xrightarrow{\text { row op. }(3)}\left[\begin{array}{rr}
1 & 2 \\
-5 & -10
\end{array}\right]
$$

Two matrices are row equivalent if one can be transformed to the other by row operations.

- Two linear systems (in the same variables, with the same number of equations) are equivalent (i.e., have same solutions) if their augmented matrices are row equivalent.

1 Introduction

Check the course website

> http://www.math.ust.hk/~emarberg/teaching/2019/Math2121/
for the syllabus and other course details.

Each lecture corresponds to one or more sections in the textbook. Today's lecture corresponds to Section 1.1. For a more detailed discussion of the topics in any particular lecture, see the textbook.

Throughout, we'll be using the following notation:

- \mathbb{R} denotes the real numbers.
- \mathbb{Q} denotes the rational numbers p / q.
- \mathbb{Z} denotes the integers $\{\ldots,-2,-1,0,1,2, \ldots\}$.
- \mathbb{N} denotes the nonnegative integers $\{0,1,2, \ldots\}$.

Ellipsis ("...") notation: we write $a_{1}, a_{2}, \ldots, a_{7}$ instead of the full list $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$.
We use the same convention to write $a_{1}, a_{2}, \ldots, a_{n}$ even when n is a variable integer.

2 Systems of linear equations

Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables, where $n \geq 1$ is some integer.
Let $a_{1}, a_{2}, \ldots, a_{n}, b$ be numbers in \mathbb{R}.
Unlike in calculus, where our favorite variables are x, y, z, in linear algebra we prefer $x_{1}, x_{2}, x_{3}, \ldots$ since later we will want to go beyond 3 dimensions.

Definition. We refer to

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

as a linear equation in the variables $x_{1}, x_{2}, \ldots, x_{n}$.
Notation. Another way of writing this equation is $\sum_{i=1}^{n} a_{i} x_{i}=b$.
The symbol " \sum " is the Greek letter sigma, for "sum."
There are many other equivalent ways of writing the same equation. For example:

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}-b & =0 \\
b & =a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \\
a_{1} x_{1}+a_{3} x_{3}+a_{5} x_{5}+\ldots & =b-a_{2} x_{2}-a_{4} x_{4}-\ldots
\end{aligned}
$$

We consider all of these equations to be the same thing.
Example. The following are all linear equations:

$$
3 x_{1}=2 x_{2}, \quad 3 x_{1}+\frac{4}{3} x_{2}-\sqrt{2} x_{3}=7, \quad 0=0, \quad 0=1 .
$$

Even though the last two equations involve no variables, they have the form required of a linear equation. (The last equation is false, but a false equation is still an equation.)

The following are not linear equations:

$$
3 x_{1}^{2}+4 x_{2}=7, \quad x_{1} x_{2}=x_{3}, \quad \sqrt{x^{2}-1}=2 .
$$

A system of linear equations or linear system is a list of linear equations.

Example.

$$
\begin{array}{r}
2 x_{1}-x_{2}+\sqrt{3} x_{3}=8 \\
x_{1}-4 x_{3}=8 \\
x_{2}=0
\end{array}
$$

is a linear system in the variables x_{1}, x_{2}, x_{3}.
Definition. A solution of a linear system in variables $x_{1}, x_{2}, \ldots, x_{n}$ is a list of n numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with the property that if we set $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}$ in our equations, we get all true statements.

If our system contains any false equations like " $0=1$ ", then it cannot have any solutions.
Two linear systems are equivalent if they have the same set of solutions.
Example. How many solutions can a linear system have?

1. The system

$$
\begin{aligned}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3
\end{aligned}
$$

has one solution $\left(s_{1}, s_{2}\right)=(3,2)$.
2. But the system

$$
\begin{array}{r}
x_{1}-2 x_{2}=-1 \\
3 x_{1}-6 x_{2}=-3
\end{array}
$$

has many solutions: $\left(s_{1}, s_{2}\right)=(1,1)$ or $(3,2)$ or $(5,3)$ or \ldots
3. Whereas the system

$$
\begin{aligned}
& x_{1}-2 x_{2}=-1 \\
& x_{1}-2 x_{2}=0
\end{aligned}
$$

has no solutions.
Theorem. A linear system in two variables x_{1} and x_{2} has either 0,1 , or infinitely many solutions.
Proof by geometry. A solution to one equation $a x_{1}+b x_{2}=c$ represents a point on a line after we identify the pair of numbers $\left(x_{1}, x_{2}\right)$ with a point in the Cartesian plane.

A solution to a system of 2 -variable linear equations represents a point where the lines defined by the equations all intersect.

But a collection of lines all intersect at either 0 points (they don't have a common intersection), 1 point (the unique point of intersection) or at infinitely many points (in the case when the lines are all the same line, though they might come from different equations).

Proof by algebra. Suppose the linear system has two different solutions (s_{1}, s_{2}) and (r_{1}, r_{2}).
Define $\lambda_{1}=s_{1}-r_{1}$ and $\lambda_{2}=s_{2}-r_{2}$.
The symbol " λ " is the Greek letter lambda.
Then $\left(s_{1}+z \lambda_{1}, s_{2}+z \lambda_{2}\right)$ is a new solution to our system, for any choice of z.

To check this, suppose $a x_{1}+b x_{2}=c$ was one of the equations in our system. Then

$$
a\left(s_{1}+z \lambda_{1}\right)+b\left(s_{2}+z \lambda_{2}\right)=\left(a s_{1}+b s_{2}\right)+z\left(a \lambda_{1}+b \lambda_{2}\right) .
$$

On the right, the first term is $a s_{1}+b s_{2}=c$, and the second term is zero since

$$
a \lambda_{1}+b \lambda_{2}=a s_{1}-a r_{1}+b s_{2}-b r_{2}=\left(a_{1} s_{1}+b s_{2}\right)-\left(a r_{1}+b r_{2}\right)=c-c=0
$$

Therefore $a\left(s_{1}+z \lambda_{1}\right)+b\left(s_{2}+z \lambda_{2}\right)=c+0=c$ so $\left(s_{1}+z \lambda_{1}, s_{2}+z \lambda_{2}\right)$ is indeed a solution.
Since z can be any number, the system has infinitely many solutions.
A linear system is consistent if it has one or infinitely many solutions, and inconsistent if it has zero solutions. Both the algebraic and geometric proofs generalize to any number of variables. (Think about how to do this!) Therefore:

Theorem. Any linear system in n variables is either consistent or inconsistent, and therefore has either 0,1 , or infinitely many solutions.

3 Matrices

A matrix is just a rectangular array of numbers, like these ones:

$$
[1] \quad \text { or } \quad\left[\begin{array}{ll}
5 & 3 \\
2 & \pi
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llll}
7 & 6 & 4 & 3 \\
2 & 1 & 1 & 0
\end{array}\right]
$$

We denote a general matrix by

$$
A=\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34}
\end{array}\right]
$$

Here " A_{23} " is pronounced "A, two, three". This matrix is 3 -by- 4 : it has 3 rows and 4 columns.
Say that a matrix A is m-by- n or $m \times n$ if has m rows and n columns.
We usually write $A_{i j}$ (pronounced "A, i, j ") for the entry in the i th row and j th column of the matrix.
Matrices are useful as a compact way of writing a linear system.
Consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
5 x_{1}-5 x_{3} & =10
\end{aligned}
$$

Define the coefficient matrix of this system to be

$$
\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 2 & -8 \\
5 & 0 & -1
\end{array}\right]
$$

In other words, the matrix A where $A_{i j}$ is the coefficient of x_{j} in the i th equation.
The augmented matrix of the system is

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
5 & 0 & -1 & 10
\end{array}\right]
$$

Exercise: how would you generalize this definition to any linear system?

4 Solving linear systems

We solve linear systems by adding equations together to cancel variables.
Example. To solve

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
5 x_{1}-5 x_{3} & =10
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
5 & 0 & -5 & 10
\end{array}\right]
$$

we first add -5 time equation 1 to equation 3 to get

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
10 x_{2}-10 x_{3} & =10
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & 10 & -10 & 10
\end{array}\right]
$$

We then multiply equation 2 by $1 / 2$ to get

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
10 x_{2}-10 x_{3} & =10
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 10 & -10 & 10
\end{array}\right]
$$

We then add -10 times equation 2 to equation 3 :

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
30 x_{3} & =-30
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 30 & -30
\end{array}\right]
$$

Multiple equation 3 by $1 / 30$:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
x_{3} & =-1
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & -1
\end{array}\right] .
$$

The augmented matrix of the last system if triangular: all entries in positions (i, j) with $i>j$ are zero. Remember that i is the row, j is the column.

We can easily solve for x_{1}, x_{2}, x_{3} from a triangular system, working from the bottom up:

- The last equation $x_{3}=-1$ is already as simple as possible.
- Substitute into second equation: $x_{2}-4 x_{3}=x_{1}-4(-1)=4 \Rightarrow x_{2}=0$.
- Substitute into first equation: $x_{1}-2 x_{2}+x_{1}=x_{1}-2(0)+(-1)=0 \Rightarrow x_{1}=1$.

Definition. In solving this system of equations, we performed the following (elementary) row operations on the augmented matrix of the system:

1. Replacement: replace one row by the sum of itself and a multiple of another row.
2. Scaling: multiple all entries in a row by a nonzero number.
3. Interchange: swap two rows.

Note: we "add" rows by adding the corresponding entries:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]+\sqrt{7}\left[\begin{array}{llll}
0 & 8 & 4 & 6
\end{array}\right]=\left[\begin{array}{llll}
1 & 2+8 \sqrt{7} & 3+4 \sqrt{7} & 4+6 \sqrt{7}
\end{array}\right]
$$

Two matrices are row equivalent if one can be transformed to the other by a sequence of row operations. Each row operation is reversible. (Exercise: why?)

Theorem. If the augmented matrices of two linear systems are row equivalent, then the systems are equivalent (i.e., have same solutions).

Proof. Here's the idea, minus the details: check that performing one row operation does not change whether a given $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a solution to the linear system.

Given a linear system with augmented matrix A, suppose we perform row operations on A until we get a matrix T with the property that whenever $T_{i j}$ is the first nonzero entry in the i th row of T going left to right, then $T_{i j}$ is the last nonzero entry in the j th column of T going top to bottom. For example:

$$
T=\left[\begin{array}{lllll}
1 & 6 & 8 & 9 & 0 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & 0 & 4 & 2
\end{array}\right] \quad \text { or } \quad T=\left[\begin{array}{lllll}
1 & 6 & 8 & 9 & 0 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

From T in this form, we can easily determine if the system we started out with is consistent or inconsistent. If T is the left matrix, the system is consistent: we have

$$
x_{4}=4, \quad 3 x_{3}+2 x_{4}=1, \quad \text { and } \quad x_{1}+6 x_{2}+8 x_{3}+9 x_{4}=0
$$

Exercise: find a solution!
If T is the right matrix, the system is inconsistent: it includes the equation $0=2$, from the last row.
In general, a linear system is inconsistent if and only if its augmented matrix can be transformed by row operations to a matrix with a row of the form

$$
\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & q
\end{array}\right]
$$

where $q \neq 0$. We'll prove this next time, after introducing the course's most important algorithm, row reduction to echelon form.

5 Vocabulary

Keywords from today's lecture:

1. Linear equation.

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b$ where n is a positive integer, $a_{1}, a_{2}, \ldots, a_{n}, b$ are numbers, and $x_{1}, x_{2}, \ldots, x_{n}$ are variables.
Example: $3 x_{1}-\frac{1}{7} x_{3}=x_{4}+5$.

2. Linear system or system of linear equations.

A list of one or more linear equations.
Example: $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 3 x_{2}-x_{1}=2\end{array}\right.$
3. Solution to a linear system.

A solution to one linear equation $a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b$ is a list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that $a_{1} s_{1}+a_{2} s_{2}+\ldots a_{n} s_{n}$ is equal to b. A solution to a linear system is a list of numbers that is simultaneously a solution to every equation in the system.
Example: a solution to $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 3 x_{2}-x_{1}=2\end{array}\right.$ is $\left(s_{1}, s_{2}\right)=\left(\frac{7}{4}, \frac{5}{4}\right)$.

4. Equivalent linear systems.

Two linear systems with the same sets of variables and same sets of solutions.
Example: $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 3 x_{2}-x_{1}=2\end{array}\right.$ and $\left\{\begin{array}{l}2 x_{1}+2 x_{2}=6 \\ x_{1}-3 x_{2}+2=0\end{array} \quad\right.$ are equivalent.
5. Consistent linear system.

A linear system with at least one solution.
Example: $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 3 x_{2}-x_{1}=2\end{array} \quad\right.$ is consistent.

6. Inconsistent linear system.

A linear system with no solutions.
Example: $\left\{\begin{array}{l}x_{1}+x_{2}=3 \\ 2 x_{1}+2 x_{2}=4\end{array} \quad\right.$ is inconsistent.

7. Matrix.

A rectangular array of numbers. A matrix A is $m \times n$ if it has m rows and n columns.
We write $A_{i j}$ for the entry of A is row i and column j.
Example: $A=\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right]$. This matrix is 2×3 and $A_{21}=\sqrt{2}$ while $A_{12}=-1$.
8. Coefficient matrix of a linear system.

For a linear system m equations with n variables, the $m \times n$ matrix that records the coefficients of the variables.

Example: $\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right]$ is the coefficient matrix of $\left\{\begin{array}{l}-x_{2}+2 x_{3}=3 \\ \sqrt{2} x_{1}+5 x_{2}+6 x_{3}=7\end{array}\right.$.
9. Augmented matrix of a linear system.

For a linear system m equations with n variables, the $m \times(n+1)$ matrix that records the coefficients of the variables and the constant on the other side of each equation.

Example: $\left[\begin{array}{rrrr}0 & -1 & 2 & 3 \\ \sqrt{2} & 5 & 6 & 7\end{array}\right]$ is the augmented matrix of $\left\{\begin{array}{l}-x_{2}+2 x_{3}=3 \\ \sqrt{2} x_{1}+5 x_{2}+6 x_{3}=7\end{array}\right.$.
10. Elementary row operator on a matrix.

One of the following operations on a matrix: replace one row by the sum of the row and a multiple of another row, multiply all entries in row by a fixed number, or swap two rows.

Example: $\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}2 \sqrt{2} & 9 & 14 \\ \sqrt{2} & 5 & 6\end{array}\right]$
Example: $\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}0 & -1 & 2 \\ 5 \sqrt{2} & 25 & 30\end{array}\right]$
Example: $\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}\sqrt{2} & 5 & 6 \\ 0 & -1 & 2\end{array}\right]$.

11. Row equivalent matrices.

Matrices that can be transformed to each other by a sequence of row operations.
Example: $\left[\begin{array}{rrr}0 & -1 & 2 \\ \sqrt{2} & 5 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}2 \sqrt{2} & 9 & 14 \\ \sqrt{2} & 5 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}2 \sqrt{2} & 9 & 14 \\ 5 \sqrt{2} & 25 & 30\end{array}\right] \rightarrow\left[\begin{array}{rrr}5 \sqrt{2} & 25 & 30 \\ 2 \sqrt{2} & 9 & 14\end{array}\right]$

