TLDR

Quick summary of today's notes. Lecture starts on next page.

- Let A be an $n \times n$ matrix. Let $I = I_n$ be the $n \times n$ identity matrix.
 - Let λ be a number and suppose $0 \neq v \in \mathbb{R}^n$.

If $Av = \lambda v$ then we say that v is an *eigenvector* for A and that λ is an *eigenvalue* for A.

- A is diagonalizable if A = PDP⁻¹ for some invertible matrix P and diagonal matrix D.
 An n × n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
 An n × n matrix with n distinct eigenvalues is always diagonalizable.
- The Fibonacci numbers are defined by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-2} + f_{n-1}$ for $n \ge 2$. The ability to diagonalize a matrix lets us derive the exact formula

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) \approx 0.447 \left(1.618^n - (-0.618)^n \right)$$

• Suppose an $n \times n$ matrix A has $p \leq n$ distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$. Then A is diagonalizable if and only if

$$\dim \operatorname{Nul}(A - \lambda_1 I) + \dim \operatorname{Nul}(A - \lambda_2 I) + \dots + \dim \operatorname{Nul}(A - \lambda_p I) = n$$

Assume this holds. Suppose \mathcal{B}_i is a basis for $\operatorname{Nul}(A - \lambda_i I)$.

Then the union $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ is a set of *n* linearly independent eigenvectors for *A*. If the elements of this union are the vectors v_1, v_2, \ldots, v_n then the matrix

$$P = \left[\begin{array}{ccc} v_1 & v_2 & \dots & v_n \end{array} \right]$$

is invertible and the matrix $D = P^{-1}AP$ is diagonal, and $A = PDP^{-1}$.

1 Last time: similar and diagonalizable matrices

Let n be a positive integer. Suppose A is an $n \times n$ matrix, $v \in \mathbb{R}^n$, and $\lambda \in \mathbb{R}$. Recall that v an *eigenvector* for A with *eigenvalue* λ if $0 \neq v \in \text{Nul}(A - \lambda I)$, which means that $Av = \lambda v$. The number λ is an eigenvalue of A if there exists some eigenvector with this eigenvalue. If the nullspace $\text{Nul}(A - \lambda I)$ is nonzero, then it is called the λ -*eigenspace* of A. The eigenvalues of A are the solutions to the polynomial equation $\det(A - xI) = 0$.

Important fact. Any set of eigenvectors of A with all distinct eigenvalues is linearly independent.

Two $n \times n$ matrices A and B are *similar* if there is an invertible $n \times n$ matrix P such that $A = PBP^{-1}$.

	[1				0	0	1]	0	0	1	$ ^{-1}$	9	8	7 -]
Example. The matrix $A =$	4	5	6	is similar to	0	1	0	A	0	1	0	=	6	5	4	.
	[7	8	9_		1	0	0		1	0	0		3	2	1_	

Similar matrices have the same eigenvalues but usually different eigenvectors.

However, matrices may have the same eigenvalues but not be similar.

Example. The matrices

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

both have eigenvalues 2,2 but are not similar. This holds because A = 2I so we have

$$PAP^{-1}=2PIP^{-1}=2PP^{-1}=2I=A\neq B$$

for all invertible 2×2 matrices P.

A matrix is *diagonal* if all of its nonzero entries appear in diagonal positions $(1, 1), (2, 2), \ldots$, or (n, n).

A matrix A is *diagonalizable* if it is similar to a diagonal matrix.

In other words, A is diagonalizable if we can write $A = PDP^{-1}$ where

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

is a diagonal matrix. In this case, some important properties hold:

- The numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A.
- The columns of P are a basis for \mathbb{R}^n of eigenvectors of A.
- Specifically, if $P = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$ then $Av_i = \lambda_i v_i$ for each $i = 1, 2, \dots, n$.

Theorem. An $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^n has a basis whose elements are all eigenvectors of A.

Proof. We have just seen that if $A = PDP^{-1}$ where D is diagonal then the columns of P are a basis for \mathbb{R}^n consisting of eigenvectors for A. Conversely, suppose A has n linearly independent eigenvectors v_1, v_2, \ldots, v_n with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Define

$$D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

and write e_1, e_2, \ldots, e_n for the standard basis of \mathbb{R}^n . Since $Pe_i = v_i$ and $P^{-1}v_i = e_i$, we have

$$P^{-1}APe_i = P^{-1}Av_i = P^{-1}(\lambda_i v_i) = \lambda_i P^{-1}v_i = \lambda_i e_i.$$

This calculates the *i*th column of $P^{-1}AP$. Since $\lambda_i e_i$ is also the *i* column of the diagonal matrix D, we deduce that $P^{-1}AP = D$. Therefore $A = P(P^{-1}AP)P^{-1} = PDP^{-1}$ is diagonalizable.

Not every matrix is diagonalizable. It takes some work to decide if a given matrix is diagonalizable.

Theorem. If A is an $n \times n$ matrix with n distinct eigenvalues then A is diagonalizable.

Proof. Suppose A has n distinct eigenvalues. Any choice of eigenvectors for A corresponding to these eigenvalues will be linearly independent, so A will have n linearly independent eigenvectors.

These eigenvectors are a basis for \mathbb{R}^n since any set of *n* linearly independent vectors in \mathbb{R}^n is a basis. \Box

Example. The matrix $A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$ is triangular so has eigenvalues 5, 0, -2.

These are distinct numbers, so A is diagonalizable.

2 Diagonalization and Fibonacci numbers

Knowing how to diagonalize matrices will let us prove an exact formula for the *Fibonacci numbers*. The sequence f_n of Fibonacci numbers starts as

$$f_0 = 0$$
, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8$, $f_7 = 13$...

For $n \ge 2$, the sequence is defined by $f_n = f_{n-2} + f_{n-1}$.

We have $f_{10} = 55$ and $f_{100} = 354224848179261915075$.

Define
$$a_n = f_{2n}$$
 and $b_n = f_{2n+1}$ for $n \ge 0$.
If $n > 0$ then $a_n = f_{2n} = f_{2n-2} + f_{2n-1} = a_{n-1} + b_{n-1}$.
Similarly, if $n > 0$ then $b_n = f_{2n+1} = f_{2n-1} + f_{2n} = b_{n-1} + a_n = a_{n-1} + 2b_{n-1}$.
We can put these two equations together into one matrix equation:

$$\left[\begin{array}{c}a_n\\b_n\end{array}\right] = \left[\begin{array}{cc}1&1\\1&2\end{array}\right] \left[\begin{array}{c}a_{n-1}\\b_{n-1}\end{array}\right]$$

Since this holds for all n > 0, we have

$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^2 \begin{bmatrix} a_{n-2} \\ b_{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^3 \begin{bmatrix} a_{n-3} \\ b_{n-3} \end{bmatrix} = \dots = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^n \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}.$$

Thus if we could get an exact formula for the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^n$ then we could derive a formula for $a_n = f_{2n}$ and $b_n = f_{2n+1}$, which would determine f_n for all n.

The best way we know to compute A^n for large values of n is to *diagonalize* A, that is, to find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$, since then $A^n = PD^nP^{-1}$.

Define the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

To determine if A is diagonalizable, our first step is to compute its eigenvalues, which are solutions to

$$0 = \det(A - xI) = \det \begin{bmatrix} 1 - x & 1 \\ 1 & 2 - x \end{bmatrix} = (1 - x)(2 - x) - 1 = x^2 - 3x + 1$$

By the quadratic formula, the eigenvalues of A are $\alpha = \frac{3+\sqrt{5}}{2}$ and $\beta = \frac{3-\sqrt{5}}{2}$.

Since $\alpha - \beta = \sqrt{5} \neq 0$, these eigenvalues are distinct so A is diagonalizable. Note that

$$\alpha\beta = (3 - \sqrt{5})(3 + \sqrt{5})/4 = (9 - 5)/4 = 1.$$

Our next step is to find bases for the α - and β -eigenspaces of A.

To find an eigenvector for A with eigenvalue α , we row reduce

$$A - \alpha I = \begin{bmatrix} 1 - \alpha & 1 \\ 1 & 2 - \alpha \end{bmatrix} \sim \begin{bmatrix} 1 & 2 - \alpha \\ 1 - \alpha & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 - \alpha \\ 0 & 1 - (2 - \alpha)(1 - \alpha) \end{bmatrix} = \begin{bmatrix} 1 & 2 - \alpha \\ 0 & 0 \end{bmatrix} = \mathsf{RREF}(A - \alpha I).$$

The second equality holds since $(2 - \alpha)(1 - \alpha) = (1 - \sqrt{5})(-1 - \sqrt{5})/4 = (-1 + 5)/4 = 1.$

This computation shows that $x \in \text{Nul}(A - \alpha I)$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 + (2 - \alpha)x_2 = 0$, so

$$v = \left[\begin{array}{c} \alpha - 2\\ 1 \end{array} \right]$$

is an eigenvector for A with $Av = \alpha v$.

To find an eigenvector for A with eigenvalue β , we similarly row reduce

$$A-\beta I = \begin{bmatrix} 1-\beta & 1\\ 1 & 2-\beta \end{bmatrix} \sim \begin{bmatrix} 1 & 2-\beta\\ 1-\beta & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2-\beta\\ 0 & 1-(2-\beta)(1-\beta) \end{bmatrix} = \begin{bmatrix} 1 & 2-\beta\\ 0 & 0 \end{bmatrix} = \mathsf{RREF}(A-\beta I).$$

The second equality holds since also $(2 - \beta)(1 - \beta) = 1$.

By algebra identical to the previous case, we deduce that

$$w = \left[\begin{array}{c} \beta - 2\\ 1 \end{array} \right]$$

is an eigenvector for A with $Aw = \beta w$.

This means that for

$$P = \begin{bmatrix} v & w \end{bmatrix} = \begin{bmatrix} \alpha - 2 & \beta - 2 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$$

we have $A = PDP^{-1}$. Since P is 2×2 with det $P = (\alpha - 2) - (\beta - 2) = \alpha - \beta = \sqrt{5}$, we have

$$D^{n} = \begin{bmatrix} \alpha^{n} & 0\\ 0 & \beta^{n} \end{bmatrix} \quad \text{and} \quad P^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2-\beta\\ -1 & \alpha-2 \end{bmatrix}.$$

We therefore have

$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = A^n \begin{bmatrix} 0 \\ 1 \end{bmatrix} = PD^nP^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha - 2 & \beta - 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{bmatrix} \begin{bmatrix} 1 & 2 - \beta \\ -1 & \alpha - 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Before computing anything further, it helps to make a few simplifications. Note that

$$\alpha - 2 = \frac{-1 + \sqrt{5}}{2} = 1 - \beta$$
 and $\beta - 2 = \frac{-1 - \sqrt{5}}{2} = 1 - \alpha$

Hence

$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1-\beta & 1-\alpha \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{bmatrix} \begin{bmatrix} 1 & \alpha-1 \\ -1 & 1-\beta \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} 1-\beta & 1-\alpha \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{bmatrix} \begin{bmatrix} \alpha-1 \\ 1-\beta \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} 1-\beta & 1-\alpha \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (\alpha-1)\alpha^n \\ -(\beta-1)\beta^n \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} (\alpha-1)(\beta-1)(\beta^n-\alpha^n) \\ (\alpha-1)\alpha^n - (\beta-1)\beta^n \end{bmatrix}.$$

Since

$$(\alpha - 1)(\beta - 1) = \frac{(1 - \sqrt{5})(1 + \sqrt{5})}{4} = \frac{1 - 4}{4} = -1,$$

rewriting this matrix equation gives

$$f_{2n} = a_n = \frac{1}{\sqrt{5}} \left(\alpha^n - \beta^n \right)$$
 and $f_{2n+1} = b_n = \frac{1}{\sqrt{5}} \left((\alpha - 1)\alpha^n - (\beta - 1)\beta^n \right).$ (*)

We now make one more unexpected observation:

$$(\alpha - 1)^2 = \left(\frac{1 + \sqrt{5}}{2}\right)^2 = \frac{1 + 2\sqrt{5} + 5}{4} = \frac{3 + \sqrt{5}}{2} = \alpha$$

and

$$(\beta - 1)^2 = \left(\frac{1 - \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{3 - \sqrt{5}}{2} = \beta$$

Thus (*) become

$$f_{2n} = \frac{1}{\sqrt{5}} \left((\alpha - 1)^{2n} - (\beta - 1)^{2n} \right) \quad \text{and} \quad f_{2n+1} = \frac{1}{\sqrt{5}} \left((\alpha - 1)^{2n+1} - (\beta - 1)^{2n+1} \right). \quad (**)$$

Now we combine the identities in (**). Since $\alpha - 1 = \frac{1+\sqrt{5}}{2}$ and $\beta - 1 = \frac{1-\sqrt{5}}{2}$, we get:

Theorem. For all integers $n \ge 0$ it holds that

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) \approx 0.447 \left(1.618^n - (-0.618)^n \right)$$

Remark. Since $\frac{1-\sqrt{5}}{2} = -0.618...$, if *n* is large then $f_n \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$.

Fun fact. The first few Fibonacci numbers are

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$$

If we add up all the decimal numbers

0.0 0.01 0.001 0.0002 0.00003 0.000005 0.0000000 0.000000013 0.0000000021 0.0000000034 0.00000000055 0.00000000089 0.000000000144

then we get exactly 1/89. More precisely:

$$\frac{1}{89} = \sum_{n=0}^{\infty} \frac{f_n}{10^{n+1}}.$$

÷

Proof. If $x \neq 1$ then $\sum_{n=0}^{N-1} x^n = \frac{1-x^N}{1-x}$ since

$$(1-x)\sum_{n=0}^{N-1} x^n = (1+x+x^2+\dots+x^{N-1}) - (x+x^2+x^3+\dots+x^N) = 1-x^N.$$

It follows that if |x| < 1 so that $x^N \to 0$ as $N \to \infty$ then $\sum_{n=0}^{\infty} x^n = \lim_{N \to \infty} \sum_{n=0}^{N} x^n = \frac{1}{1-x}$. Now

$$\sum_{n=0}^{\infty} \frac{f_n}{10^{n+1}} = \frac{1}{10\sqrt{5}} \sum_{n=0}^{\infty} \left(\left(\frac{1+\sqrt{5}}{20}\right)^n - \left(\frac{1-\sqrt{5}}{20}\right)^n \right).$$

We have both $\left|\frac{1+\sqrt{5}}{20}\right| < 1$ and $\left|\frac{1-\sqrt{5}}{20}\right| < 1$ so

$$\sum_{n=0}^{\infty} \left(\left(\frac{1+\sqrt{5}}{20}\right)^n - \left(\frac{1-\sqrt{5}}{20}\right)^n \right) = \sum_{n=0}^{\infty} \left(\frac{1+\sqrt{5}}{20}\right)^n - \sum_{n=0}^{\infty} \left(\frac{1-\sqrt{5}}{20}\right)^n = \frac{1}{1-\frac{1+\sqrt{5}}{20}} - \frac{1}{1-\frac{1-\sqrt{5}}{20}}$$

The last expression can be simplified a lot:

$$\frac{1}{1 - \frac{1 + \sqrt{5}}{20}} - \frac{1}{1 - \frac{1 - \sqrt{5}}{20}} = \frac{20}{19 - \sqrt{5}} - \frac{20}{19 + \sqrt{5}} = \frac{20(19 + \sqrt{5}) - 20(19 - \sqrt{5})}{(19 - \sqrt{5})(19 + \sqrt{5})} = \frac{40\sqrt{5}}{19^2 - 5} = \frac{40\sqrt{5}}{356} = \frac{10\sqrt{5}}{89}.$$

Substituting this above gives $\sum_{n=0}^{\infty} \frac{f_n}{10^{n+1}} = \frac{1}{10\sqrt{5}} \sum_{n=0}^{\infty} \left(\left(\frac{1+\sqrt{5}}{20} \right)^n - \left(\frac{1-\sqrt{5}}{20} \right)^n \right) = \frac{1}{10\sqrt{5}} \frac{10\sqrt{5}}{89} = \frac{1}{89}.$

3 Diagonalizing matrices whose eigenvalues are not distinct

If an $n \times n$ matrix A has n distinct eigenvalues with corresponding eigenvectors v_1, v_2, \ldots, v_n , then the matrix $P = \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix}$ is automatically invertible since its columns are linearly independent, and the matrix $D = P^{-1}AP$ is diagonal such that $A = PDP^{-1}$.

When A is diagonalizable but has fewer than n distinct eigenvalues, we can still build up P in such a way that P is automatically invertible and $P^{-1}AP$ is automatically diagonal.

The *(algebraic) multiplicity* of the eigenvalue λ is the largest integer $m \ge 1$ such that we can write the characteristic polynomial of A as the product $\det(A - xI) = (\lambda - x)^m p(x)$ for some polynomial p(x).

For example, if
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$
 then

$$\det(A - xI) = \det \begin{bmatrix} -x & -1 \\ 1 & 2 - x \end{bmatrix} = (-x)(2 - x) + 1 = x^2 - 2x + 1 = (x - 1)^2$$

so 1 is an eigenvalue of A with multiplicity 2.

Theorem. Let A be an $n \times n$ matrix. Suppose A has distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$ where $p \leq n$. The following properties then hold:

- (a) For each i = 1, 2, ..., p, it holds that dim Nul $(A \lambda_i I)$ is at most the multiplicity of λ_i .
- (b) A is diagonalizable if and only if the sum of the dimensions of the eigenspaces of A is n, i.e.:

$$\dim \operatorname{Nul}(A - \lambda_1 I) + \dim \operatorname{Nul}(A - \lambda_2 I) + \dots + \dim \operatorname{Nul}(A - \lambda_p I) = n.$$

(c) Suppose A is diagonalizable and \mathcal{B}_i is a basis for the λ_i -eigenspace.

Then the union $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ is a basis for \mathbb{R}^n consisting of eigenvectors of A.

If the elements of this union are the vectors v_1, v_2, \ldots, v_n then the matrix

 $P = \left[\begin{array}{ccc} v_1 & v_2 & \dots & v_n \end{array} \right]$

is invertible and the matrix $D = P^{-1}AP$ is diagonal, and $A = PDP^{-1}$.

Before giving the proof, we illustrate the result through an example.

Example. Consider the lower-triangular matrix

$$A = \begin{bmatrix} 5 & & \\ 0 & 5 & \\ 1 & 4 & -3 & \\ -1 & -2 & 0 & -3 \end{bmatrix}.$$

Its characteristic polynomial is $det(A - xI) = (5 - x)^2(-3 - x)^2$.

The eigenvalues of A are therefore 5 and -3, each with multiplicity 2. Since

$$A - 5I = \begin{bmatrix} 0 & & \\ 0 & 0 & & \\ 1 & 4 & -8 & \\ -1 & -2 & 0 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 8 & 16 \\ 0 & 1 & -4 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathsf{RREF}(A - 5I)$$

it follows that $x \in Nul(A - 5I)$ if and only if

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -8x_3 - 16x_4 \\ 4x_3 + 4x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -8 \\ 4 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -16 \\ 4 \\ 0 \\ 1 \end{bmatrix}$$

 \mathbf{SO}

$$\begin{bmatrix} -8\\4\\1\\0 \end{bmatrix}, \begin{bmatrix} -16\\4\\0\\1 \end{bmatrix}$$
 is a basis for $\operatorname{Nul}(A-5I)$.

Since

it follows that $x \in Nul(A + 3I)$ if and only if

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

 \mathbf{SO}

$\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$	is a basis for	$\operatorname{Nul}(A+3I).$
--	----------------	-----------------------------

Each eigenspace has dimension 2, so the sum of the dimensions of the eigenspaces of A is 2 + 2 = 4 = n. Thus A is diagonalizable. In particular, if

$$P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & & & \\ 5 & & & \\ & -3 & & \\ & & & -3 \end{bmatrix}$$

then $A = PDP^{-1}$.

Proof of theorem. Fix an index $i \in \{1, 2, \ldots, p\}$.

Let $\lambda = \lambda_i$ and suppose λ has multiplicity m and $\operatorname{Nul}(A - \lambda I)$ has dimension d.

Let v_1, v_2, \ldots, v_d be a basis for $\operatorname{Nul}(A - \lambda I)$.

One of the corollaries we saw for the dimension theorem is that it is always possible to choose vectors $v_{d+1}, v_{d+2}, \ldots, v_n \in \mathbb{R}^n$ such that $v_1, v_2, \ldots, v_d, v_{d+1}, v_{d+2}, \ldots, v_n$ is a basis for \mathbb{R}^n .

Define $Q = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$. The columns of this matrix are linearly independent, so Q is invertible with $Qe_j = v_j$ and $Q^{-1}v_j = e_j$ for all $j = 1, 2, \dots, n$. Define $B = Q^{-1}AQ$.

If $j \in \{1, 2, \dots, d\}$ then the *j*th column of B is $Be_j = Q^{-1}AQe_j = Q^{-1}Av_j = \lambda Q^{-1}v_j = \lambda e_j$.

This means that the *first* d *columns* of B are

$$\left[\begin{array}{cccc} \lambda & & & \\ & \lambda & & \\ & & \ddots & \\ & & & \lambda \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{array} \right]$$

7

so B has the block-triangular form

$$B = \begin{bmatrix} \lambda & & * & * & \dots & * \\ \lambda & & * & * & \dots & * \\ & \ddots & & \vdots & \vdots & \ddots & \vdots \\ & & & \lambda & * & * & \dots & * \\ 0 & 0 & \dots & 0 & * & * & \dots & * \\ \vdots & & & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & * & * & \dots & * \end{bmatrix} = \begin{bmatrix} \lambda I_d \mid Y \\ \hline 0 \mid Z \end{bmatrix}$$

where Y is an arbitrary $d \times (n - d)$ matrix and Z is an arbitrary $(n - d) \times (n - d)$ matrix.

Now, we want to deduce that $\det(B - xI) = (\lambda - x)^d \det(Z - xI)$.

Since $\det(A - xI) = \det(B - xI)$ as A and B are similar, and since $\det(Z - xI)$ is a polynomial in x, we see that $\det(A - xI)$ can be written as $(\lambda - x)^d p(x)$ for some polynomial p(x). Since m is maximal such that $\det(A - xI) = (\lambda - x)^m p(x)$, it must hold that $d \leq m$. This proves part (a).

To prove parts (b) and (c), suppose $v_i^1, v_i^2, \ldots, v_i^{\ell_i}$ is a basis for the λ_i -eigenspace of A for each $i = 1, 2, \ldots, p$. Let $\mathcal{B}_i = \{v_i^1, v_i^2, \ldots, v_i^{\ell_i}\}$. We claim that $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \ldots \mathcal{B}_p$ is a linearly independent set. To prove this, suppose $\sum_{i=1}^p \sum_{j=1}^{\ell_i} c_i^j v_i^j = 0$ for some $c_i^j \in \mathbb{R}$. It suffices to show that every $c_i^j = 0$. Let $w_i = \sum_{j=1}^{\ell_i} c_i^j v_i^j \in \mathbb{R}^n$. We then have $w_1 + w_2 + \cdots + w_p = 0$. Each w_i is either zero or an eigenvector of A with eigenvalue λ_i . (Why?)

Since eigenvectors of A with distinct eigenvalues are linearly independent, we must have

$$w_1 = w_2 = \dots = w_p = 0$$

But since each set \mathcal{B}_i is linearly independent, this implies that $c_i^j = 0$ for all i, j.

We conclude that $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \ldots \mathcal{B}_p$ is a linearly independent set.

If the sum of the dimensions of the eigenspaces of A is n then $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ is a set of n linearly independent eigenvectors of A, so A is diagonalizable.

If A is diagonalizable then A has n linearly independent eigenvectors. Among these vectors, the number that can belong to any particular eigenspace of A is necessarily the dimension of that eigenspace, so it follows that sum of the dimensions of the eigenspaces of A at least n. This sum cannot be more than n since the sum is the size of the linearly independent set $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p \subset \mathbb{R}^n$. This proves part (b).

To prove part (c), note that if A is diagonalizable then $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_p$ is a set of n linearly independent vectors in \mathbb{R}^n , so is a basis for \mathbb{R}^n . The last assertion in part (c) is something we discussed at the beginning of this lecture.