
MATH 2121 — Linear algebra (Fall 2019) Lecture 7

TLDR

Quick summary of today’s notes. Lecture starts on next page.

• If T and U are functions Rn → Rm, then there is a natural way to form the sum T + U and the
scalar multiple cT for c ∈ R. The definitions are

(T + U)(v) = T (v) + U(v) and (cT )(v) = c · T (v) for v ∈ Rn.

Both of these are also functions Rn → Rm.

If T and U are linear, then T + U and cT are both linear.

• If A and B are m× n matrices, then there is a natural way to form the sum A + B and the scalar
multiple cA for c ∈ R. These operations work exactly as for vectors: we just add together entries
in the same position or multiply all entries by the same number.

The resulting matrices have the same size as A and B.

• If A and B are the standard matrices of T and U , then A + B is the standard matrix of T + U ,
and cA for c ∈ R is the standard matrix of cT .

• If T : Rn → Rm and U : Rk → Rn then we can can compose T and U to form a new function

T ◦ U : Rk → Rm.

This function is defined by the formula T ◦ U(v) = T (U(v)) for v ∈ Rk.

If T and U are linear then T ◦ U is linear.

• There is a natural way to multiply an m× n matrix A by an n× k matrix B.

The result, written AB, is an m× k matrix.

The product AB is only defined if the number of columns of A is the number of rows of B.

Unlike numbers, we can have AB 6= BA, so the order of multiplication matters.

• Suppose A is the standard matrix of T : Rn → Rm and B is the standard matrix of U : Rk → Rn.
Then we define AB to be the standard matrix of T ◦ U : Rk → Rm.

To compute AB: if B =
[
b1 b2 . . . bk

]
where bi ∈ Rn then AB =

[
Ab1 Ab2 . . . Abk

]
.

An example of this kind of calculation:

[
1 2 3
0 4 8

] 10 100
1 1000

10 100

 =

 [
1 2 3
0 4 8

] 10
1

10

 [
1 2 3
0 4 8

] 100
1000
100

  =

[
42 2400
84 4800

]
.

• The transpose of a matrix A is the matrix AT formed by flipping A across the diagonal, e.g.:

A =

[
a b c
d e f

]
; AT =

 a d
b e
c f

 .

If A is m× n and B is n× k so that the product AB is defined, then (AB)T = BTAT .
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1 Last time: one-to-one and onto linear transformations

Let T : Rn → Rm be a function.

The following mean the same thing:

• T is linear is the sense that T (u + v) = T (u) + T (v) and T (cv) = cT (v) for u, v ∈ Rn, c ∈ R.

• There is an m× n matrix A such that T has the formula T (v) = Av for v ∈ Rn.

If we are given a linear transformation T , then T (v) = Av for the matrix

A =
[
T (e1) T (e2) . . . T (en)

]
where ei ∈ Rn is the vector with a 1 in row i and 0 in all other rows.

Call A the standard matrix of T .

The following all mean the same thing for a function f : X → Y .

• f is one-to-one.

• If a, b ∈ X and f(a) = f(b) then a = b.

• If a, b ∈ X and a 6= b then f(a) 6= f(b).

• f does not send different inputs to the same output.

Similarly, the following all mean the same thing for a function f : X → Y .

• f is onto.

• The range of f is equal to the codomain, i.e., range(f) = {f(a) : a ∈ X} = Y .

• For each y ∈ Y there is at least one x ∈ X with f(x) = y.

• Every element of the codomain of f is an output for some input.

We can detect whether a linear transformation is one-to-one or onto by locating the pivot positions in its
standard matrix (by row reducing).

Theorem. Suppose T : Rn → Rm is the linear transformation T (v) = Av where A is an m× n matrix.

(1) T is one-to-one if and only if the columns of A are linearly independent, which happens precisely
when A has a pivot position in every column.

(2) T is onto if and only if the span of the columns of A is Rm, which happens precisely when A has a
pivot position in every row.

2 Operators on linear transformations and matrices

Key point from last time and starting point of today: linear transformations Rn → Rm are uniquely
represented by m×n matrices, and every m×n matrix corresponds to a linear transformation Rn → Rm.

There are several simple, natural operations we can use to combine and alter linear transformations to get
other linear transformations. The goal is to translate these function operations into matrix operations.

Sums and scalar multiples. Suppose T : Rn → Rm and U : Rn → Rm are two linear functions with
the same domain and codomain. Their sum T + U is the function Rn → Rm defined by

(T + U)(v) = T (v) + U(v) for v ∈ Rn.

1



MATH 2121 — Linear algebra (Fall 2019) Lecture 7

If c ∈ R is a scalar, then cT is the function Rn → Rm defined by

(cT )(v) = cT (v) for v ∈ Rn.

Fact. Both T + U and cT are linear transformations.

Proof. To see that T + U is linear, we check that

(T + U)(u + v) = T (u + v) + U(u + v) = T (u) + T (v) + U(u) + U(v) = (T + U)(u) + (T + U)(v)

for u, v ∈ Rn, and

(T + U)(av) = T (av) + U(av) = aT (v) + aU(v) = a(T + U)(v)

for a ∈ R and v ∈ Rn. Since these properties hold, T + U is linear.

The proof that cT is linear is similar. (Try this yourself!)

Since sums and scalar multiples of linear functions are linear, it follows that differences T − U and
arbitrary linear combinations aT + bU + cV + . . . of linear functions are linear.

Suppose T and U have standard matrices

A =


a11 a12 . . . a1n
a21 a22 a2n

...
. . .

...
am1 am2 . . . amn

 and B =


b11 b12 . . . b1n
b21 b22 b2n
...

. . .
...

bm1 bm2 . . . bmn


so that T (v) = Av and U(v) = Bv.

Proposition. The standard matrix of T + U is

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 a2n + b2n

...
. . .

...
am1 + bm1 am2 + bm2 . . . amn + bmn

 .

The standard matrix of cT is

cA =


ca11 ca12 . . . ca1n
ca21 ca22 ca2n

...
. . .

...
cam1 cam2 . . . camn

 .

This is how we define sums and scalar multiples of matrices. These operations work in essentially the
same way as for vectors: we can add matrices of the same size, by adding the entries in corresponding
positions together, and we can multiply a matrix by a scalar c by multiplying all entries by c.

Example. We have [
4 0 5
−1 3 2

]
+

[
1 1 1
3 5 7

]
=

[
5 1 6
2 8 9

]
.

and

−
[

4 0 5
−1 3 2

]
+ 2

[
1 1 1
3 5 7

]
=

[
−4 0 −5

1 −3 −2

]
+

[
2 2 2
6 10 14

]
=

[
−2 2 −3

7 7 12

]
.
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Suppose T,U, V are linear transformations Rn → Rm with standard matrices A,B,C. Let a, b ∈ R.

The following properties then hold:

Functions Matrices

1. T + U = U + V A + B = B + A.

2. (T + U) + V = T + (U + V ) (A + B) + C = A + (B + C).

3. T + 0 = T where 0 : Rn → Rm is the map 0(v) = 0 ∈ Rm. A + 0 = A.

4. a(T + U) = aT + aU a(A + B) = aA + aB.

5. (a + b)T = aT + bT (a + b)A = aA + bA.

6. a(bT ) = (ab)T . a(bA) = (ab)A.

Composition. Suppose U : Rn → Rm and T : Rm → Rk are linear.

Note that we assume the codomain of U is equal to the domain of T .

The composition T ◦ U is the function Rn → Rk given by

(T ◦ U)(v) = T (U(v)) for v ∈ Rn.

Fact. Since T and U are linear, T ◦ U is linear.

Proof. To see that T ◦ U is linear, we check that

(T ◦ U)(u + v) = T (U(u + v)) = T (U(u) + U(v)) = T (U(u)) + T (U(v)) = (T ◦ U)(u) + (T ◦ U)(v)

for u, v ∈ Rn, and

(T ◦ U)(cv) = T (U(cv)) = T (cU(v)) = cT (U(v)) = c(T ◦ U)(v)

for c ∈ R and v ∈ Rn.

Important note: U ◦ T is not defined unless k = n.

Even if k = n so that both T ◦U and U ◦ T are defined, there is no reason to expect that T ◦U = U ◦ T .

Example. If n = m = k = 1 and T (x) = 2x and U(x) = x2, then

(T ◦ U)(x) = T (x2) = 2x2 but (U ◦ T )(x) = U(2x) = 4x2.

Since T ◦ U is a linear transformation Rn → Rk, there is a unique k × n matrix C such that

(T ◦ U)(v) = Cv for v ∈ Rn.

If A is the standard matricx of T and B is the standard matrix of U , then we define the matrix product

AB = C.

Note how this definition works: if A is k ×m and B is m× n then we define AB to be the unique k × n
matrix C such that Cv = A(Bv) for all v ∈ Rn.

How do we actually compute the rectangular array which is AB, from A and B?

Theorem. Suppose B has columns b1, b2, . . . , bn ∈ Rm so that B =
[
b1 b2 . . . bn

]
.

Then AB =
[
Ab1 Ab2 . . . Abn

]
. (This makes sense as A is k ×m.)
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Proof. AB is the standard matrix of the linear function T ◦ U , so

AB =
[

(T ◦ U)(e1) (T ◦ U)(e2) · · · (T ◦ U)(en)
]

=
[
A(Be1) A(Be2) · · · A(Ben)

]
=
[
Ab1 Ab2 · · · Abn

]
.

Example. If A =

[
2 3
1 −5

]
and B =

[
4 3 6
1 −2 3

]
, then b1 =

[
4
1

]
, b2 =

[
3
−2

]
, b3 =

[
6
3

]
, so

AB =
[
Ab1 Ab2 Ab3

]
=

[
11 0 21
−1 13 −9

]
.

The quick rule for computing AB: if the ith row of A and jth column of B are

[
a1 a2 . . . am

]
and


b1
b2
...

bm


then the entry in the ith row and jth column of AB is

[
a1 a2 . . . am

]


b1
b2
...

bm

 = a1b1 + a2b2 + · · ·+ ambm.

Example. Suppose A =

[
1 2 3 4
5 6 7 8

]
and B =


1 2 3
4 5 6
7 8 9
9 9 9

.

The entry in the 2nd row and 2nd column of AB is

5 · 2 + 6 · 5 + 7 · 8 + 8 · 9 = 10 + 30 + 56 + 72 = 168.

Write In for the n× n matrix

In =


1

1
. . .

1


which has 1 in each diagonal position, and zeros in all other positions.

The matrix In is the standard matrix of the identity map Rn → Rn.

This is the linear function T with T (v) = v for all v ∈ Rn.

Proposition. Let A,B,C be matrices.

Assume A is m× n, B is n× l, and C is l × k.

Then A(BC) = (AB)C.

Proof. Use our first definition of matrix multiplication.

By this definition, AB and BC are the unique matrices such that (AB)x = A(Bx) and (BC)x = B(Cx).
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In turn, A(BC) is the unique matrix such that (A(BC))x = A((BC)x) = A(B(Cx)).

But (AB)C is also the unique matrix such that ((AB)C)x = (AB)(Cx) = A(B(Cx)).

Therefore A(BC) = (AB)C.

Here are some easier properties. Suppose A,B,C are matrices and r ∈ R.

• If A is m× n and B,C are n× l then A(B + C) = AB + AC.

• If A,B are m× n and C is n× l then (A + B)C = AC + BC.

• If A is m× n and B is n× l then r(AB) = (rA)B = A(rB).

• If A is m× n then ImA = AIn = A.

3 Pathologies of matrix multiplication

Suppose A and B are matrices.

Four important observations:

1. The product AB is defined only if the number of columns of A is the number of rows of B.

2. Even if AB and BA are both defined, it typically happens that AB 6= BA.

3. AB = AC does not imply B = C.

4. It can happen that AB = 0 =

 0 · · · 0
...

. . .
...

0 · · · 0

 even if both A 6= 0 and B 6= 0.

Example. We have[
1 0
1 0

] [
0 0
1 1

]
=

[ [
1 0
1 0

] [
0
1

] [
1 0
1 0

] [
0
1

] ]
=

[
0 0
0 0

]
while [

0 0
1 1

] [
1 0
1 0

]
=

[ [
0 0
1 1

] [
1
1

] [
0 0
1 1

] [
0
0

] ]
=

[
0 0
2 0

]
.

If A and B are both square matrices of the same size (meaning they have the same number of rows and
columns), and AB = BA, then we say that A and B commutes.

4 Matrix transpose

The transpose of an m× n matrix A is the n×m matrix AT whose columns are the rows of A.

If aij is the entry in row i and column j of A, then this is the entry in row j and column i of AT .

For example, if A =

[
a b c
d e f

]
then AT =

 a d
b e
c f

.

The transpose of A is given by flipping A across the main diagonal, in order to interchange rows/columns.

Another example: if C =

 1 1 1 1
−3 5 −2 7

0 0 1 0

 then CT =


1 −3 0
1 5 0
1 −2 1
1 7 0

.

5



MATH 2121 — Linear algebra (Fall 2019) Lecture 7

We finish this lecture by noting some basic properties of the transpose operation:

• (AT )T = A since flipping twice does nothing.

• If A and B have the same size then (A + B)T = AT + BT .

• If c ∈ R then (cA)T = c(AT ).

• If A is an k ×m matrix and B is and m× n matrix then (AB)T = BTAT .

To prove the last property, use our earlier results to compute the entries in ith row and jth column of
the matrices on either side (in terms of the entries of A and B), and check that these are equal.

Question for later: how is the linear transformation with standard matrix A related to the linear trans-
formation with standard matrix AT ? What is the transpose as an operation on linear transformations?
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5 Vocabulary

Keywords from today’s lecture:

1. Sums, scalar multiples, and compositions of linear functions.

If T : Rn → Rm and U : Rn → Rm and c ∈ R then

T + U : Rn → Rm

is the function with (T + U)(v) = T (v) + U(v), and

cT : Rn → Rm

is the function with (cT )(v) = c(T (v)).

If T : Rn → Rm and U : Rm → Rk then U ◦ T : Rn → Rk is the function (U ◦ T )(v) = U(T (v)).

2. Sums, scalar multiples, and products of matrices.

If A and B are m × n matrices then A + B is the m × n matrix whose entry in position (i, j) is
Aij + Bij . If c ∈ R then cA is the matrix whose entry in position (i, j) is cAij .

If A is m × n and B is n × k then AB is the m × k whose entry in position (i, j) is ith row of A
(which is a 1× n matrix) times the jth column of B (which is a vector in Rn).

Example:

[
a b
c d

]
+

[
w x
y z

]
=

[
a + w b + x
c + y d + z

]
.

Example: 5

[
a b
c d

]
=

[
5a 5b
5c 5d

]
.

Example:

[
a b
c d

] [
w x
y z

]
=

[
aw + by ax + bz
cw + dy cx + dz

]
.

3. Transpose of a matrix.

If A is an m × n matrix then its transpose AT is the n ×m with the same entries as A but with
rows and columns interchanged.

Example:

[
a b c
x y z

]T
=

 a x
b y
c z

.

4. Identity matrix

The n× n matrix I = In with 1s on the diagonal and 0s off the diagonal.

AI = A and IB = B for all matrices A with n columns and all matrices B with n rows.

Example:
[

1
]
,

[
1 0
0 1

]
,

 1 0 0
0 1 0
0 0 1

, and so on.
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