MATH 2121 — Linear algebra (Fall 2020) Lecture 14

TLDR

Quick summary of today’s notes. Lecture starts on next page.

e A wector space is a nonempty set with a “zero vector” and two operations that can be thought of
a “vector addition” and “scalar multiplication.” The operations must obey several conditions.

e There are notions of subspaces, linear functions, linear combinations, spans, linear independence,
and bases for vector spaces. The definitions are essentially the same as for R™, with one minor
caveat when we are considering linear combinations and independence of infinite sets of vectors.

e Every vector space has a basis, and every basis for a given vector space has the same number of
elements, which could be infinite. This number of elements is the dimension of the vector space.

e If X and Y are sets, then let Fun(X,Y") be the set of functions f: X — Y.

The set Fun(X,R) is naturally a vector space. If X is finite then ’ dim Fun(X,R) = | X]| ‘

e If U and V are vector spaces, then let Lin(U, V') be the set of linear functions f: U — V.

The set Lin(U, V) is naturally a vector space. If dimU < oo then ’ dim Lin(U,R) = dim U ‘

Moreover, if W is another vector space and f € Lin(V, W) and g € Lin(U, V), then fog € Lin(U, W).
e Suppose f: U — V is a linear function between vector spaces.

Define range(f) = {f(u) :w € U} CV and kernel(f) ={u € U : f(u) =0} CU.

These sets are subspaces. If dim U < oo then ’ dim range(f) + dim kernel(f) = dim U ‘

e Let A be an n X n matrix. Let A\ be a number and suppose 0 # v € R".
If Av = Av then we say that v is an eigenvector for A and that A is an eigenvalue for A.
More specifically, v is an eigenvector with eigenvalue \ for A.

This happens if and only if 0 # v € Nul(4 — \I,).
For example, v = [ _g } is an eigenvector with eigenvalue A = —4 for A = [ é g

ERIE IR IR

The zero vector is not allowed to be an eigenvector, but 0 can occur as an eigenvalue.

} since

e The eigenvalues A for A are the numbers such that det(A — A\I,,) = 0.
e The eigenvectors with eigenvalue A for A are the nonzero elements of Nul(A — AI,).

e If A is a triangular matrix, then its eigenvalues are its diagonal entries.

1 6 0
For example, the eigenvalues of 3 | are 0 and 1.
1

0 0
0 0
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1 Last time: vector spaces

A (real) vector space V is a set containing a zero vector, denoted 0, with vector addition and scalar
multiplication operations that let us produce new vectors u +v € V and cv € V from given elements
u,v € V and ¢ € R. Several conditions must be satisfied so that these operations behave exactly like
vector addition and scalar multiplication for R™. Most importantly, we require that

l.u+v=v+wuand (ut+v)+w=u+ (v+w).
2. v —v = 0 where we define u —v =u+ (—1)v.
.v+0=v
4. cv=vifec=1.
There are a few other more conditions to give the full definition (see the notes from last time).

By convention, we refer to elements of vector spaces as vectors.

Example. All subspace of R™ are vector spaces, with the usual zero vector and vector operations.

The set of m x n matrices is a vector space, with the usual addition and scalar multiplication operations.
The zero vector in this vector space is the m X n zero matrix.

Most vector spaces that we encounter are either subspaces of R™ or subspaces of the following construction.

Proposition. Let X be a set and let V be a vector space.
Then the set Fun(X, V) of all functions f : X — V is a vector space once we define
f + g = ( the function that maps = — f(z) + g(x) for z € X ),

cf = ( the function that maps = — c- f(z) for x € X ),
0 = ( the function that maps z = 0 €V for v € X ),

for f,g € Fun(X,V) and ¢ € R.

Definition. The definitions of a subspace of a vector space and of linear transformations between vector
spaces are identical to the ones we have already seen for subspaces of R™:
e A subset H CV is a subspace if 0 € H and if u+v € H and cv € H for all u,v € H and c € R.
e A function f: U — V is linear if f(u+v) = f(u) + f(v) and f(cv) = cf(v) for all u,v € U and
ceR.

Proposition. If U, VW are vector spaces and f : V — W and g : U — V are linear functions then
fog:U — W is also linear, where we define f o g(z) = f(g(z)) for z € U.

Example. If U and V are vector spaces then let Lin(U, V') be the set of linear functions f: U — V.
Then Lin(U, V) is a subspace of Fun(U, V).
Can you make sense of this statement? “Lin(R™,R™) is the vector space of m x n matrices.”
Example. A function f: R — R is a polynomial if it has the formula

f(@) = anz" +ap 12"+ +arz+ag

for some nonnegative integer n and some coefficients ag, a1, ...,a, € R.

The set of polynomial functions R — R is a subspace of Fun(R,R).
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Example. Suppose V is a vector space. Choose v € V. Given a linear function f : V — R, define

Then v* is a linear function Lin(V,R) — R.
Let’s go deeper: the function with the formula v — v* is a linear function V' — Lin(Lin(V,R),R).
If V = R" then this function V' — Lin(Lin(V,R),R) is invertible.

Let V be a vector space. The definitions of linear combinations and linear independence for vectors in V'
are mostly the same as for vectors in R", with one caveat.

Definition. A [linear combination of a finite list of vectors vy, vs,...,v; € V is a vector of the form
C1U1 + CoU2 + - - - + Cr Vg

for some scalars c,ca,...,cp € R.
We must be a little careful when defining linear combinations for infinite sets. Specifically: a linear

combination of an infinite set of vectors is a linear combination of some finite subset of the vectors.

Definition. The span of a set of vectors is the set of all linear combinations that can be formed from
the vectors. The span of a set of vectors in V' is a subspace of V.

Example. The subspace of polynomials in Fun(R,R) is the span of the set of functions 1,2, 22,23, ....
The infinite sum e =1+ + o + §2° + 572% + -+ + Sa™ + ... does not belong to this subspace.
Definition. A finite list of vectors v1,vs, ..., v € V is linearly independent if it is impossible to express
0 =civ1 4+ covg + - - + cpvg except when ¢ =co =+ =¢, = 0.

An infinite list of vectors is defined to be linearly independent if every finite subset of the vectors is

linearly independent.

Definition. A basis of a vector space V is a subset of linearly independent vectors whose span is V.
Saying by, bs, b3, ... is a basis for V is the same as saying that for each v € V| there a unique coefficients
T1,%2,%3, -+ € R, all but finitely many of which are zero, such that v = x1b; 4+ x2bs + x3bs + . ...

Theorem. Let V be a vector space.
1. V has at least one basis.
2. Every basis of V has the same number of elements (but this could be infinite).
3. If A is a subset of linearly independent vectors in V' then V has a basis B with A C B.
4. If C is a subset of vectors in V' whose span is V then V has a basis B with B C C.

Definition. The dimension of a vector space V is the number dim V' of elements in any of its bases.

Example. If X is a finite set then dim Fun(X,R) = | X| where | X]| is the size of X.

2 More on dimension

If V is a finite-dimensional vector space then I claim that dim Lin(V,R) = dim V.
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Suppose by, bs, ..., b, is a basis for V.
Then a basis for Lin(V,R) is given by the linear functions ¢1, ¢a,...,d, : V — R with the formulas

Qbi(xlbl + xobg + .. ..Z‘nbn) =x; for z1,z9,...,2, € R.
The unique way to express a linear function f: V — R as a linear combination of these functions is

f=Ff(b1)p1 + f(b2)p2 + -+ f(bn)dn.

Assume V = R"™. Then we can think of Lin(R™,R) as the vector space of 1 x n matrices.

If by =eq, by = €9, ..., b, = e, is the standard basis, then ¢, = elT, Po = eQT, vy O = eg.

Definition. Suppose U and V are vector spaces and f : U — V is a linear function.
Define range(f) = {f(z) : 2 € U} CV and kernel(f) ={z € U : f(z) =0} CU.

These sets are subspaces which generalize the column space and null space of a matrix.

We have a version of the rank-nullity theorem for arbitrary vector spaces:

Theorem (Rank-Nullity Theorem). If dimU < oo then dim range(f) + dim kernel(f) = dim U.
This specializes to our earlier statement about matrices when U = R™ and V = R™.

We can prove the theorem in a self-contained, completely abstract way, but it’s a little involved.

Proof. If by, by, ..., b, is a basis for U then the span of f(b1), f(b2),..., f(b,) must be equal to range(f).
Therefore dimrange(f) < dimU < oo. Since kernel(f) C U, we also have dim kernel(f) < oo.
Let k = dimrange(f) and [ = dim kernel(f).
Choose uy,us,...,ux € U such that f(uy), f(us),..., f(ur) is a basis for range(f).
Choose a basis vy, va, ..., v; for kernel(f). We will check that uq,us, ..., uk, v1,ve,...,v; is a basis for U.
To show linear independence, suppose a1, as, ..., ax,b1,bs,...,b; € R are such that
aru1 + agus + - -+ + apu + b1vy + bovg 4+ - -+ 4+ biyy = 0.
Applying f to both sides gives ai f(u1) + asf(us) + -+ arf(ur) =0,80 a1 =as =--- = a = 0.
But this implies byv1 4+ bovy + -+ - 4+ byv; = 0, so we also have by = by =--- =b; = 0.
Our vectors uy,us, ..., Uk, V1, V2, ..., are therefore linearly independent in U.
Now let x € U. By assumption f(x) = c1f(u1) + caf(uz) + ... crf(ug) for some ¢q,ca,...,c, € R.
The vector © — ciu; — coug — - -+ — cxuy, is then in the span of vy, vy, ..., v; since it belongs to kernel(f).

We conclude that x is a linear combination of uy,us, ..., ug, v1,va,...,v;, so this is a basis for U. O

3 Eigenvectors and eigenvalues

We return to the concrete setting of R™ and its subspaces. Let A be a square n X n matrix.
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Definition. An eigenvector of A is a nonzero vector v € R™ such that
Av=)\v

for a number A € R. (X is the Greek letter “lambda.”)
The number A is called the eigenvalue of A for the eigenvector v.
We require eigenvectors to be nonzero because if v = 0 then Av = Av = 0 for all numbers A € R.

The number 0 is allowed to be an eigenvalue of A, however.

Example. If we are given A and v, it is easy to check whether v is an eigenvector: just compute Awv.

. |16 _ 6 |1 6 6 | | —24|_
Forexaumple,lfA[5 2}andv[_5}thenAv[5 2][_5}[ 20] 4.

Therefore v is an eigenvector of A with eigenvalue —4.

01 00
. . 0 010
Example. What are the eigenvectors of the matrix A = 00 0 1 ?
0 00O
If v € R* were an eigenvector with eigenvalue A then
01 0 0 U1 () V1
10 0 10 vy | | vz | _ U2
Adv=145 0 0 1 vs | = 1w | T ws
0 0 0 O V4 0 V4

The last equation implies that 0 = A\v4 and vy = Avz and vz = Avy and vo = Avy. In other words,
0= )\’U4 = )\2’[}3 = )\31}2 = /\41)1.

If XA # 0 then this would mean that v; = vy = vy = vy = 0, but remember that v should be nonzero.
Therefore the only possible eigenvalue of A is A = 0. The eigenvectors of A with eigenvalue 0 are

v

where v1 # 0.

<
Il

O O OoOF

To say that “A is an eigenvalue of A” means that there exists a nonzero vector v € R™ such that Av = Av.

Recall that I,, denotes the n x n identity matrix. We abbreviate by setting I = I,,.
Proposition. A number A € R is an eigenvalue of A if and only if A — Al is not invertible.

Proof. The equation Az = Az has a nonzero solution x € R™ if and only if (A — AI)x = 0 has a nonzero
solution, which occurs if and only if Nul(A — AI) # {0}, or equivalently when A — AI is not invertible. O

1 6
5 2

A—?I—[é g}—{g H—[_g _3%“ :HNH _H—RREF(A—U).

Since RREF(A — 7I) # I, the matrix A — 71 is not invertible so 7 is an eigenvalue of A.

Example. If A = { } then
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Corollary. A number A € R is an eigenvalue of A if and only if det(A — AI) = 0.
Proof. Remember that A — AT is not invertible if and only if det(4 — AI) = 0. O

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue A are precisely the nonzero
elements of the null space Nul(A — AI). Since we know how to construct a basis for the null space of any
matrix, we also know how to find all eigenvectors of a matrix for any given eigenvalue.

1 -1

Example. In the previous example, RREF(A—7I) = [ 0 0

} so Az = 7z if and only if (A—"7I)z =0

T

if and only if x = where £1 — zo = 0. In this linear system, x5 is a free variable, and we can

rewrite x as x = [ ? ] =29 [ 1 ] This means [ 1 } is a basis for Nul(A — 71).
2

Therefore every eigenvector of A with eigenvalue 7 has the form [ Z ] for some a € R.
One calls the set of all v € R™ with Av = Av the eigenspace of A for \. We also call this the A-eigenspace

of A. Note that this is just the null space of A — AI. A number is an eigenvalue of A if and only if the
corresponding eigenspace is nonzero (that is, contains a nonzero vector).

4 -1 6]
Example. Suppose we were told that A = | 2 1 6 | has 2 as an eigenvalue.
2 -1 8

To find a basis for the 2-eigenspace of A, we row reduce

2 -1 6 2 -1 6 1 —1/2 3
A-2[=|2 -1 6 |~ 0 0 O0]|~]0O 0 0 | =RREF(A—2I).
2 -1 6 0 0 0 | 0 0 0
T
Thus Az = 2z if and only if x = | 2 | where x1 — %3’32 + 3x3 = 0, that is, if and only if
T3
Tx — 33 1/2 -3
T = To | = a9 1| +xz3 0
T3 0 1
1/2 -3
The vectors 1 | and 0 | are then a basis for the 2-eigenspance of A.
0 1

Recall that a matrix is triangular if its nonzero entries all appear on or above the main diagonal, or all
appear on or below the main diagonal.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. 1f A has diagonal entries dy,ds, . .., d, then A— I is triangular with diagonal entries d; — A, do — A\,
coydp—A;sodet(A—AI) = (dy—A)(d2—A) - - - (d,— \) which is zero if and only if A € {d;,ds,...,d,}. O

3 6 =8
Example. The eigenvalues of the matrix | 0 0 6 | are 3, 0, and 2.
00 2
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4 Vocabulary

Keywords from today’s lecture:

1.

Subspace of a vector space.

A nonempty subset closed under linear combinations.

Linearly combination and span of elements in a vector space.
A linear combination of a finite set of vectors vy, vs,...v, € V is a vector of the form

C1U1 + CoU2 + -+ - + CpUp
where ci,¢2,...,¢p, € R. A linear combination of an infinite set of vectors is a linear combination of
some finite subset. The set of all linear combinations of a set of vectors is the span of the vectors.
Linearly independent elements in a vector space.

A list of elements in a vector space is linearly dependent if one vector can be expressed as a
linear combination of a finite subset of the other vectors. If this is impossible, then the vectors are
linearly independent.

Example: cos(z) and sin(x) are linearly independently in Fun(R,R).

Example: the infinite list of functions 1,z, 22,23, z%,... are linearly independent in Fun(R, R).

. Basis and dimension of a vector space.

A set of linearly independent elements whose span is the entire vector space.

Every basis in a vector space has the same number of elements. This number is defined to be the
dimension of the vector space.
Linear functions.
If U and V are vector spaces, then a function f : U — V is linear when
flutv)=fu)+flv) and  f(cw) =cf(v)
for all u,v € U and ¢ € R.

Eigenvector for an n x n matrix A.

A nonzero vector v € R™ such that Av = \v for some real number )\ € R.

The number X is the eigenvalue of A for v.

1 0 2 0 0 20 1 2
1 | is an eigenvector for [ 2 0 0 | with eigenvalue2as | 2 0 0 1 (=12
1 0 0 2 0 0 2 1 2

A-eigenspace for an n x n matrix A, where \ € R.
The subspace Nul(4 — AI) C R™ where I is the n x n identity matrix.
If X is not an eigenvalue of A, then this subspace is {0}.

But if A is an eigenvalue of A, then the subspace is nonzero.
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