
MATH 2121 — Linear algebra (Fall 2019) Lecture 18

TLDR

Quick summary of today’s notes. Lecture starts on next page.

• The characteristic equation of an n× n matrix A is a degree n polynomial in one variable.

We can always factor this polynomial as det(A − xI) = (λ1 − x)(λ2 − x) · · · (λn − x) for some
λ1, λ2, . . . , λn ∈ C. These complex numbers are the roots of det(A− xI).

Counting multiplicities, det(A− xI) has exactly n roots but some roots may be repeated.

• Define Cn to be the set of vectors v =


v1
v2
...

vn

 with n rows and entries v1, v2, . . . , vn ∈ C.

We have Rn ⊂ Cn since R = {a ∈ R} = {a+ 0i : a ∈ R} ⊂ C = {a+ bi : a, b ∈ R}.

• The sum u+ v and scalar multiple cv for u, v ∈ Cn and c ∈ C are defined exactly as for vectors in
Rn, except we use the addition and multiplication operations from C instead of R.

• If A is an n× n matrix and v ∈ Cn then we define Av in the same way as when v ∈ Rn.

Let A be an n× n matrix whose entries are all real numbers.

Call λ ∈ C an eigenvalue of A if there exists a nonzero vector v ∈ Cn such that Av = λv.

Equivalently, λ ∈ C is an eigenvalue of A if λ is a root of the characteristic polynomial det(A−xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ ∈ C.

• Let A be a square matrix with all real entries. If v is eigenvector for A with eigenvalue λ, then v is
an eigenvector for A with eigenvalue λ. Here v and λ are the complex conjugates of v and λ.

• The trace of a square matrix A, denoted trA, is the sum of the diagonal entries of A.

If A and B are both n× n then tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

But usually tr(AB) 6= tr(A)tr(B).

• Let A be an n× n matrix.

Suppose the roots of the characteristic polynomial det(A− xI) are λ1, λ2, . . . , λn ∈ C.

These are the eigenvalues of A, repeated accordingly to their multiplicity.

Then detA = λ1λ2 · · ·λn and trA = λ1 + λ2 + . . . λn.

• Let A be an n× n matrix.

The matrices A and AT have the same characteristic polynomial and same eigenvalues.

If A is invertible, then A and A−1 have the same eigenvectors.

However, λ is an eigenvalue of A if and only if λ−1 is an eigenvalue for A−1.

If A is diagonalizable then so is AT and A−1 (when A is invertible).
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1 Last time: complex numbers

Given a, b ∈ R, we interpret a+ bi as the matrix

[
a −b
−b a

]
, so 1 =

[
1 0
0 1

]
and i =

[
0 −1
1 0

]
.

Write C for the set of complex numbers {a+ bi : a, b ∈ R}.

According to our definition, every complex number is a 2× 2 matrix. It can also be helpful to think of a
complex number a+ bi as a polynomial with real coefficient in a variable i that satisfies i2 = −1.

We can add, subtract, multiply, and invert complex numbers. These operations correspond to the usual
ways of adding, subtracting, multiplying, and inverting matrices.

Let a, b, c, d ∈ R. We add complex numbers in the following way:

(a+ bi) + (c+ di) = (a+ c) = (b+ d)i ∈ C.

We multiply complex numbers like polynomials, but substituting −1 for i2:

(a+ bi)(c+ di) = ac+ (ad+ bc)i+ bd(i2) = (ac− bd) + (ad+ bc)i ∈ C.

The order of multiplication does not matter since (a+ bi)(c+ di) = (a+ bi).

Given a, b ∈ R, we define the complex conjugate of the complex number a+ bi ∈ C to be

a+ bi = (a+ bi)T = a− bi ∈ C.

If z = a+ bi ∈ C. Then z = z if and only if b = 0 and z ∈ R.

If y, z ∈ C then y + z = y + z and yz = y · z.

If z = a+ bi ∈ C then zz = (a+ bi)(a− bi) = a2 + b2 ∈ R.

This indicates how to invert complex numbers 0 6= a+ bi:[
a −b
b a

]−1
= (a+ bi)−1 =

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i =

1

a2 + b2

[
a b
−b a

]
.

Finally, complex division is defined by

a+ bi

c+ di
= (a+ bi)(c+ di)−1 = (c+ di)−1(a+ bi).

Example. We have
3− 4i

2 + i
=

(3− 4i)(2− i)
(2 + i)(2− i)

=
6− 3i− 8i+ 4i2

4− i2
=

6− 11i− 4

5
=

2− 11i

5
=

2

5
− 11

5
i.

One reason that complex numbers are so important is the following theorem.

Theorem (Fundamental theorem of algebra). Suppose

p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0

is a polynomial of degree n (meaning an 6= 0) with coefficients a0, a1, . . . , an ∈ C.

There are n (not necessarily distinct) numbers r1, r2, . . . , rn ∈ C such that

p(x) = an(x− r1)(x− r2) · · · (x− rn).

One calls the numbers r1, r2, . . . , rn the roots of p(x).

A root r has multiplicity m if exactly m of the numbers r1, r2, . . . , rn are equal to r.

Example. We have 9x2 + 36 = 9(x− 2i)(x+ 2i).
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2 Complex eigenvalues

The characteristic equation of an n× n matrix A is a degree n polynomial with real coefficients.

Counting multiplicities, det(A− xI) has exactly n roots but some roots may be complex numbers.

Define Cn to be the set of vectors v =


v1
v2
...

vn

 with n rows and entries v1, v2, . . . , vn ∈ C.

We have Rn ⊂ Cn since R = {a ∈ R} ⊂ C = {a+ bi : a, b ∈ R}.

The sum u + v and scalar multiple cv for u, v ∈ Cn and c ∈ C are defined exactly as for vectors in Rn,
except we use the addition and multiplication operations from C instead of R.

If A is an n× n matrix and v ∈ Cn then we define Av in the same way as when v ∈ Rn.

Definition. Let A be an n × n matrix with entries in R or C. Call λ ∈ C an eigenvalue of A if there
exists a nonzero vector v ∈ Cn such that Av = λv.

Equivalently, λ ∈ C is an eigenvalue of A if λ is a root of the characteristic polynomial det(A− xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in C.

The fundamental theorem of algebra implies the following essential property:

Fact. If A is an n× n matrix then A has n (not necessarily real or distinct) eigenvalues λ ∈ C, counting
repeated eigenvalues with their respective multiplicities.

Example. Let A =

[
.5 −.6
.75 1.1

]
. Then det(A− xI) = det

[
.5− x −.6
.75 1.1− x

]
= x2 − 1.6x+ 1.

Via the quadratic formula using the rule i =
√
−1, we find that the roots of this polynomial are

x =
1.6±

√
1.62 − 4

2
= .8± .6i.

To find a basis for the (.8− .6i)-eigenspace, we row reduce as usual

A− (.8− .6i)I =

[
.5 −.6
.75 1.1

]
−
[
.8− .6i 0

0 .8− .6i

]
=

[
−.3 + .6i −.6

.75 .3 + .6i

]
∼
[
.5− i 1

1 .8(.5 + i)

]
∼
[

1 .8(.5 + i)
.5− i 1

]
∼
[

1 .8(.5 + i)
0 1− .8(.5 + i)(.5− i)

]
=

[
1 .8(.5 + i)
0 0

]
.

The last equality holds since .8(.5 + i)(.5− i) = .8(.25− i2) = .8(1.25) = 1.

This implies that Ax = (.8 − .6i)x if and only if x =

[
x1
x2

]
where x1 + .8(.5 + i)x2 = 0, i.e., where

5x1 = −4(.5 + i)x2 = −(2 + 4i)x2. Satisfying these conditions is the vector v =

[
−2− 4i

5

]
which is

therefore an eigenvector for A with eigenvalue .8− .6i.

If A is a matrix and v ∈ Cn then we define A and v as the matrix and vector given by replacing all entries
of A and v by their complex conjugates.

Proposition. Suppose A is an n × n matrix with real entries, so that A = A. If A has a complex
eigenvalue λ ∈ C with eigenvector v ∈ Cn then v ∈ Cn is an eigenvector for A with eigenvalue λ.
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Proof. Since A has real entries, it holds that A = A. Therefore Av = Av = Av = λv = λv.

Example. It follows that

[
−2 + 4i

5

]
is an eigenvector with eigenvalue .8 + .6i for A =

[
.5 −.6
.75 1.1

]
from the previous example.

3 Some final properties of eigenvalues of eigenvectors

We discuss a few more properties of eigenvalues and eigenvectors.

Lemma. Suppose we can write a polynomial in x in two ways as

(λ1 − x)(λ2 − x) · · · (λn − x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for some complex numbers λ1, λ2, . . . , λn, a0, a1, . . . , an ∈ C. Then

an = (−1)n and an−1 = (−1)n−1(λ1 + λ2 + · · ·+ λn) and a0 = λ1λ2 · · ·λn.

Proof. The product (λ1 − x)(λ2 − x) · · · (λn − x) is a sum of 2n monomials corresponding to a choice of
either λi or −x for each of the n factors, multiplied together.

The only such monomial of degree n is (−x)n = (−1)nxn = anx
n so an = (−1)n.

The only such monomial of degree 0 is λ1λ2 · · ·λn = a0.

Finally, there are n monomials of degree n− 1 that arise:

λ1(−x)n−1 + (−x)λ2(−x)n−2 + (−x)2λ3(−x)n−3 + · · ·+ (−x)n−1λn = (−1)n−1(λ1 + · · ·+ λn)xn−1.

This sum must be equal to an−1x
n−1 so an−1 = (−1)n−1(λ1 + λ2 + · · ·+ λn).

Let A be an n× n matrix.

Define tr(A) to be the sum of the diagonal entries of A. Call tr(A) the trace of A.

Example. tr

 1 0 7
−1 2 8

2 4 3

 = 1 + 2 + 3 = 6.

Proposition. If A,B are n× n matrices then tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

However, usually tr(AB) 6= tr(A)tr(B), unlike for the determinant.

Proof. The diagonal entries of A + B are given by adding together the diagonal entries of A with those
of B in corresponding positions, so it follows that tr(A+B) = tr(A) + tr(B).

Let Eij be the n× n matrix with 1 in position (i, j) and 0 in all other positions.

(In this proof, we use the symbol i to mean an integer index rather than a complex number.)

You can check that EijEkl is the zero matrix if j 6= k and that EijEjk = Eik.

Moreover, tr(Eij) = 0 if i 6= j and tr(Eii) = 1.

We conclude that tr(EijEkl) is 1 if i = l and j = k and is 0 otherwise.

This formula is symmetric so tr(EijEkl) = tr(EklEij).
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It follows that tr(AB) = tr(BA) since if Aij and Bij are the entries of A and B in positions (i, j), then

A =

n∑
i=1

n∑
j=1

AijEij and B =

n∑
k=1

n∑
l=1

BklEkl.

Theorem. Let A be an n× n matrix (with entries in R or C).

Suppose the characteristic polynomial of A factors as

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).

Then detA = λ1λ2 · · ·λn and trA = λ1 + λ2 + · · ·+ λn. In other words:

(a) The product of the (complex) eigenvalues of A, counted with multiplicity, is det(A).

(b) The sum of the (complex) eigenvalues of A, counted with multiplicity if tr(A).

Remark. The theorem is true for all matrices, but is much easier to prove for diagonalizable matrices.

If A = PDP−1 where D is a diagonal matrix, then det(A) = det(PDP−1) = det(D) = λ1λ2 · · ·λn and

tr(A) = tr(PDP−1) = tr(DP−1P ) = tr(D) = λ1 + λ2 + · · ·+ λn.

Before proving the theorem let’s see an example.

Example. If A =

 0 1 0
−1 0 0

0 0 i

 then

 −i1
0

,

 0
0
1

, and

 i
1
0

 are eigenvectors of A.

The corresponding eigenvalues are i, i, and −i.

One can check that det(A− xI) = −x3 + ix2 − x+ i = (i− x)2(−i− x).

The theorem asserts that (i)(i)(−i) = −i3 = i = det(A) and i+ i+ (−i) = i = tr(A).

Proof of the theorem. We can write det(A− xI) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 for some numbers
a0, a1, . . . , an ∈ C. By the lemma it suffices to show that a0 = det(A) and an−1 = (−1)n−1tr(A).

The first claim is easy. The value of a0 is given by setting x = 0 in det(A− xI), so a0 = det(A).

Showing that an−1 = (−1)n−1tr(A) takes a little more work.

Consider the coefficient an−1 of xn−1 in the characteristic polynomial det(A−xI). Remember our formula

det(A− xI) =
∑
Z∈Sn

(−1)inv(Z)prod(Z,A− xI) (*)

where prod(Z,A−xI) is the product of the entries of A−xI in the nonzero positions of the permutation
matrix Z. The key observation to make is that if Z ∈ Sn is not the identity matrix then Z has at most
n− 2 nonzero entries on the diagonal, so prod(Z,A− xI) is a polynomial in x degree at most n− 2.

Therefore the formula (*) implies that

det(A− xI) = prod(I, A− xI) + (polynomial terms of degree ≤ n− 2).
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Let di be the diagonal entry of A in position (i, i). Then prod(I, A− xI) = (d1 − x)(d2 − x) · · · (dn − x)
and the coefficient of xn−1 in this polynomial must be equal to the coefficient of xn−1 in det(A− xI).

By the lemma, the coefficient of xn−1 in (d1 − x)(d2 − x) · · · (dn − x) is

(−1)n−1(d1 + d2 + · · ·+ dn) = (−1)n−1tr(A),

and so an−1 = (−1)n−1tr(A).

Corollary. Suppose A is a 2× 2 matrix. Let p = detA and q = trA.

Then A has distinct eigenvalues if and only if q2 6= 4p.

Proof. Suppose a, b ∈ C are the eigenvalues of A (repeated with multiplicity).

Then ab = p and a+ b = q so a(q − a) = qa− a2 = p and therefore a2 − qa+ p = 0.

The quadratic formula implies that a =
q±
√

q2−4p
2 and b =

q∓
√

q2−4p
2 so a 6= b if and only if q2−4p 6= 0.

Proposition. If A is a square matrix then A and AT have the same eigenvalues.

Proof. This follows since det(A− xI) = det((A− xI)T ) = det(AT − xIT ) = det(AT − xI).

Proposition. Let A be a square matrix. Then A is invertible if and only if 0 is not one of its eigenvalues.
Assume A is invertible. Then A and A−1 have the same eigenvectors, but v is an eigenvector of A with
eigenvalue λ if and only if v is an eigenvector of A−1 with eigenvalue 1/λ.

Proof. 0 is an eigenvalue of A if and only if detA = 0 which occurs precisely when A is not invertible.

If A is invertible and Av = λv then v = A−1Av = A−1λv = λA−1v so A−1v = λ−1v.

Corollary. If A is invertible and diagonalizable then A−1 is diagonalizable.

Proof. If A is invertible and diagonalizable, then Rn has a basis consisting of eigenvectors of A, but this
basis is then also made up of eigenvectors of A−1, so A−1 is diagonalizable.

Corollary. If A is diagonalizable then AT is diagonalizable.

Proof. If A = PDP−1 then AT = (PDP−1)T = (P−1)TDTPT = QEQ−1 for the invertible matrix
Q = (P−1)T = (PT )−1 and the diagonal matrix E = DT .
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4 Vocabulary

Keywords from today’s lecture:

1. (Complex) eigenvalues and eigenvectors.

Let Cn be the set of vectors with n rows with entries in C. Since R ⊂ C, we have Rn ⊂ Cn.

If A is an n × n matrix and there exists a nonzero vector v ∈ Cn with Av = λv for some λ ∈ C,
then λ is an eigenvalue for A. The vector v is called an eigenvector.

Example: The matrix A =

[
0 −1
1 0

]
has eigenvalues i and −i.

We have

[
0 −1
1 0

] [
1
i

]
=

[
−i

1

]
= −i

[
1
i

]
and

[
0 −1
1 0

] [
1
−i

]
=

[
i
−1

]
= i

[
1
−i

]
.

2. Trace of a square matrix.

The sum of the diagonal entries of a square matrix A, denote tr(A).

The value of tr(A) is also the sum of the complex eigenvalues of A, counted with multiplicity.

Example: tr

[
1 2
3 4

]
= 1 + 4 = 5.
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