MATH 2121 — Linear algebra (Fall 2019) Lecture 12

TLDR

Quick summary of today’s notes. Lecture starts on next page.
e Let n be a positive integer and let A and B be n x n matrices.
It always holds that det A = det AT
If A is invertible then det A # 0. If A is not invertible then det A = 0.
It always holds that det AB = (det A)(det B).

e A matrix is triangular if it looks like

S % ¥ ¥
* % ¥ %
Q
=
L T
* % % O
* ¥ OO
* O O O

O O O *
O O *x ¥

where the *’s are arbitrary entries.

Let a;; € R denote the entry of A in the ith row and jth column.

If A is triangular then |det A = a11a22a33 - * - Gnp ‘ is the product of the diagonal entries of A.

The matrix A is diagonal if a;; = 0 whenever ¢ # j. Diagonal matrices are triangular.
e Here is an algorithm to compute det A:

— Perform a series of row operations to transform A to a matrix F in echelon form.

Keep track of a scalar ¢ € R as you do this. Start with ¢ = 1.

Whenever you swap two rows of A, multiply ¢ by —1.

Whenever you multiply a row of A by a nonzero number, divide ¢ by that number.

— Then |det A = the product of ¢ and the diagonal entries of your echelon form F |

e Here is another way to compute det A.
Again write a;; for the entry of A in row ¢ and column j.

Also let A7) be the matrix formed from A by deleting row i and column j.

Then | det A = a7 det AY — q15det A2 4 qy5det AT3) — o — (=1)"ay, det A |

This formula is complicated and inefficient for generic matrices.
It is useful when many entries of A are equal to zero, since then the formula has few terms.

Also, when n < 3 and you expand all the terms in this formula, you get the identities

a b c
det { CCL 2 } =ad—bc and det | d e f | =a(ei— fh)—b(di— fg)+ c(dh — eg).
g h i
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1 Last time: introduction to determinants

Let n be a positive integer.

A permutation matriz is a square matrix whose entries are all 0 or 1, and that has exactly one nonzero
entry in each row and in each column. Let S,, be the set of n x n permutation matrices.

If Ais an n x n matrix and X € S,,, then AX has the same columns as A but in a different order: the
columns of A are “permuted” by X.

Example. The six elements of S3 are

1 00 1 00 01 0 010 0 0 1 0 0 1
0 1 0 0 01 1 00 0 01 100 010
0 0 1 0 10 0 01 1 00 010 1 00

Given X € S, and an arbitrary n x n matrix A:

e Define prod(X, A) to be the product of the entries of A in the nonzero positions of X.

e Define inv(X) to be the number of 2 X 2 submatrices of X equal to [ (1) (1) ] .

To form a 2 x 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent,
and then take the 4 entries determined by those rows and columns.

Each 2 x 2 submatrix of a permutation matrix is

0 0 . 1 0 . 0 0 . 0 1 . 0 0 . 1 0 . 0 1
00| [oo]” o1 |[%[oo]"[1o0o]% 0o 1[%[1 0]
0 0 1 a b c
Example. prod 10 0),|d e f = cdh
010 g h i
0 0 1 100 0 0 1
Example. inv 1 0 0 =2 and inv 01 0 =0 and inv 0 1 0 =3.
01 0 0 0 1 1 00

Definition. The determinant of an n X n matrix A is the number given by the formula

det A = Z prod(X, A)(—1)"(X)
XeSn

This general formula simplifies to the following expressions for n = 1,2, 3:

det[ a ] =a.

det{i g}zad—bc.
a b c

det | d e f | =alei— fh)—b(di— fg)+ c(dh — ef).
g h i

For n > 4, our formula det A is a sum with at least 24 terms, and so is not easy to compute by hand.
We will describe a better way of computing determinants today.

The most important properties of the determinant are described by the following theorem:
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Theorem. The determinant is the unique function det : {n x n matrices} — R with these 3 properties:

0 @k =1)

(2) If B is formed by switching two columns in an n x n matrix A, then ’ det A= —detB ‘

(3) Suppose A, B, and C are n X n matrices with columns
A:[al as ... an} and B:[bl by ... bn] and C:[cl cy ... cn].

Assume there is an index i where a; = zb; 4+ yc; for z,y € R.

Assume also that if ¢ # j then a; = b; = ¢;.

Then |det A = xdetB—&—ydetC‘.

Corollary. If A is a square matrix which is not invertible then det A = 0.
Corollary. If A is a permutation matrix then det A = (—1)"™(4),

Proof. prod(X,Y) =0 if X and Y are different n X n permutation matrices, but prod(X, X) = 1. O

2 More properties of the determinant

Recall that AT denotes the transpose of a matrix A (the matrix whose rows are the columns of A).

Lemma. If X € S, then X7 € S, and inv(X) = inv(X 7).
. . . . 0 1
Proof. Transposing a permutation matrix does not effect the # of 2x 2 submatrices equal to 1ol O

Corollary. If A is any square matrix then det A = det(AT).
Proof. If X € S, then prod(X, A) = prod(X”T, AT), so our formula for the determinant gives

det A=Y prod(X, A)(~1)™X) = 3™ prod(XT, AT)(~1)™X"),
Xes, Xes,

As X ranges over all elements of S,,, the transpose X7 also ranges over all elements of S,,.

The second sum is therefore equal to )y prod(X, AT)(=1)m™X) = det(AT). O

The following lemma is a weaker form of a statement we will prove later in the lecture.

Lemma. Let A and B be n x n matrices with det A # 0. Then det(AB) = (det A)(det B).

Proof. Define f : { n x n matrices } — R to be the function f(M) = dejé?%)

Then f has the defining properties of the determinant, so must be equal to det since det is the unique
function with these properties. In more detail:

e We have f(I,) = deﬁiﬁ") = ii:ﬁ =1
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o If M’ is given by swapping two columns in M, then AM’ is given by swapping the two corresponding

columns in AM, so f(M') = degﬁ%/) = _dfett(iM) = —f(M).

e If column ¢ of M is z times column ¢ of M’ plus y times column 4 of M" and all other columns of
M, M’, and M" are equal, then the same is true of AM, AM’, and AM" so

det(AM)  xdet(AM’) + ydet(AM”)

g = S — — — o f (M) + yf O1").

These properties uniquely characterise det, so f and det must be the same function.

Therefore f(B) = % = det B for any n X n matrix B, so det(AB) = (det A)(det B). O

3 Determinants of triangular and invertible matrices

An n x n matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the
diagonal positions (1,1),(2,2),(3,3),...,(n,n). Such a matrix looks like

* % % x
0 * x =x
0 0 x =%
0 0 0 =

where the * entries can be any numbers. The zero matrix is considered to be upper-triangular.

An n x n matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the
diagonal positions. Such a matrix looks like

* ¥ * O
* ¥ O O
* © O O

EEE R

where the x entries can again be any numbers. The zero matrix is also considered to be lower-triangular.
The transpose of an upper-triangular matrix is lower-triangular, and vice versa.
We say that a matrix is triangular if it is either upper- or lower-triangular.

A matrix is diagonal if it is both upper- and lower-triangular.

This happens precisely when all nonzero entries are on the diagonal:

O O O *
* © O O

0 0
* 0
0 =
0 0
,2),(3,3),...,(n,m).

The diagonal entries of A are the numbers that occur in positions (1,1), (2

Proposition. If A is a triangular matrix then det A is the product of the diagonal entries of A.

a 0 0
For example, we havedet | O b 0 | = abc.
0 0 ¢

Proof. Assume A is upper-triangular. If X € S,, and X # I,, then at least one nonzero entry of X is in
a position below the diagonal, in which case prod(X, A) is a product of numbers which includes 0 (since
all positions below the diagonal in A contain zeros) and is therefore 0.

Hence det A =} g prod(X, A)(=1)™(X) = prod(I,,, A) = the product of the diagonal entries of A.

If A is lower-triangular then the same result follows since det A = det(AT). O



MATH 2121 — Linear algebra (Fall 2019) Lecture 12

Lemma. If A is an n X n matrix then det A is a nonzero multiple of det (RREF(A)).
Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough
to show that det B is a nonzero multiple of det A. There are three possibilities for B:
1. If B is formed by swapping two rows of A then B = X A for a permutation matrix X € S,,.
Therefore det B = det(X A) = (det X)(det A) = £ det A.
2. Suppose B is formed by rescaling a row of A by a nonzero scalar A € R.
Then B = DA where D is a diagonal matrix of the form

M1

1

and in this case det D = X # 0, so det B = det(DA) = (det D)(det A) = Adet A.
3. Suppose B is formed by adding a multiple of row i of A to row j.

Then B = TA for a triangular matrix T° whose diagonal entries are all 1 and whose only other
nonzero entry appears in column ¢ and row j, so we have det B = det(T'A) = (det T")(det A) = det A.

This shows that performing anny elementary row operation to A multiplies det A by a nonzero number.
It follows that det(RREF(A)) is a sequence of nonzero numbers times det A. O
This brings us to an important property of the determinant that is worth remembering.

Theorem. An n X n matrix A is an invertible if and only if det A # 0.

Proof. We have already seen that if A is not invertible then det A = 0.
Assume A is invertible. Then RREF(A) = I,,, so det(RREF(A)) = det I,, = 1.
Hence det A # 0 since det A is a nonzero multiple of det(RREF(A)). O

This theorem is important conceptually but ineffective computationally, at least if n > 2.

This is because the quickest way to compute det A involves just as much work as checking if RREF(A) = I,,.

Our next goal is to show that the determinant is a multiplicative function.
Lemma. Let A and B be n x n matrices. If A or B is not invertible then AB is not invertible.

Proof. Let X and Y be n X n matrices.

We have seen that X and Y are inverses of each other if XY = I,,, in which case also Y X = I,,.
Suppose AB is invertible with inverse X. Then (AB)X = X(AB) = I,,.

Then A is invertible with A=! = BX since A(BX) = (AB)X = I,,.

Likewise, B is invertible with B~! = X A since (XA)B = X(AB) = I,,.

Thus, if A or B is not invertible then AB cannot be invertible. O
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Theorem. If A and B are any n x n matrices then det(AB) = (det A)(det B).

Proof. We already proved this in the case when det A # 0.
If det A = 0, then A is not invertible, so AB is not invertible either, so det(AB) = 0 = (det A)(det B). O
It is difficult to derive this theorem directly from the formula det A =3¢ prod(X, A)(=1)mv(X,

1 2
3 4

2 3
4 5

3 10 13
5 ])—det[22 29}—290—286—4.

Example. We have det [ } =4—6=—2 and det { } =10—-12 = -2.

1 2772
On the other hand, det <{ 3 4 ] [ 4
4 Computing determinants

Our proof that det A is a nonzero multiple of det(RREF(A)) can be turned into an effective algorithm.

Algorithm to compute det A.

Input: an n X n matrix A.
1. Start by setting ¢ = 1.

2. Row reduce A to an echelon form E. (It is not necessary to bring A all the way to reduced echelon
form. We just need to row reduce A until we get an upper triangular matrix.)

Each time you perform a row operation in this process, modify the number ¢ as follows:
(a) When you switch two rows, multiply ¢ by —1.
(b) When you multiply a row by a nonzero factor A, divide ¢ by .
(¢) When you add a multiple of a row to another row, don’t do anything to c.
The determinant det E' is the product of the diagonal entries of
The determinant of A is given by det A = ¢ - det E.

Example. We reduce the following matrix to echelon form:

5
—4 c=1
6

A:

= O W

5
-9 (we added a multiple of row one to row two) c¢=1
6

w

|
L oW

(we added a multiple of row one to row three) c¢=1

(we multiplied row two by —1/3) ¢= -3

\
NCRISRI
w

=FE (we added a multiple of row two to row three) c¢= -3

2
OO OO OO NOKF NH
|
@
|
©

O = W
N Qo Ot
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Therefore det A =c-det E=—-3-(1-1-2) = —6.

Another sometimes useful algorithm to compute det A.

Define A7) to be the submatrix formed by removing row i and column j from A.

a b ¢ i f
For example, if A= | d e f | then A1?) = { . }
g h i 9

aip a2 aiz ... Qin
21 G22 G23 ... (2,
Theorem. If A is the n x n matrix A= | @31 @32 @33 ... 3n | then
An1 An2 an3 e Apn
(1) |det A = aq; det AGD o det AN 4 gr3det ALY — o — (=1)"a1y, det At |
(2) |det A = aqq det ALY o1 det A®Y 4 a3y det AGD — ... — (=1)"ap det Alnb)

Note that each A7) or AUV is a square matrix smaller than A.

Thus det A7) or det AUD can be computed by the same formula on a smaller scale.

Proof. The second formula follows from the first formula since det A = det(AT). (Why?)

The first formula is a consequence of the formula for det A we derived last lecture. One needs to show

—(=1)ay;det AT = 3" prod(X, A)(—1)™)

xesy

where SY is the set of n x n permutation matrices which have a 1 in column j of the first row.
Summing the left expression over j = 1,2,...,n gives the desired formula.

Summing the right expression over j =1,2,...,n gives ersn prod(X, A)(—1)"™(X) = det A. O

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:

Cc

@ b e f d f d e . .
det | d e f | =adet no —bdet . | +cdet hl = alef—hi)—b(di— fg)+c(dh—eg).
g h i i g i g

For anything larger than a 3-by-3 matrix, it is faster to compute the determinant using row reduction.
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5 Vocabulary

Keywords from today’s lecture:

1. Upper-triangular matrix.

x % ok %
A square matrix of the form 8 S : I with zeros in all positions below the main diagonal.
0 0 0 =
2. Lower-triangular matrix.
* 0 0 0
. * % 0 0 . . . s
A square matrix of the form « % % 0 with zeros in all positions above the main diagonal.
x % ok %

The transpose of an upper-triangular matrix.

3. Triangular matrix.

A matrix that is either upper-triangular or lower-triangular.

4. Diagonal matrix.

* 0 0 0
. 0 = 0 O . . . "
A square matrix of the form 00 % 0 with zeros in all non-diagonal positions.
0 0 0 =

A matrix that is both upper-triangular and lower-triangular.
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