MATH 2121 — Linear algebra (Fall 2019) Lecture 15

TLDR

Quick summary of today’s notes. Lecture starts on next page.
e Let A be an n X n matrix. Let I = I, be the n x n identity matrix.
Let A be a number and suppose 0 # v € R"™.
If Av = \v then we say that v is an eigenvector for A and that X is an eigenvalue for A.
More specifically, v is an eigenvector with eigenvalue \ for A.
e The eigenvalues of A are the solutions to the characteristic equation det(A — xI) = 0.
If X is an eigenvalue that Nul(A — AI) is the A-eigenspace of A.
To find a basis for the A\-eigenspace, use our familiar algorithm for finding bases of null spaces.
e Suppose v, Vs, ..., v, are eigenvectors for A.
Let \; be the eigenvalue such that Av; = \;v;.
If A1, Ao, ..., A\ are all distinct, then vy, vs, ..., v, are linearly independent.

o If A and B are n x n matrices and there exists an invertible n x n matrix P with
A=pPBpP!

then we say that A is similar to B and that B is similar to A.

Any matrix is similar to itself, and if A is similar to B and B is similar to C' then A is similar to C'.
e Similar matrices have the same characteristics equations and same eigenvalues.
e A is diagonalizable if A is similar to a diagonal matrix D.

One useful property of diagonalizable matrices: if A = PDP~! where D is diagonal, then there are
simple formulas for each entry in the matrix A” = PD"P~! for all positive integers n.
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1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n X n matrix.

Let I denote the n x n identity matrix. Let A be a number.

Definition. A vector v € R™ is an eigenvector for A with eigenvalue X if v £ 0 and Av = Av.

The set of all v € R" with Av = A\v is the A-eigenspace of A for A. This is just the nullspace of A — AI.

Proposition. Let A be a number. The following are equivalent:
1. There exists a (nonzero) eigenvector v € R" for A with eigenvalue .
2. The matrix A — Al is not invertible.
3. det(A— M) =0.
4

. The A-eigenspace for A contains a nonzero vector.

As usual, a matrix is triangular if it is upper-triangular or lower-triangular.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers
are di,ds, ..., d, then the characteristic polynomial of A is (dy — z)(dy — x) - - - (d, — ).

Here is a result we didn’t see last time:

Theorem. Suppose A1, A, ..., A, are distinct eigenvalues for A.
Let v1,v9,...,v,. € R™ be the corresponding eigenvectors, so that Av; = \ju; for i =1,2,...,7.

Then the vectors vy, vs, ... v, are linearly independent.

Proof. Suppose v1,vs,...,v, are linearly dependent. We argue that this leads to a logical contradiction.

There must exist an index p > 0 such that v,vs,...,v, are linearly independent and v,4; is a linearly
combination of vy, vg, ..., v,. (Otherwise, the vectors vy, va, ..., v, would be linearly independent.)

Let c1,¢2,...,¢, € R be scalars such that v, = ci1v1 + covg + - -+ + ¢pvp. Then
Apt1Upt1 = Avpr1 = A(crvr + - + ¢pup) = c1Avr + - -+ + pAv, = c1 U1 + CaAavs + -+ + CpApUp.
On the other hand, multiplying both sides of vp41 = c1v1 + cova + - - + cpvp by Appq gives
Ap+1Up4+1 = C1Ap41V1 + C2Apt1V2 + -+ - + CpApy1Up.
By subtracting the two equations, we get

0= Apt1Vpt1 — Ap1Up+1 = c1(A1 — Apg1)vr + c2(A2 — Apy1)va + -+ ¢p(Ap — Apt1)vp.

Since the vectors vq, v, ..., v, are linearly independent by assumption, we must have
c1(A1 = Apt1) = c2(A2 = Apt1) = - = ¢p(Ap = Apy1) = 0.
But the differences A\; — A1 for ¢ = 1,2,...,p are all nonzero, so we must havec; =cy =--- =¢, =0.

This implies that v,41 = 0, contradicting our assumption that v,41 is a (necessarily nonzero) eigenvector.

We conclude from the contradiction that actually the vectors vy, vs, ..., v, are linearly independent. [
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Definition. Let = be a variable. Then det(A — zI) is a polynomial in z, called the characteristic
polynomial of A. The eigenvalues of A are precisely the solutions to the equation det(A — xI) = 0 which
we call the characteristic equation for A.

Example. The matrix

O Ot o O
= s O

2
3
0
0

o O O Ut

has characteristic polynomial det(A —zI) = (5 —z)(3 —2)(5 —z)(1 —z) = (5 — 2)?(x — 3)(1 — ).

Since this polynomial has two linear factors given by a constant multiple of 5 — x, i.e., since (5 — z)?

divides det(A — 1), we say that 5 is an eigenvalue of A with algebraic multiplicity 2.
The other eigenvalues 1 and 3 have algebraic multiplicity 1.
We consider the following example in more depth.

Example. Consider the matrix

A:

S O =
S N Ot
w O =

Since A is triangular, its characteristic polynomial is (1 — z)(2 — z)(3 — z) and its eigenvalues are 1,2, 3.

—~

Each eigenvalue in this example has algebraic multiplicity 1. We compute the corresponding eigenspaces:

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A — I).

0 5 4 010 010 010
A-T= 1 0|~ 5 4 |~ 0 4 |~ 0 1 | =RREF(A-1).
2 2 2 0
1 1 1 1
This shows that € Nul(A —I) if and only if z = | 22 | = 0| =x1| 0 |,s0 | 0 | is a basis
x3 0 0 0
1
for Nul(A — I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of | 0
0
2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A — 21).
-1 5 4 1 -5 0
A—-2I= 0 0|~ 0 1 | =RREF(A-—2I).
1 0
T1 Y2 ) 5
This shows that € Nul(A — 2]) ifand only if z = | 2o | = To | =x2| 1 |,s0 | 1 | is a basis
x3 0 0 0
5
for Nul(A — 2I). All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of | 1
0
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3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of Nul(A — 31).

-2 5 4 -2 0 4 1 0 -2
A—31= -1 0|~ 10|~ 1 0 | =RREF(A - 3I).
0 00 0 0
1 2x3 2 2
This shows that z € Nul(A—3I)ifandonlyif z = | 22 | = O |=z3| 0| so| 0| isa basis
I3 I3 1 1

for Nul(A — 3I). All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of | 0

1
1 5 2
Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors | 0 |, [ 1 [, | 0 | are linearly independent.
0 0 1

Consider the invertible matrix whose columns are given by these linearly independent vectors:

1 5 2
P=]0 10
0 0 1
1 0 0
Asusual,lete; = | 0 |,eo=| 1 |,and e3= | 0 |. The product Pe; is the ith column of P, so
0 0 1
1 5 2
Pei=1|0 and Pey =11 and Pes=10
0 0 1

Since Px = y means that P~'y = P~ Px = Iz = z, it follows that

1 5 2
Ptlo|=¢ and Pl 1| =e and Ptlo| = es.
0 0 1

Combining these identities shows that

1 1
PilAP(Bl:PilA 0 =p! 0 = e1.
| 0 ] 0
C 5 F 5]
P APey = P'A| 1 | =2P1 | 1 | = 2¢s.
L 0 - L 0 -
r 9] R
PflAPeg =P1A| 0 =3p! 0 = 3es.
1 1

These calculations determine the columns of the matrix P~ 1 AP.

If fact, we see that P~*AP = D where D = [ e1 2ey 3es } =

S O =
OO
w o O
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This means that A = P(P71AP)P~' = PDP~1 ie.,

-1

1 5 4 1 5 2 1 0 0 1 5 2
02 0f(=|101020 0 2 0 01 0
0 0 3 0 0 1 0 0 3 0 0 1

One application of this decomposition: we can derive a simple formula for an arbitrary power A™ of A.

Define A =1, A' = A, A2 = AA, A? = AAA, and so on.
Lemma. For any integer n > 0 we have A" = (PDP~1)" = pD"P~1L.

Proof. Do some small examples and convince yourself that the pattern continues:
A? = AA=PDP'PDP~' =PDIDP~! = PD?P!
A3 = A2A = PD?P~'PDP~! = PD?IDP~! = PD3P!
At = A*A=PD3P~'PDP~! = PD3IDP~! = PD*P~!

and so on. O

Lemma. For any integer n > 0 we have

1™ 0 0 1 0 0
D" = o2 0|=[02" 0
0 o0 3" 0o o0 3"

Proof. To multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

T U1 Z1Y1
T2 Y2 T2Y2
Tk Yk TkYk
Therefore to evaluate D™ = DD --- D, we just raise each diagonal entry to the nth power. O
1 -5 =2
Finally, by the usual algorithm we can compute P~! = 1 0
1

(Check that this is the correct inverse of P!)

Putting everything together gives the identity

1 5 2 1 0 0 1 -5 -2
A" =pPD"P~'=10 1 0 0 2" 0 1 0
0 0 1 0o 0 3" 1

(1 5.27 2.3" 1 -5 -2 1 502" —1) 2(3"—1)

=10 on 0 1 0|=1|0 on 0

|0 0 3n 1 0 0 3

Remark. We've done all these calculations for their own sake as a means of illustrating some key
concepts. But these calculations would also come up in the solution of the following discrete dynamical
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system. Suppose ag, a1, as, ..., by, b1,ba, ..., and cg, c1, ca, ... are sequences of numbers. For each integer
n > 1, suppose

Ay = Qp—1 + Bbp_1 +4cp_1 and by, = 2b,_1 and Cp = 3Cp_1. (*

How could we find a formula for a.,, b,, and ¢, in terms of n and the sequences’ initial values ag, by, co?
Note that (*) is equivalent to

an 15 4 Op—1 (p—1 (p—2 ag
b | =10 2 0 bor | =A| by | =A% bpo | == A" | by
Cn 0 0 3 Cn—1 Cp—1 Cn—2 Co

Thus, our formula for A™ gives
an = ag + 5(2" — 1)by + 2(3" — 1)cy and b, = 2"bg and cn = 3"cp.

If ag = bg = ¢g = 1 then a19 = 123212 and b9 = 1024 and c1¢9 = 59049. Moreover,
hm al _ hm ap + 5(2” — 1)b() + 2(3” — 1)6()

n—oo 3N n— 00 3n

= 2C0

2 Similar matrices

Definition. Two n X n matrices X and Y are similar if there exists an invertible n X n matrix P with
X =PypP '

In this case observe that Y = P"'PYP~'P = P~1XP.

If X and Y are similar, then we say that “X is similar to Y” and “Y is similar to X.”

In the previous example we showed that A = are similar matrices.

S O =
(=3 VNG,
w O

1
and D= | 0
0

o N O
w o o

There is a special name for this kind of similarity:

Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix

Proposition. An n x n matrix A is always similar to itself.

Proof. Since I = I~! we have A = PAP~! for P = 1. O

Proposition. Suppose A, B,C are n X n matrices. Assume A and B are similar. Assume B and C are
also similar. Then A and C are similar.

Proof. If A= PBP~! and B = QCQ ™! then R = PQ is invertible and A = RCR™". O

Theorem. If A and B are similar n X n matrices then A and B have the same characteristic polynomial
and so have the same eigenvalues. (Similar matrices usually have different eigenvectors, however.)

Proof. Recall that det(XY) = det(X)det(Y). Assume A = PBP~1. Then
A—zl=PB—-zI)P~' and det(A —zI) = det(P(B — zI)P~ ') = det(P) det(B — xI) det(P~1).
But det(P)det(P~1) = det(PP~!) = det(I) = 1, so det(A — xI) = det(B — xI). O
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3 Vocabulary

Keywords from today’s lecture:

1. Characteristic equation of a square matrix A.

The equation det(A — zI) = 0, where I is the identity matrix with the same size as A.

The solutions z for this equation give all eigenvalues of A.

0 2 0
Example: f A= 2 0 0 | then
0 0 2
—x 2 0
det(A — ) = det 2 —x 0|=2-2)2*-4)=2-2)*(-2-2)=0
0 0 2—-x
has solutions x = 2 and & = —2. These solutions are the eigenvalues for A.

2. Algebraic multiplicity of an eigenvalue A\ of square matrix A.

The number of times the factor (A — x) divides the characteristic polynomial det(A — zI).

0 2 0
IfA=| 2 0 O | then 2 has algebraic multiplicity 2 and —2 has algebraic multiplicity 1.
0 0 2

3. Similar matrices.
Two n x n matrices A and B are similar if there exists an invertible n X n matrix M with
A=MBM™".
If A and B are similar and B and C are similar, then A and C are similar.

—1

0 0 3 00 0 0 0 0 0 0 1
Example: 2 0 |issimilarto [ O 2 0 | =] 0 1 2 0 0 1 0
0 3 0 0 1 10 0 3 1 00

OO =
OO =
O O =

4. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix.
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