TLDR

Quick summary of today's notes. Lecture starts on next page.

• The characteristic equation of an $n \times n$ matrix A is a degree n polynomial in one variable.

We can always factor this polynomial as $\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x)$ for some $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$. These complex numbers are the *roots* of $\det(A - xI)$.

Counting multiplicities, det(A - xI) has exactly n roots but some roots may be repeated.

• Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with *n* rows and entries $v_1, v_2, \dots, v_n \in \mathbb{C}$.

We have $\mathbb{R}^n \subset \mathbb{C}^n$ since $\mathbb{R} = \{a \in \mathbb{R}\} = \{a + 0i : a \in \mathbb{R}\} \subset \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

- The sum u + v and scalar multiple cv for $u, v \in \mathbb{C}^n$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .
- If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

Let A be an $n \times n$ matrix whose entries are all real numbers.

Call $\lambda \in \mathbb{C}$ an *eigenvalue* of A if there exists a nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial det(A - xI).

This is no different from our first definition of an eigenvalue, except that now we permit $\lambda \in \mathbb{C}$.

- Let A be a square matrix with all real entries. If v is eigenvector for A with eigenvalue λ , then \overline{v} is an eigenvector for A with eigenvalue $\overline{\lambda}$. Here \overline{v} and $\overline{\lambda}$ are the complex conjugates of v and λ .
- The *trace* of a square matrix A, denoted trA, is the sum of the diagonal entries of A.

If A and B are both $n \times n$ then $\operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

But usually $tr(AB) \neq tr(A)tr(B)$.

• Let A be an $n \times n$ matrix.

Suppose the roots of the characteristic polynomial det(A - xI) are $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$.

These are the eigenvalues of A, repeated accordingly to their multiplicity.

Then det $A = \lambda_1 \lambda_2 \cdots \lambda_n$ and tr $A = \lambda_1 + \lambda_2 + \dots + \lambda_n$.

• Let A be an $n \times n$ matrix.

The matrices A and A^T have the same characteristic polynomial and same eigenvalues.

If A is invertible, then A and A^{-1} have the same eigenvectors.

However, λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue for A^{-1} .

If A is diagonalizable then so is A^T and A^{-1} (when A is invertible).

1 Last time: complex numbers

Given $a, b \in \mathbb{R}$, we interpret a + bi as the matrix $\begin{bmatrix} a & -b \\ -b & a \end{bmatrix}$, so $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Write \mathbb{C} for the set of *complex numbers* $\{a + bi : a, b \in \mathbb{R}\}$.

According to our definition, every complex number is a 2×2 matrix. It can also be helpful to think of a complex number a + bi as a polynomial with real coefficient in a variable *i* that satisfies $i^2 = -1$.

We can add, subtract, multiply, and invert complex numbers. These operations correspond to the usual ways of adding, subtracting, multiplying, and inverting matrices.

Let $a, b, c, d \in \mathbb{R}$. We add complex numbers in the following way:

$$(a+bi) + (c+di) = (a+c) = (b+d)i \in \mathbb{C}.$$

We multiply complex numbers like polynomials, but substituting -1 for i^2 :

$$(a+bi)(c+di) = ac + (ad + bc)i + bd(i^2) = (ac - bd) + (ad + bc)i \in \mathbb{C}.$$

The order of multiplication does not matter since (a + bi)(c + di) = (a + bi).

Given $a, b \in \mathbb{R}$, we define the *complex conjugate* of the complex number $a + bi \in \mathbb{C}$ to be

$$\overline{a+bi} = (a+bi)^T = a-bi \in \mathbb{C}.$$

If $z = a + bi \in \mathbb{C}$. Then $\overline{z} = z$ if and only if b = 0 and $z \in \mathbb{R}$. If $y, z \in \mathbb{C}$ then $\overline{y+z} = \overline{y} + \overline{z}$ and $\overline{yz} = \overline{y} \cdot \overline{z}$.

If $z = a + bi \in \mathbb{C}$ then $z\overline{z} = (a + bi)(a - bi) = a^2 + b^2 \in \mathbb{R}$.

This indicates how to invert complex numbers $0 \neq a + bi$:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}^{-1} = \left\lfloor (a+bi)^{-1} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i \right\rfloor = \frac{1}{a^2+b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

Finally, complex division is defined by

$$\frac{a+bi}{c+di} = (a+bi)(c+di)^{-1} = (c+di)^{-1}(a+bi).$$

Example. We have $\frac{3-4i}{2+i} = \frac{(3-4i)(2-i)}{(2+i)(2-i)} = \frac{6-3i-8i+4i^2}{4-i^2} = \frac{6-11i-4}{5} = \frac{2-11i}{5} = \frac{2}{5} - \frac{11}{5}i.$

One reason that complex numbers are so important is the following theorem.

Theorem (Fundamental theorem of algebra). Suppose

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

is a polynomial of degree n (meaning $a_n \neq 0$) with coefficients $a_0, a_1, \ldots, a_n \in \mathbb{C}$.

There are n (not necessarily distinct) numbers $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that

$$p(x) = a_n(x - r_1)(x - r_2) \cdots (x - r_n)$$

One calls the numbers r_1, r_2, \ldots, r_n the roots of p(x).

A root r has multiplicity m if exactly m of the numbers r_1, r_2, \ldots, r_n are equal to r.

Example. We have $9x^2 + 36 = 9(x - 2i)(x + 2i)$.

2 Complex eigenvalues

The characteristic equation of an $n \times n$ matrix A is a degree n polynomial with real coefficients. Counting multiplicities, det(A - xI) has exactly n roots but some roots may be complex numbers.

Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with *n* rows and entries $v_1, v_2, \ldots, v_n \in \mathbb{C}$.

We have $\mathbb{R}^n \subset \mathbb{C}^n$ since $\mathbb{R} = \{a \in \mathbb{R}\} \subset \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

The sum u + v and scalar multiple cv for $u, v \in \mathbb{C}^n$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .

If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

Definition. Let A be an $n \times n$ matrix with entries in \mathbb{R} or \mathbb{C} . Call $\lambda \in \mathbb{C}$ an *eigenvalue* of A if there exists a nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial det(A - xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C} .

The fundamental theorem of algebra implies the following essential property:

Fact. If A is an $n \times n$ matrix then A has n (not necessarily real or distinct) eigenvalues $\lambda \in \mathbb{C}$, counting repeated eigenvalues with their respective multiplicities.

Example. Let
$$A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$$
. Then $\det(A - xI) = \det \begin{bmatrix} .5 - x & -.6 \\ .75 & 1.1 - x \end{bmatrix} = x^2 - 1.6x + 1.$

Via the quadratic formula using the rule $i = \sqrt{-1}$, we find that the roots of this polynomial are

$$x = \frac{1.6 \pm \sqrt{1.6^2 - 4}}{2} = .8 \pm .6i$$

To find a basis for the (.8 - .6i)-eigenspace, we row reduce as usual

$$\begin{aligned} A - (.8 - .6i)I &= \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} - \begin{bmatrix} .8 - .6i & 0 \\ 0 & .8 - .6i \end{bmatrix} = \begin{bmatrix} -.3 + .6i & -.6 \\ .75 & .3 + .6i \end{bmatrix} \\ &\sim \begin{bmatrix} .5 - i & 1 \\ 1 & .8(.5 + i) \end{bmatrix} \sim \begin{bmatrix} 1 & .8(.5 + i) \\ .5 - i & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 1 - .8(.5 + i)(.5 - i) \end{bmatrix} = \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 0 \end{bmatrix}. \end{aligned}$$

The last equality holds since $.8(.5+i)(.5-i) = .8(.25-i^2) = .8(1.25) = 1.$

This implies that Ax = (.8 - .6i)x if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 + .8(.5 + i)x_2 = 0$, i.e., where $5x_1 = -4(.5 + i)x_2 = -(2 + 4i)x_2$. Satisfying these conditions is the vector $v = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$ which is therefore an eigenvector for A with eigenvalue .8 - .6i.

If A is a matrix and $v \in \mathbb{C}^n$ then we define \overline{A} and \overline{v} as the matrix and vector given by replacing all entries of A and v by their complex conjugates.

Proposition. Suppose A is an $n \times n$ matrix with real entries, so that $A = \overline{A}$. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^n$ then $\overline{v} \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\overline{\lambda}$.

Proof. Since A has real entries, it holds that $\overline{A} = A$. Therefore $A\overline{v} = \overline{A}\overline{v} = \overline{A}\overline{v} = \overline{\lambda}\overline{v}$.

Example. It follows that $\begin{bmatrix} -2+4i \\ 5 \end{bmatrix}$ is an eigenvector with eigenvalue .8 + .6i for $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$ from the previous example.

3 Some final properties of eigenvalues of eigenvectors

We discuss a few more properties of eigenvalues and eigenvectors.

Lemma. Suppose we can write a polynomial in x in two ways as

$$(\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

for some complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n, a_0, a_1, \ldots, a_n \in \mathbb{C}$. Then

$$a_n = (-1)^n$$
 and $a_{n-1} = (-1)^{n-1}(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ and $a_0 = \lambda_1 \lambda_2 \cdots \lambda_n$.

Proof. The product $(\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x)$ is a sum of 2^n monomials corresponding to a choice of either λ_i or -x for each of the *n* factors, multiplied together.

The only such monomial of degree n is $(-x)^n = (-1)^n x^n = a_n x^n$ so $a_n = (-1)^n$.

The only such monomial of degree 0 is $\lambda_1 \lambda_2 \cdots \lambda_n = a_0$.

Finally, there are n monomials of degree n-1 that arise:

$$\lambda_1(-x)^{n-1} + (-x)\lambda_2(-x)^{n-2} + (-x)^2\lambda_3(-x)^{n-3} + \dots + (-x)^{n-1}\lambda_n = (-1)^{n-1}(\lambda_1 + \dots + \lambda_n)x^{n-1}.$$

This sum must be equal to $a_{n-1}x^{n-1}$ so $a_{n-1} = (-1)^{n-1}(\lambda_1 + \lambda_2 + \dots + \lambda_n).$

Let A be an $n \times n$ matrix.

Define tr(A) to be the sum of the diagonal entries of A. Call tr(A) the trace of A.

Example. tr
$$\left(\begin{bmatrix} 1 & 0 & 7 \\ -1 & 2 & 8 \\ 2 & 4 & 3 \end{bmatrix} \right) = 1 + 2 + 3 = 6.$$

Proposition. If A, B are $n \times n$ matrices then tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).

However, usually $tr(AB) \neq tr(A)tr(B)$, unlike for the determinant.

Proof. The diagonal entries of A + B are given by adding together the diagonal entries of A with those of B in corresponding positions, so it follows that tr(A + B) = tr(A) + tr(B).

Let E_{ij} be the $n \times n$ matrix with 1 in position (i, j) and 0 in all other positions.

(In this proof, we use the symbol i to mean an integer index rather than a complex number.)

You can check that $E_{ij}E_{kl}$ is the zero matrix if $j \neq k$ and that $E_{ij}E_{jk} = E_{ik}$.

Moreover, $tr(E_{ij}) = 0$ if $i \neq j$ and $tr(E_{ii}) = 1$.

We conclude that $tr(E_{ij}E_{kl})$ is 1 if i = l and j = k and is 0 otherwise.

This formula is symmetric so $tr(E_{ij}E_{kl}) = tr(E_{kl}E_{ij})$.

It follows that tr(AB) = tr(BA) since if A_{ij} and B_{ij} are the entries of A and B in positions (i, j), then

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} E_{ij} \quad \text{and} \quad B = \sum_{k=1}^{n} \sum_{l=1}^{n} B_{kl} E_{kl}.$$

Theorem. Let A be an $n \times n$ matrix (with entries in \mathbb{R} or \mathbb{C}).

Suppose the characteristic polynomial of A factors as

$$\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x).$$

Then det $A = \lambda_1 \lambda_2 \cdots \lambda_n$ and $\operatorname{tr} A = \lambda_1 + \lambda_2 + \cdots + \lambda_n$. In other words:

- (a) The product of the (complex) eigenvalues of A, counted with multiplicity, is det(A).
- (b) The sum of the (complex) eigenvalues of A, counted with multiplicity if tr(A).

Remark. The theorem is true for all matrices, but is much easier to prove for diagonalizable matrices. If $A = PDP^{-1}$ where D is a diagonal matrix, then $det(A) = det(PDP^{-1}) = det(D) = \lambda_1 \lambda_2 \cdots \lambda_n$ and

$$\operatorname{tr}(A) = \operatorname{tr}(PDP^{-1}) = \operatorname{tr}(DP^{-1}P) = \operatorname{tr}(D) = \lambda_1 + \lambda_2 + \dots + \lambda_n.$$

Before proving the theorem let's see an example.

Example. If
$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & i \end{bmatrix}$$
 then $\begin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}$ are eigenvectors of A .

The corresponding eigenvalues are i, i, and -i.

One can check that $\det(A - xI) = -x^3 + ix^2 - x + i = (i - x)^2(-i - x)$. The theorem asserts that $(i)(i)(-i) = -i^3 = i = \det(A)$ and $i + i + (-i) = i = \operatorname{tr}(A)$.

Proof of the theorem. We can write $\det(A - xI) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ for some numbers $a_0, a_1, \dots, a_n \in \mathbb{C}$. By the lemma it suffices to show that $a_0 = \det(A)$ and $a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$.

The first claim is easy. The value of a_0 is given by setting x = 0 in det(A - xI), so $a_0 = det(A)$.

Showing that $a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$ takes a little more work.

Consider the coefficient a_{n-1} of x^{n-1} in the characteristic polynomial det(A-xI). Remember our formula

$$\det(A - xI) = \sum_{Z \in S_n} (-1)^{\mathsf{inv}(Z)} \mathsf{prod}(Z, A - xI) \tag{*}$$

where $\operatorname{prod}(Z, A - xI)$ is the product of the entries of A - xI in the nonzero positions of the permutation matrix Z. The key observation to make is that if $Z \in S_n$ is not the identity matrix then Z has at most n-2 nonzero entries on the diagonal, so $\operatorname{prod}(Z, A - xI)$ is a polynomial in x degree at most n-2.

Therefore the formula (*) implies that

 $det(A - xI) = prod(I, A - xI) + (polynomial terms of degree \le n - 2).$

By the lemma, the coefficient of x^{n-1} in $(d_1 - x)(d_2 - x) \cdots (d_n - x)$ is

$$(-1)^{n-1}(d_1 + d_2 + \dots + d_n) = (-1)^{n-1} \operatorname{tr}(A),$$

and so $a_{n-1} = (-1)^{n-1} tr(A)$.

Corollary. Suppose A is a 2×2 matrix. Let $p = \det A$ and $q = \operatorname{tr} A$.

Then A has distinct eigenvalues if and only if $q^2 \neq 4p$.

Proof. Suppose $a, b \in \mathbb{C}$ are the eigenvalues of A (repeated with multiplicity). Then ab = p and a + b = q so $a(q - a) = qa - a^2 = p$ and therefore $a^2 - qa + p = 0$. The quadratic formula implies that $a = \frac{q \pm \sqrt{q^2 - 4p}}{2}$ and $b = \frac{q \pm \sqrt{q^2 - 4p}}{2}$ so $a \neq b$ if and only if $q^2 - 4p \neq 0$. \Box

Proposition. If A is a square matrix then A and A^T have the same eigenvalues.

Proof. This follows since
$$\det(A - xI) = \det((A - xI)^T) = \det(A^T - xI^T) = \det(A^T - xI)$$
.

Proposition. Let A be a square matrix. Then A is invertible if and only if 0 is not one of its eigenvalues. Assume A is invertible. Then A and A^{-1} have the same eigenvectors, but v is an eigenvector of A with eigenvalue λ if and only if v is an eigenvector of A^{-1} with eigenvalue $1/\lambda$.

Proof. 0 is an eigenvalue of A if and only if det A = 0 which occurs precisely when A is not invertible. If A is invertible and $Av = \lambda v$ then $v = A^{-1}Av = A^{-1}\lambda v = \lambda A^{-1}v$ so $A^{-1}v = \lambda^{-1}v$.

Corollary. If A is invertible and diagonalizable then A^{-1} is diagonalizable.

Proof. If A is invertible and diagonalizable, then \mathbb{R}^n has a basis consisting of eigenvectors of A, but this basis is then also made up of eigenvectors of A^{-1} , so A^{-1} is diagonalizable.

Corollary. If A is diagonalizable then A^T is diagonalizable.

Proof. If $A = PDP^{-1}$ then $A^T = (PDP^{-1})^T = (P^{-1})^T D^T P^T = QEQ^{-1}$ for the invertible matrix $Q = (P^{-1})^T = (P^T)^{-1}$ and the diagonal matrix $E = D^T$.

4 Vocabulary

Keywords from today's lecture:

1. (Complex) eigenvalues and eigenvectors.

Let \mathbb{C}^n be the set of vectors with *n* rows with entries in \mathbb{C} . Since $\mathbb{R} \subset \mathbb{C}$, we have $\mathbb{R}^n \subset \mathbb{C}^n$.

If A is an $n \times n$ matrix and there exists a nonzero vector $v \in \mathbb{C}^n$ with $Av = \lambda v$ for some $\lambda \in \mathbb{C}$, then λ is an *eigenvalue* for A. The vector v is called an *eigenvector*.

Example: The matrix
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 has eigenvalues i and $-i$.
We have $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ -1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix}$.

2. Trace of a square matrix.

The sum of the diagonal entries of a square matrix A, denote tr(A).

The value of tr(A) is also the sum of the complex eigenvalues of A, counted with multiplicity.

Example: tr $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 1 + 4 = 5.$