
MATH 2121 — Linear algebra (Fall 2019) Lecture 14

TLDR

Quick summary of today’s notes. Lecture starts on next page.

• A vector space is a nonempty set with a “zero vector” and two operations that can be thought of
a “vector addition” and “scalar multiplication.” The operations are subject to various conditions.

• There are notions of subspaces, linear functions, linear combinations, span, linear independence, and
bases for general vector spaces. The definitions are all the same as for Rn, with one minor caveat
when we are considering linear combinations and linear independence of infinite sets of vectors.

• Every vector space has a basis, and every basis for a given vector space has the same number of
elements, which could be infinite. This number of elements is the dimension of the vector space.

• If X and Y are sets, then let Fun(X,Y ) be the set of functions f : X → Y .

The set Fun(X,R) is naturally a vector space. If X is finite then dimFun(X,R) = |X| .

• If U and V are vector spaces, then let Lin(U, V ) be the set of linear functions f : U → V .

The set Lin(U, V ) is naturally a vector space. If dimU <∞ then dim Lin(U,R) = dimU .

Moreover, if W is another vector space and f ∈ Lin(V,W ) and g ∈ Lin(U, V ), then f ◦g ∈ Lin(U,W ).

• Suppose f : U → V is a linear function between vector spaces.

Define range(f) = {f(u) : u ∈ U} ⊆ V and kernel(f) = {u ∈ U : f(u) = 0} ⊆ U .

These sets are subspaces. If dimU <∞ then dim range(f) + dim kernel(f) = dimU .

• Let A be an n× n matrix. Let λ be a number and suppose 0 6= v ∈ Rn.

If Av = λv then we say that v is an eigenvector for A and that λ is an eigenvalue for A.

More specifically, v is an eigenvector with eigenvalue λ for A.

This happens if and only if 0 6= v ∈ Nul(A− λIn).

For example, v =

[
6
−5

]
is an eigenvector with eigenvalue λ = −4 for A =

[
1 6
5 2

]
since

[
1 6
5 2

] [
6
−5

]
=

[
−24

20

]
= −4

[
6
−5

]
.

The zero vector is not allowed to be an eigenvector, but 0 can occur as an eigenvalue.

• The eigenvalues λ for A are the numbers such that det(A− λIn) = 0.

• The eigenvectors with eigenvalue λ for A are the nonzero elements of Nul(A− λIn).

• If A is a triangular matrix, then its eigenvalues are its diagonal entries.

For example, the eigenvalues of

 1 6 0
0 0 3
0 0 1

 are 0 and 1.
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1 Last time: vector spaces

A (real) vector space V is a set containing a zero vector, denoted 0, with vector addition and scalar
multiplication operations that let us produce new vectors u + v ∈ V and cv ∈ V from given elements
u, v ∈ V and c ∈ R. Several conditions must be satisfied so that these operations behave exactly like
vector addition and scalar multiplication for Rn. Most importantly, we require that

1. u+ v = v + u and (u+ v) + w = u+ (v + w).

2. v − v = 0 where we define u− v = u+ (−1)v.

3. v + 0 = v

4. cv = v if c = 1.

There are a few other more conditions to give the full definition (see the notes from last time).

By convention, we refer to elements of vector spaces as vectors.

Example. All subspace of Rn are vector spaces, with the usual zero vector and vector operations.

The set of m×n matrices is a vector space, with the usual addition and scalar multiplication operations.
The zero vector in this vector space is the m× n zero matrix.

Most vector spaces that we encounter are either subspaces of Rn or subspaces of the following construction.

Proposition. Let X be a set and let V be a vector space.

Then the set Fun(X,V ) of all functions f : X → V is a vector space once we define

f + g = ( the function that maps x 7→ f(x) + g(x) for x ∈ X ),

cf = ( the function that maps x 7→ c · f(x) for x ∈ X ),

0 = ( the function that maps x 7→ 0 ∈ V for x ∈ X ),

for f, g ∈ Fun(X,V ) and c ∈ R.

Definition. The definitions of a subspace of a vector space and of linear transformations between vector
spaces are identical to the ones we have already seen for subspaces of Rn:

• A subset H ⊆ V is a subspace if 0 ∈ H and if u+ v ∈ H and cv ∈ H for all u, v ∈ H and c ∈ R.

• A function f : U → V is linear if f(u+ v) = f(u) + f(v) and f(cv) = cf(v) for u, v ∈ U and c ∈ R.

Proposition. If U, V,W are vector spaces and f : V → W and g : U → V are linear functions then
f ◦ g : U →W is also linear, where we define f ◦ g(x) = f(g(x)) for x ∈ U .

Example. V is a subspace of itself and {0} ⊆ V is a subspace.

Example. If U and V are vector spaces then let Lin(U, V ) be the set of linear functions f : U → V .

Then Lin(U, V ) is a subspace of Fun(U, V ).

Can you make sense of this statement? “Lin(Rn,Rm) is the vector space of m× n matrices.”

Example. A function f : R→ R is a polynomial if it has the formula

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for some nonnegative integer n and some coefficients a0, a1, . . . , an ∈ R.

The set of polynomial functions R→ R is a subspace of Fun(R,R).
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Example. Let X be any set. Let Y ⊆ X be a subset.

Define H = {f ∈ Fun(X,R) : f(y) = 0 for all y ∈ Y }. Then H is a subspace of Fun(X,R).

Example. Suppose V is a vector space. Choose v ∈ V . Given a linear function f : V → R, define

v∗(f) = f(v).

Then v∗ is a linear function Lin(V,R)→ R.

Let’s go deeper: the function with the formula v 7→ v∗ is a linear function V → Lin(Lin(V,R),R).

If V = Rn then this function V → Lin(Lin(V,R),R) is invertible.

2 Linear combinations, bases, and dimension

Let V be a vector space. The definitions of linear combinations and linear independence for vectors in V
are mostly the same as for vectors in Rn, with one caveat.

Definition. A linear combination of a finite list of vectors v1, v2, . . . , vk ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck ∈ R.

We must be a little careful when defining linear combinations for infinite sets. Specifically: a linear
combination of an infinite set of vectors is a linear combination of some finite subset of the vectors.

Definition. The span of a set of vectors is the set of all linear combinations that can be formed from
the vectors. The span of a set of vectors in V is a subspace of V .

Example. The subspace of polynomials in Fun(R,R) is the span of the set of functions 1, x, x2, x3, . . . .

The infinite sum ex = 1 + x+ 1
2x+ 1

6x
2 + 1

24x
3 + · · ·+ 1

n!x
n + . . . does not belong to this subspace.

Definition. A finite list of vectors v1, v2, . . . , vk ∈ V is linearly independent if it is impossible to express
0 = c1v1 + c2v2 + · · ·+ ckvk except when c1 = c2 = · · · = ck = 0.

An infinite list of vectors is linearly independent if every finite subset of the vectors is linearly independent.

Definition. A basis of a vector space V is a subset of linearly independent vectors whose span is V .
Saying b1, b2, b3, . . . is a basis for V is the same as saying that for each v ∈ V , there a unique coefficients
x1, x2, x3, · · · ∈ R, all but finitely many of which are zero, such that v = x1b1 + x2b2 + x3b3 + . . . .

Theorem. Let V be a vector space.

1. V has at least one basis.

2. Every basis of V has the same number of elements (but this could be infinite).

3. If A is a subset of linearly independent vectors in V then V has a basis B with A ⊆ B.

4. If C is a subset of vectors in V whose span is V then V has a basis B with B ⊆ C.

When V has a basis that is finite in size, the proof of the previous theorem follows from the case when
V is a subspace Rn (which was shown in earlier lectures). When V has no finite basis, the properties in
the theorem still hold, but their proofs in general are beyond the scope of this course.
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Definition. The dimension of a vector space V is the number dimV of elements in any of its bases.

Corollary. If H ⊆ V is a subspace then dimH ≤ dimV , and if dimH = dimV then H = V .

Proof. This follows from the last two parts of the previous theorem.

Example. If X is a finite set then dimFun(X,R) = |X| where |X| is the size of X.

A basis is given by the functions δy : X → R for y ∈ X defined by the formulas δy(x) =

{
1 if x = y

0 if x 6= y.

The unique way to express f : X → R as a linear combination of these functions is f =
∑

x∈X f(x)δx.

Example. If V is a finite-dimensional vector space then dim Lin(V,R) = dimV .

Suppose b1, b2, . . . , bn is a basis for V .

Then a basis for Lin(V,R) is given by the linear functions φ1, φ2, . . . , φn : V → R with the formulas

φi(x1b1 + x2b2 + . . . xnbn) = xi for x1, x2, . . . , xn ∈ R.

The unique way to express a linear function f : V → R as a linear combination of these functions is

f = f(b1)φ1 + f(b2)φ2 + · · ·+ f(bn)φn.

Assume V = Rn. Then we can think of Lin(Rn,R) as the vector space of 1× n matrices.

If b1 = e1, b2 = e2, . . . , bn = en is the standard basis, then φ1 = eT1 , φ2 = eT2 , . . . , φn = eTn .

Definition. Suppose U and V are vector spaces and f : U → V is a linear function.

Define range(f) = {f(x) : x ∈ U} ⊆ V and kernel(f) = {x ∈ U : f(x) = 0} ⊆ U .

These sets are subspaces which generalize the column space and null space of a matrix.

Theorem (Rank-Nullity Theorem). If dimU <∞ then dim range(f) + dim kernel(f) = dimU .

This specializes to our earlier statement about matrices when U = Rn and V = Rm.

We can prove the theorem in a self-contained, completely abstract way, but it’s a little involved.

Proof. If b1, b2, . . . , bn is a basis for U then the span of f(b1), f(b2), . . . , f(bn) must be equal to range(f).

Therefore dim range(f) ≤ dimU <∞. Since kernel(f) ⊆ U , we also have dim kernel(f) <∞.

Let k = dim range(f) and l = dim kernel(f).

Choose u1, u2, . . . , uk ∈ U such that f(u1), f(u2), . . . , f(uk) is a basis for range(f).

Choose a basis v1, v2, . . . , vl for kernel(f). We will check that u1, u2, . . . , uk, v1, v2, . . . , vl is a basis for U .

To show linear independence, suppose a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R are such that

a1u1 + a2u2 + · · ·+ akuk + b1v1 + b2v2 + · · ·+ blvl = 0.

Applying f to both sides gives a1f(u1) + a2f(u2) + · · ·+ akf(uk) = 0, so a1 = a2 = · · · = ak = 0.

But this implies b1v1 + b2v2 + · · ·+ blvl = 0, so we also have b1 = b2 = · · · = bl = 0.

Our vectors u1, u2, . . . , uk, v1, v2, . . . , vl are therefore linearly independent in U .
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Now let x ∈ U . By assumption f(x) = c1f(u1) + c2f(u2) + . . . ckf(uk) for some c1, c2, . . . , ck ∈ R.

The vector x− c1u1 − c2u2 − · · · − ckuk is then in the span of v1, v2, . . . , vl since it belongs to kernel(f).

We conclude that x is a linear combination of u1, u2, . . . , uk, v1, v2, . . . , vl, so this is a basis for U .

3 Eigenvectors and eigenvalues

We return to the concrete setting of Rn and its subspaces. Let A be a square n× n matrix.

Definition. An eigenvector of A is a nonzero vector v ∈ Rn such that

Av = λv

for a number λ ∈ R. (λ is the Greek letter “lambda.”)

The number λ is called the eigenvalue of A for the eigenvector v.

We require eigenvectors to be nonzero because if v = 0 then Av = λv = 0 for all numbers λ ∈ R.

The number 0 is allowed to be an eigenvalue of A, however.

Example. If we are given A and v, it is easy to check whether v is an eigenvector: just compute Av.

For example, if A =

[
1 6
5 2

]
and v =

[
6
−5

]
then Av =

[
1 6
5 2

] [
6
−5

]
=

[
−24

20

]
= −4v.

Therefore v is an eigenvector of A with eigenvalue −4.

Example. What are the eigenvectors of the matrix A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

?

If v ∈ R4 were an eigenvector with eigenvalue λ then

Av =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



v1
v2
v3
v4

 =


v2
v3
v4
0

 = λ


v1
v2
v3
v4

 .
The last equation implies that 0 = λv4 and λ4 = λv3 and v3 = λv2 and v2 = λv1. In other words,

0 = λv4 = λ2v3 = λ3v2 = λ4v1.

If λ 6= 0 then this would mean that v1 = v2 = v3 = v4 = 0, but remember that v should be nonzero.
Therefore the only possible eigenvalue of A is λ = 0. The eigenvectors of A with eigenvalue 0 are

v =


v1
0
0
0

 where v1 6= 0.

To say that“ λ is an eigenvalue of A” means that there exists a nonzero vector x ∈ Rn such that Ax = λx.

Recall that In denotes the n× n identity matrix. We abbreviate by setting I = In.

Proposition. A number λ ∈ R is an eigenvalue of A if and only if A− λI is not invertible.
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Proof. The equation Ax = λx has a nonzero solution x ∈ Rn if and only if (A− λI)x = 0 has a nonzero
solution, which occurs if and only if Nul(A− λI) 6= {0}.

Example. If A =

[
1 6
5 2

]
then

A− 7I =

[
1 6
5 2

]
−
[

7 0
0 7

]
=

[
−6 6

5 −5

]
∼
[

1 −1
1 −1

]
∼
[

1 −1
0 0

]
= RREF(A− 7I).

Since RREF(A− 7I) 6= I, the matrix A− 7I is not invertible so 7 is an eigenvalue of A.

Corollary. A number λ ∈ R is an eigenvalue of A if and only if det(A− λI) = 0.

Proof. Remember that A− λI is not invertible if and only if det(A− λI) = 0.

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue λ are precisely the nonzero
elements of the null space Nul(A− λI). Since we know how to construct a basis for the null space of any
matrix, we also know how to find all eigenvectors of a matrix for any given eigenvalue.

Example. In the previous example, RREF(A−7I) =

[
1 −1
0 0

]
so Ax = 7x if and only if (A−7I)x = 0

if and only if x =

[
x1
x2

]
where x1 − x2 = 0. In this linear system, x2 is a free variable, and we can

rewrite x as x =

[
x2
x2

]
= x2

[
1
1

]
. This means

[
1
1

]
is a basis for Nul(A− 7I).

Therefore every eigenvector of A with eigenvalue 7 has the form

[
a
a

]
for some a ∈ R.

One calls the set of all v ∈ Rn with Av = λv the eigenspace of A for λ. We also call this the λ-eigenspace
of A. Note that this is just the null space of A − λI. A number is an eigenvalue of A if and only if the
corresponding eigenspace is nonzero (that is, contains a nonzero vector).

Example. Suppose we were told that A =

 4 −1 6
2 1 6
2 −1 8

 has 2 as an eigenvalue.

To find a basis for the 2-eigenspace of A, we row reduce

A− 2I =

 2 −1 6
2 −1 6
2 −1 7

 ∼
 2 −1 6

0 0 0
0 0 0

 ∼
 1 −1/2 3

0 0 0
0 0 0

 = RREF(A− 2I).

Thus Ax = 2x if and only if x =

 x1
x2
x3

 where x1 − 1
2x2 + 3x3 = 0, i.e., if and only if

x =

 1
2x2 − 3x3

x2
x3

 = x2

 1/2
1
0

+ x3

 −3
0
1

 .

The vectors

 1/2
1
0

 and

 −3
0
1

 are then a basis for the 2-eigenspance of A.

Recall that a matrix is triangular if its nonzero entries all appear on or above the main diagonal, or all
appear on or below the main diagonal.
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Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. If A has diagonal entries d1, d2, . . . , dn then A−λI is triangular with diagonal entries d1−λ, d2−λ,
. . . , dn−λ, so det(A−λI) = (d1−λ)(d2−λ) · · · (dn−λ) which is zero if and only if λ ∈ {d1, d2, . . . , dn}.

Example. The eigenvalues of the matrix

 3 6 −8
0 0 6
0 0 2

 are 3, 0, and 2.
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4 Vocabulary

Keywords from today’s lecture:

1. Subspace of a vector space.

A nonempty subset closed under linear combinations.

2. Linearly combination and span of elements in a vector space.

A linear combination of a finite set of vectors v1, v2, . . . vp ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ cpvp

where c1, c2, . . . , cp ∈ R. A linear combination of an infinite set of vectors is a linear combination of
some finite subset. The set of all linear combinations of a set of vectors is the span of the vectors.

3. Linearly independent elements in a vector space.

A list of elements in a vector space is linearly dependent if one vector can be expressed as a
linear combination of a finite subset of the other vectors. If this is impossible, then the vectors are
linearly independent.

Example: cos(x) and sin(x) are linearly independently in Fun(R,R).

Example: the infinite list of functions 1, x, x2, x3, x4, . . . are linearly independent in Fun(R,R).

4. Basis and dimension of a vector space.

A set of linearly independent elements whose span is the entire vector space.

Every basis in a vector space has the same number of elements. This number is defined to be the
dimension of the vector space.

5. Linear functions.

If U and V are vector spaces, then a function f : U → V is linear when

f(u+ v) = f(u) + f(v) and f(cv) = cf(v)

for all u, v ∈ U and c ∈ R.

6. Eigenvector for an n× n matrix A.

A nonzero vector v ∈ Rn such that Av = λv for some real number λ ∈ R.

The number λ is the eigenvalue of A for v. 1
1
1

 is an eigenvector for

 0 2 0
2 0 0
0 0 2

 with eigenvalue 2 as

 0 2 0
2 0 0
0 0 2

 1
1
1

 =

 2
2
2

.

7. λ-eigenspace for an n× n matrix A, where λ ∈ R.

The subspace Nul(A− λI) ⊆ Rn where I is the n× n identity matrix.

If λ is not an eigenvalue of A, then this subspace is {0}.

But if λ is an eigenvalue of A, then the subspace is nonzero.
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