TLDR

Quick summary of today's notes. Lecture starts on next page.

- Let A be an $n \times n$ matrix. Let $I=I_{n}$ be the $n \times n$ identity matrix.

Let λ be a number and suppose $0 \neq v \in \mathbb{R}^{n}$.
If $A v=\lambda v$ then we say that v is an eigenvector for A and that λ is an eigenvalue for A.

- If A and B are $n \times n$ matrices and there exists an invertible $n \times n$ matrix P with

$$
A=P B P^{-1}
$$

then we say that A is similar to B and that B is similar to A.

- Similar matrices have the same characteristics equations and same eigenvalues.
- A is diagonalizable if A is similar to a diagonal matrix D.

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
An $n \times n$ matrix with n distinct eigenvalues is always diagonalizable.

- Suppose an $n \times n$ matrix A has $p \leq n$ distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. Then A is diagonalizable if and only if

$$
\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{1} I\right)+\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{2} I\right)+\cdots+\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{p} I\right)=n
$$

Assume this holds. Suppose \mathcal{B}_{i} is a basis for $\operatorname{Nul}\left(A-\lambda_{i} I\right)$.
Then the union $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a set of n linearly independent eigenvectors for A.
If the elements of this union are the vectors $v_{1}, v_{2}, \ldots, v_{n}$ then the matrix

$$
P=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

is invertible and $D=P^{-1} A P$ is diagonal, and $A=P D P^{-1}$.

1 Last time: similar and diagonalizable matrices

Let n be a positive integer. Suppose A is an $n \times n$ matrix, $v \in \mathbb{R}^{n}$, and $\lambda \in \mathbb{R}$.
Let I be the $n \times n$ identity matrix.
Recall that v an eigenvector for A with eigenvalue λ if $v \neq 0$ and $A v=\lambda v$, or equivalently if v is a nonzero element of $\operatorname{Nul}(A-\lambda I)$. The number λ is an eigenvalue of A if there exists some eigenvector with this eigenvalue.

If the nullspace $\operatorname{Nul}(A-\lambda I)$ is nonzero, then it is called the λ-eigenspace of A.
The eigenvalues of A are the solutions to the polynomial equation $\operatorname{det}(A-x I)=0$.

Important fact. Any set of eigenvectors of A with all distinct eigenvalues is linearly independent.

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that $A=P B P^{-1}$.
Fact. Similar matrices have the same eigenvalues but usually different eigenvectors.
Proof. If $A=P B P^{-1}$ then $A-x I=P B P^{-1}-x I=P(B-x I) P^{-1}$ since $P I P^{-1}=I$.
Note that $\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}\left(P P^{-1}\right)=\operatorname{det}(I)=1$.
Therefore $\operatorname{det}(A-x I)=\operatorname{det}(P) \operatorname{det}(B-x I) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(B-x I)$.

Example. The matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ is similar to $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] A\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]^{-1}=\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]$.

Caution. Matrices may have the same eigenvalues but not be similar.
The implication goes in one direction only: similar \Rightarrow same eigenvalues.
For example, the matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right]
$$

both have eigenvalues 2,2 but are not similar. This holds because $A=2 I$ so we have

$$
P A P^{-1}=2 P I P^{-1}=2 P P^{-1}=2 I=A \neq B
$$

for all invertible 2×2 matrices P.

Caution. Row equivalence of matrices \neq similarity of matrices.
Row operations usually change eigenvalues, whereas similar matrices always have the same eignenvalues.

2 Diagonalizable matrices

A matrix is diagonal if all of its nonzero entries appear in diagonal positions $(1,1),(2,2), \ldots$, or (n, n). A matrix A is diagonalizable if it is similar to a diagonal matrix.

In other words, A is diagonalizable if we can write $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

is a diagonal matrix. In this case some stronger properties hold:

- The diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of D are the eigenvalues of A.
- If $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{n}$ are the columns of $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ then $A v_{i}=\lambda_{i} v_{i}$.
- In particular, the columns of P are a basis for \mathbb{R}^{n} of eigenvectors of A.

Theorem. An $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^{n} has a basis whose elements are all eigenvectors of A.

Proof. We have just seen that if $A=P D P^{-1}$ where D is diagonal then the columns of P are a basis for \mathbb{R}^{n} consisting of eigenvectors for A. Conversely, suppose A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Define

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

and write $e_{1}, e_{2}, \ldots, e_{n}$ for the standard basis of \mathbb{R}^{n}. Since $P e_{i}=v_{i}$ and $P^{-1} v_{i}=e_{i}$, we have

$$
P^{-1} A P e_{i}=P^{-1} A v_{i}=P^{-1}\left(\lambda_{i} v_{i}\right)=\lambda_{i} P^{-1} v_{i}=\lambda_{i} e_{i}
$$

This calculates the i th column of $P^{-1} A P$. Since $\lambda_{i} e_{i}$ is also the i column of the diagonal matrix D, we deduce that $P^{-1} A P=D$. Therefore $A=P\left(P^{-1} A P\right) P^{-1}=P D P^{-1}$ is diagonalizable.

Not every matrix is diagonalizable. It takes some work to decide if a given matrix is diagonalizable. Here is one easy criterion, which is sufficient but not necessary:

Corollary. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Proof. Suppose A has n distinct eigenvalues. Any choice of eigenvectors for A corresponding to these eigenvalues will be linearly independent, so A will have n linearly independent eigenvectors.
These eigenvectors are a basis for \mathbb{R}^{n} since any set of n linearly independent vectors in \mathbb{R}^{n} is a basis.
Example. The matrix $A=\left[\begin{array}{rrr}5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2\end{array}\right]$ is triangular so has eigenvalues $5,0,-2$.
These are distinct numbers, so A is diagonalizable.

3 Diagonalizing matrices whose eigenvalues are not distinct

If an $n \times n$ matrix A has n distinct eigenvalues with corresponding eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, then the $\operatorname{matrix} P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ is automatically invertible since its columns are linearly independent, and the matrix $D=P^{-1} A P$ is diagonal such that $A=P D P^{-1}$.

When A is diagonalizable but has fewer than n distinct eigenvalues, we can still build up P in such a way that P is automatically invertible and $P^{-1} A P$ is automatically diagonal.
Recall that if λ is an eigenvalue of A then $\operatorname{Nul}(A-\lambda I)$ is the λ-eigenspace of A.
The (algebraic) multiplicity of the eigenvalue λ is the largest integer $m \geq 1$ such that we can write the characteristic polynomial of A as the product $\operatorname{det}(A-x I)=(\lambda-x)^{m} p(x)$ for some polynomial $p(x)$.
For example, if $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 2\end{array}\right]$ then

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
-x & -1 \\
1 & 2-x
\end{array}\right]=(-x)(2-x)+1=x^{2}-2 x+1=(x-1)^{2}
$$

so 1 is an eigenvalue of A with multiplicity 2.
Theorem. Let A be an $n \times n$ matrix. Suppose A has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ where $p \leq n$. The following properties then hold:
(a) For each $i=1,2, \ldots, p$, it holds that $\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{i} I\right)$ is at most the multiplicity of λ_{i}.
(b) A is diagonalizable if and only if the sum of the dimensions of the eigenspaces of A is n, i.e.:

$$
\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{1} I\right)+\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{2} I\right)+\cdots+\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{p} I\right)=n
$$

(c) Suppose A is diagonalizable and \mathcal{B}_{i} is a basis for the λ_{i}-eigenspace.

Then the union $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n} consisting of eigenvectors of A.
If the elements of this union are the vectors $v_{1}, v_{2}, \ldots, v_{n}$ then the matrix

$$
P=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

is invertible and $D=P^{-1} A P$ is diagonal, and $A=P D P^{-1}$.
Before giving the proof, we illustrate the result through an example.
Example. Consider the lower-triangular matrix

$$
A=\left[\begin{array}{rrrr}
5 & & & \\
0 & 5 & & \\
1 & 4 & -3 & \\
-1 & -2 & 0 & -3
\end{array}\right]
$$

Its characteristic polynomial is $\operatorname{det}(A-x I)=(5-x)^{2}(-x-3)^{2}$.
The eigenvalues of A are therefore 5 and -3 , each with multiplicity 2 . Since

$$
A-5 I=\left[\begin{array}{rrrr}
0 & & & \\
0 & 0 & & \\
1 & 4 & -8 & \\
-1 & -2 & 0 & -8
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 8 & 16 \\
0 & 1 & -4 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A-5 I)
$$

it follows that $x \in \operatorname{Nul}(A-5 I)$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 x_{3}-16 x_{4} \\
4 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-8 \\
4 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-16 \\
4 \\
0 \\
1
\end{array}\right]
$$

so
$\left[\begin{array}{r}-8 \\ 4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-16 \\ 4 \\ 0 \\ 1\end{array}\right]$ is a basis for $\operatorname{Nul}(A-5 I)$.

Since

$$
A-(-3) I=A+3 I=\left[\begin{array}{rrrr}
8 & & & \\
0 & 8 & & \\
1 & 4 & 0 & \\
-1 & -2 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A+3 I)
$$

it follows that $x \in \operatorname{Nul}(A+3 I)$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \text { is a basis for } \operatorname{Nul}(A+3 I)
$$

Each eigenspace has dimension 2, so the sum of the dimensions of the eigenspaces of A is $2+2=4=n$.
Thus A is diagonalizable. In particular, if

$$
P=\left[\begin{array}{rrrr}
-8 & -16 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

then P is invertible and $A=P D P^{-1}$ where

$$
D=P^{-1} A P=\left[\begin{array}{llll}
5 & & & \\
& 5 & & \\
& & -3 & \\
& & & -3
\end{array}\right]
$$

Proof of theorem. Fix an index $i \in\{1,2, \ldots, p\}$.
Let $\lambda=\lambda_{i}$ and suppose λ has multiplicity m and $\operatorname{Nul}(A-\lambda I)$ has dimension d.
Let $v_{1}, v_{2}, \ldots, v_{d}$ be a basis for $\operatorname{Nul}(A-\lambda I)$.
One of the corollaries we saw for the dimension theorem is that it is always possible to choose vectors $v_{d+1}, v_{d+2}, \ldots, v_{n} \in \mathbb{R}^{n}$ such that $v_{1}, v_{2}, \ldots, v_{d}, v_{d+1}, v_{d+2}, \ldots, v_{n}$ is a basis for \mathbb{R}^{n}.
Define $Q=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$. The columns of this matrix are linearly independent, so Q is invertible with $Q e_{j}=v_{j}$ and $Q^{-1} v_{j}=e_{j}$ for all $j=1,2, \ldots, n$. Define $B=Q^{-1} A Q$.
If $j \in\{1,2, \ldots, d\}$ then the j th column of B is $B e_{j}=Q^{-1} A Q e_{j}=Q^{-1} A v_{j}=\lambda Q^{-1} v_{j}=\lambda e_{j}$.

This means that the first d columns of B are

$$
\left[\begin{array}{cccc}
\lambda & & & \\
& \lambda & & \\
& & \ddots & \\
& & & \lambda \\
0 & 0 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

so B has the block-triangular form

$$
B=\left[\begin{array}{cccccccc}
\lambda & & & & * & * & \ldots & * \\
& \lambda & & & * & * & \ldots & * \\
& & \ddots & & \vdots & \vdots & \ddots & \vdots \\
& & & \lambda & * & * & \ldots & * \\
0 & 0 & \ldots & 0 & * & * & \ldots & * \\
\vdots & & & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & * & * & \ldots & *
\end{array}\right]=\left[\begin{array}{r|r}
\lambda I_{d} & Y \\
\hline 0 & Z
\end{array}\right]
$$

where Y is an arbitrary $d \times(n-d)$ matrix and Z is an arbitrary $(n-d) \times(n-d)$ matrix.
Now, we want to deduce that

$$
\operatorname{det}(B-x I)=(\lambda-x)^{d} \operatorname{det}(Z-x I)
$$

Since $\operatorname{det}(A-x I)=\operatorname{det}(B-x I)$ as A and B are similar, and since $\operatorname{det}(Z-x I)$ is a polynomial in x, we see that $\operatorname{det}(A-x I)$ can be written as $(\lambda-x)^{d} p(x)$ for some polynomial $p(x)$. Since m is maximal such that $\operatorname{det}(A-x I)=(\lambda-x)^{m} p(x)$, it must hold that $d \leq m$. This proves part (a).

To prove parts (b) and (c), suppose $v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{\ell_{i}}$ is a basis for the λ_{i}-eigenspace of A for each $i=$ $1,2, \ldots, p$. Let $\mathcal{B}_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{\ell_{i}}\right\}$. We claim that $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \ldots \mathcal{B}_{p}$ is a linearly independent set.
To prove this, suppose $\sum_{i=1}^{p} \sum_{j=1}^{\ell_{i}} c_{i}^{j} v_{i}^{j}=0$ for some coefficients $c_{i}^{j} \in \mathbb{R}$.
It suffices to show that every $c_{i}^{j}=0$.
Let $w_{i}=\sum_{j=1}^{\ell_{i}} c_{i}^{j} v_{i}^{j} \in \mathbb{R}^{n}$. We then have $w_{1}+w_{2}+\cdots+w_{p}=0$.
Each w_{i} is either zero or an eigenvector of A with eigenvalue λ_{i}. (Why?)
Since eigenvectors of A with distinct eigenvalues are linearly independent, we must have

$$
w_{1}=w_{2}=\cdots=w_{p}=0
$$

But since each set \mathcal{B}_{i} is linearly independent, this implies that $c_{i}^{j}=0$ for all i, j.
We conclude that $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \ldots \mathcal{B}_{p}$ is a linearly independent set.

If the sum of the dimensions of the eigenspaces of A is n then $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a set of n linearly independent eigenvectors of A, so A is diagonalizable.

If A is diagonalizable then A has n linearly independent eigenvectors. Among these vectors, the number that can belong to any particular eigenspace of A is necessarily the dimension of that eigenspace, so it follows that sum of the dimensions of the eigenspaces of A at least n. This sum cannot be more than n since the sum is the size of the linearly independent set $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p} \subset \mathbb{R}^{n}$. This proves part (b).
To prove part (c), note that if A is diagonalizable then $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a set of n linearly independent vectors in \mathbb{R}^{n}, so is a basis for \mathbb{R}^{n}. The last assertion in part (c) is something we discussed at the beginning of this lecture.

