1 Last time: the category of (type A) crystals

Fix a positive integer n. Let $[n-1]=\{1,2, \ldots, n-1\}$.
Definition 1.1. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the standard basis of \mathbb{Z}^{n}. A crystal is a set \mathcal{B} with maps

$$
\mathbf{w t}: \mathcal{B} \rightarrow \mathbb{Z}^{n} \quad \text { and } \quad e_{i}, f_{i}: \mathcal{B} \rightarrow \mathcal{B} \sqcup\{0\} \text { for } i \in[n-1],
$$

where $0 \notin \mathcal{B}$ is an auxiliary element, such that if $i \in[n-1]$ then:
(1a) If $b, b^{\prime} \in \mathcal{B}$ then $e_{i}(b)=b^{\prime}$ if and only if $f_{i}\left(b^{\prime}\right)=b$.
(1b) Only finite values are assumed by the string lengths $\varepsilon_{i}, \varphi_{i}: \mathcal{B} \rightarrow\{0,1,2, \ldots\}$ defined by

$$
\varepsilon_{i}(b):=\max \left\{k \geq 0: e_{i}^{k}(b) \neq 0\right\} \quad \text { and } \quad \varphi_{i}(b):=\max \left\{k \geq 0: f_{i}^{k}(b) \neq 0\right\} .
$$

(2a) If $b \in \mathcal{B}$ and $f_{i}(b) \neq 0$ then $\mathbf{w t}(b)-\mathbf{w t}\left(f_{i}(b)\right)=\mathbf{e}_{i}-\mathbf{e}_{i+1}$.
(2b) If $b \in \mathcal{B}$ then $\mathbf{w t}(b)_{i}-\mathbf{w t}(b)_{i+1}=\varphi_{i}(b)-\varepsilon_{i}(b)$.
The function wt is the weight map of \mathcal{B}. The maps e_{i} and f_{i} are the raising and lowering crystal operators. The crystal graph of a crystal \mathcal{B} is the labeled directed graph with vertex set \mathcal{B} and edges

$$
b \xrightarrow{i} c \quad \text { for each } b, c \in \mathcal{B} \text { and } i \in[n-1] \text { with } f_{i}(b)=c .
$$

Conditions (1a), (1b) just tell us that the crystal graph has at most one edge labeled by i starting at a given vertex, and has no cycles or infinite paths consisting of edges with the same label.
A crystal isomorphism is a bijection $\mathcal{B} \rightarrow \mathcal{C}$ between crystals that is weight-preserving and string lengthpreserving, and that commutes with all crystal operators. Crystals have a tensor product:

Definition 1.2. Let \mathcal{B} and \mathcal{C} be crystals. The set $\mathcal{B} \otimes \mathcal{C}:=\{b \otimes c: b \in \mathcal{B}, c \in \mathcal{C}\}$ has a unique crystal structure with weight map $\mathbf{w t}(b \otimes c):=\mathbf{w t}(b)+\mathbf{w t}(c) \in \mathbb{Z}^{n}$ and crystal operators defined by

$$
f_{i}(b \otimes c):=\left\{\begin{array}{ll}
b \otimes f_{i}(c) & \text { if } \varepsilon_{i}(b)<\varphi_{i}(c) \\
f_{i}(b) \otimes c & \text { if } \varepsilon_{i}(b) \geq \varphi_{i}(c)
\end{array} \quad \text { and } \quad e_{i}(b \otimes c):= \begin{cases}b \otimes e_{i}(c) & \text { if } \varepsilon_{i}(b) \leq \varphi_{i}(c) \\
e_{i}(b) \otimes c & \text { if } \varepsilon_{i}(b)>\varphi_{i}(c) .\end{cases}\right.
$$

Here, $b \otimes 0:=0=: 0 \otimes c$. The natural maps $\mathcal{B} \otimes(\mathcal{C} \otimes \mathcal{D}) \rightarrow(\mathcal{B} \otimes \mathcal{C}) \otimes \mathcal{D}$ are crystal isomorphisms.
Example 1.3. There is a standard crystal \mathbb{B}_{n} with crystal graph

$$
1 \xrightarrow{1} \boxed{\longrightarrow} \xrightarrow{2} \xrightarrow{3} \cdots \xrightarrow{n-1}
$$

and weight function $\mathbf{w t}(i)=\mathbf{e}_{i}$. The crystal graph of the tensor product $\mathbb{B}_{3} \otimes \mathbb{B}_{3}$ is

The weakly connected components of the crystal graph are called full subcrystals.
The character of a finite crystal \mathcal{B} is $\operatorname{ch}(\mathcal{B})=\sum_{b \in \mathcal{B}} x^{\mathbf{w t}(b)} \in \mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.
If \mathcal{B} and \mathcal{C} are two finite crystals then $\operatorname{ch}(\mathcal{B} \otimes \mathcal{C})=\operatorname{ch}(\mathcal{B}) \operatorname{ch}(\mathcal{C})$.

2 Symmetry

Conditions (2a) and (2b) in the definition of a crystal subtly impose a lot of structure.
Let $s_{i}=(i, i+1)$ be the permutation of $[n]:=\{1,2, \ldots, n\}$ that interchanges i and $i+1$.
The elements $s_{1}, s_{2}, \ldots, s_{n-1}$ generate the group S_{n} of all permutations of $[n]$.
There is a unique (left) group action of S_{n} on \mathbb{Z}^{n} with

$$
s_{i}\left(\alpha_{1}, \ldots, \alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{i+1}, \alpha_{i}, \ldots, \alpha_{n}\right)
$$

Let \mathcal{B} be a crystal. For each $i \in[n-1]$ we define a map $\sigma_{i}: \mathcal{B} \rightarrow \mathcal{B}$ as follows:
Definition 2.1. Given $x \in \mathcal{B}$, let $k=\mathbf{w t}(x)_{i}-\mathbf{w} \mathbf{t}(x)_{i+1}=\varphi_{i}(x)-\varepsilon_{i}(x)$ and define

$$
\sigma_{i}(x)= \begin{cases}f_{i}^{k}(x) & \text { if } k>0 \\ x & \text { if } k=0 \\ e_{i}^{-k}(x) & \text { if } k<0\end{cases}
$$

For example,

Proposition 2.2. The map σ_{i} is a self-inverse bijection $\mathcal{B} \rightarrow \mathcal{B}$ satisfying $\mathbf{w t}\left(\sigma_{i}(x)\right)=s_{i}(\mathbf{w t}(x))$. The map σ_{i} has the effect of reversing each i-string in \mathcal{B}.

For example, for an i-string of the form

$$
k=\begin{array}{cccccccc}
b_{1} & \xrightarrow{i} & b_{2} & \xrightarrow{i} & b_{3} & \xrightarrow{i} & b_{4} & \xrightarrow{i} \\
4 & 2 & & 0 & & b_{5} \\
-2 & & & -4
\end{array}
$$

we have $\sigma_{i}\left(b_{j}\right)=b_{6-j}$.
Proof. Fix $x \in \mathcal{B}$ and define $k=\mathbf{w t}(x)_{i}-\mathbf{w} \mathbf{t}(x)_{i+1}=\varphi_{i}(x)-\varepsilon_{i}(x)$.
We can apply f_{i} to x exactly k times before reaching 0 if $k>0$, and e_{i} to x exactly $-k$ times if $k<0$.
Thus σ_{i} defines a $\operatorname{map} \mathcal{B} \rightarrow \mathcal{B}$ and in either case $\mathbf{w t}\left(\sigma_{i}(x)\right)=\mathbf{w t}(x)-k \mathbf{e}_{i}+k \mathbf{e}_{i+1}=s_{i}(\mathbf{w t}(x))$.
Within the i-string through x, there is a unique element of weight $s_{i}(\mathbf{w t}(x))$, so σ_{i} reverses the i-string end to end and is a self-inverse bijection.

There is also a unique action of the symmetric group S_{n} on $\mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ with $s_{i} x_{j}^{ \pm 1}=x_{s_{i}(j)}^{ \pm 1}$. The symmetric polynomials in $\mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ are the elements fixed by this action.

Proposition 2.3. The character of a finite crystal \mathcal{B} is a symmetric polynomial in $\mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.
Proof. For each $i \in[n-1]$, since σ_{i} is a bijection, we have

$$
\operatorname{ch}(\mathcal{B}):=\sum_{b \in \mathcal{B}} x^{\mathbf{w t}(b)}=\sum_{b \in \mathcal{B}} x^{\mathbf{w t}\left(\sigma_{i}(b)\right)}=\sum_{b \in \mathcal{B}} x^{s_{i}(\mathbf{w t}(b))}=s_{i}(\operatorname{ch}(\mathcal{B}))
$$

3 Crystals of words

We can form the standard crystal \mathbb{B}_{n}, take tensor products, and restrict to full subcrystals.
Perhaps surprisingly, it will be possible to describe everything that these operations generate.
As a first step, we need to understand the tensor products $\mathbb{B}_{n}^{\otimes m}$ for all positive integers m, n.

We use the term word to mean a finite sequence of positive integers $w=w_{1} w_{2} \cdots w_{m}$.
Identify the tensors $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{m}$ (which are the elements of $\mathbb{B}_{n}^{\otimes m}$) with words $w=w_{1} w_{2} \cdots w_{m}$.
Clearly $\mathbf{w t}(w)$ is the n-tuple whose i th entry is the number of occurrences of i in w.
Fix $i \in[n-1]$. Replace each i in w by a right parenthesis and each $i+1$ in w by a left parenthesis:

$$
w=1223343212 \text { and } i=2 \leadsto\left[\begin{array}{cccccccccc}
1 &) &) & (& (& 4 & (&) & 1 &) \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}\right] .
$$

We have the following signature rules for the crystal operators f_{i} and e_{i} in $\mathbb{B}_{n}^{\otimes m}$.
Proposition 3.1. To apply the crystal operator f_{i} of $\mathbb{B}_{n}^{\otimes m}$ to w, consider the parenthesized word just described. If each right parenthesis ")" belongs to a balanced pair, then $f_{i}(w)=0$. Otherwise, form $f_{i}(w)$ from w by changing the letter i corresponding to the last unbalanced right parenthesis to $i+1$.

Proposition 3.2. To apply the crystal operator e_{i} of $\mathbb{B}_{n}^{\otimes m}$ to w, again consider the parenthesized word. If each left parenthesis "(" belongs to a balanced pair, then $e_{i}(w)=0$. Otherwise, form $e_{i}(w)$ by changing the $i+1$ in w corresponding to the first unbalanced left parenthesis to i.

Here is our running example:
$w=1223343212$ and $i=2 \leadsto\left[\begin{array}{cccccccccc}1 &) &) & (& (& 4 & (&) & 1 &) \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right] \leadsto\left\{\begin{array}{l}f_{2}(w)=12 \underline{3} 3343212 \\ e_{2}(w)=122 \underline{2} 343212 .\end{array}\right.$
Let's examine a few other cases in detail before proving the propositions.
Example 3.3. If $w=w_{1}=j \in \mathbb{B}_{n}^{\otimes 1}$ is a single letter then the parenthesized word is

- $\left[\begin{array}{l}) \\ 1\end{array}\right]$ if $i=j$, in which case $f_{i}(w)=j+1$ and $e_{i}(w)=0$.
- $\left[\begin{array}{l}(\\ 1\end{array}\right]$ if $i+1=j$, in which case $f_{i}(w)=0$ and $e_{i}(w)=j-1$.
- $\left[\begin{array}{l}j \\ 1\end{array}\right]$ if $i \notin\{j-1, j\}$, in which case $f_{i}(w)=0$ and $e_{i}(w)=0$.

Thus, in this case the rules for f_{i} and e_{i} agree with the crystal graph for $\mathbb{B}_{n}=\mathbb{B}_{n}^{\otimes 1}$:

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1}
$$

Example 3.4. If $w=j j \cdots j \in \mathbb{B}_{n}^{\otimes m}$ is one repeated letter, then the parenthesized word is

- $\left[\begin{array}{cccc}) &) & \ldots &) \\ 1 & 2 & \ldots & m\end{array}\right]$ if $i=j$, in which case w is at the start of an i-string with m arrows:

$$
0 \stackrel{e_{i}}{\leftarrow} w=i \cdots i i \xrightarrow{f_{i}} i \cdots i(i+1) \xrightarrow{f_{i}} i \cdots(i+1)(i+1) \xrightarrow{f_{i}} \cdots \xrightarrow{f_{i}}(i+1) \cdots(i+1)(i+1) .
$$

- $\left[\begin{array}{llll}(& (& \ldots & (\\ 1 & 2 & \ldots & m\end{array}\right]$ if $i+1=j$, in which case w is the end of an i-string with m arrows:

$$
0 \stackrel{f_{i}}{\leftarrow} w=(i+1)(i+1) \cdots(i+1) \xrightarrow{e_{i}} i(i+1) \cdots(i+1) \xrightarrow{e_{i}} i i \cdots(i+1) \xrightarrow{e_{i}} \cdots \xrightarrow{e_{i}} i i \cdots i
$$

- $\left[\begin{array}{cccc}j & j & \ldots & j \\ 1 & 2 & \ldots & m\end{array}\right]$ if $i \notin\{j-1, j\}$, in which case $f_{i}(w)=0$ and $e_{i}(w)=0$.

Proof. We prove the propositions by induction on the number of tensor factors m.
For $m=1$, we saw in the examples that the signature rule agrees with the standard crystal graph.
Now fix $i \in[n-1]$ and consider a word $w=w_{1} w_{2} \cdots w_{m} w_{m+1} \in \mathbb{B}_{n}^{\otimes(m+1)}$.
If $w_{m+1} \neq i$, then $\varepsilon_{i}\left(w_{1} w_{2} \cdots w_{m}\right) \geq 0=\varphi_{i}\left(w_{m+1}\right)$, so we expect to have

$$
f_{i}(w)=f_{i}\left(w_{1} w_{2} \cdots w_{m}\right) w_{m+1}
$$

This holds by induction since if $w_{m+1} \neq i$ then adding w_{m+1} has no effect on the unbalanced right parentheses associated to $w_{1} w_{2} \cdots w_{m}$.
Assume $w_{m+1}=i$. Then $\varphi_{i}\left(w_{m+1}\right)=1$, so (by induction) the only way we can have $\varepsilon_{i}\left(w_{1} w_{2} \cdots w_{m}\right)<$ $\varphi_{i}\left(w_{m+1}\right)$ is if there are no unbalanced left parentheses in the word associated to $w_{1} w_{2} \cdots w_{m}$. If this happens then w_{m+1} will contribute the last unbalanced right parenthesis in w and we will have

$$
f_{i}(w)=w_{1} w_{2} \cdots w_{m} f_{i}\left(w_{m+1}\right)
$$

as desired. Otherwise, there will be at least one unbalanced left parenthesis in the word associated to $w_{1} w_{2} \cdots w_{m}$, so the right parenthesis contributed by w_{m+1} will be part of a balanced pair and

$$
f_{i}(w)=f_{i}\left(w_{1} w_{2} \cdots w_{m}\right) w_{m+1}
$$

by induction, as needed.
The argument that the tensor product formula for e_{i} coincides with the signature rule is similar.

4 Crystals of tableaux

Recall from last time: a partition is a sequence of integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$.
The Young diagram of a partition λ is the set $\mathrm{D}_{\lambda}=\left\{(i, j) \in\{1,2, \ldots, \ell(\lambda)\} \times \mathbb{Z}: 1 \leq j \leq \lambda_{i}\right\}$
A tableau of shape λ is a map $T: \mathrm{D}_{\lambda} \rightarrow\{1,2,3, \ldots\}$, written $(i, j) \mapsto T_{i j}$.

To draw a tableau, we fill the boxes in D_{λ}, oriented using matrix coordinates, by the entries $T_{i j}$.
A tableau T is semistandard if its rows are weakly increasing and its columns are strictly increasing.
Let $\operatorname{SSYT}_{n}(\lambda)$ denote the set of semistandard tableaux T of shape λ with all entries $T_{i j} \in\{1,2, \ldots, n\}$.
"SSYT" stands for "semistandard Young tableaux."
For $n=3$ and $\lambda=(2,1)$, we have

The set $\operatorname{SSYT}_{n}(\lambda)$ is empty if λ has more than n parts.
Goal: give $\operatorname{SSYT}_{n}(\lambda)$ a crystal structure for any partition λ with $\ell(\lambda) \leq n$.

The row reading word of a tableau T is the word $\mathfrak{r o w}(T)$ formed by concatenating the rows of T in reverse order, i.e., starting with the bottom row. For example, if

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 2 & 3 & 4 \\
\hline 2 & 3 & 4 & & \\
\hline 3 & 4 & 5 &
\end{array} \quad \text { then } \quad \operatorname{row}(T)=7734523412234
$$

Proposition 4.1. The row reading word $\mathfrak{r o w}$ is an injective map from $\operatorname{SSYT}_{n}(\lambda)$ to the set of words of length $|\lambda|$ with letters in $\{1,2, \ldots, n\}$, which we identify with $\mathbb{B}_{n}^{\otimes|\lambda|}$.

Proof. You can recover the rows of T by dividing $\mathfrak{r o w}(T)$ into maximal weakly increasing subwords.
For example, $7734523412234 \sim 77|345| 234 \mid 12234$.

Proposition 4.2. Fix $T \in \operatorname{SSYT}_{n}(\lambda)$ and $i \in[n-1]$.
(a) If $f_{i}(\mathfrak{r o w}(T)) \neq 0$ then there is a unique $f_{i}(T) \in \operatorname{SSYT}_{n}(\lambda)$ with $\mathfrak{r o w}\left(f_{i}(T)\right)=f_{i}(\mathfrak{r o w}(T)) \in \mathbb{B}_{n}^{\otimes|\lambda|}$.
(b) If $e_{i}(\mathfrak{r o w}(T)) \neq 0$ then there is a unique $e_{i}(T) \in \operatorname{SSYT}_{n}(\lambda)$ with $\mathfrak{r o w}\left(e_{i}(T)\right)=e_{i}(\mathfrak{r o w}(T)) \in \mathbb{B}_{n}^{\otimes|\lambda|}$.

Proof. Changing the letter corresponding to the last unbalanced right parenthesis in $\mathfrak{r o w}(T)$ from i to $i+1$ gives the row reading word of a tableau formed from T by changing the last i in some row to $i+1$:

The only way this could fail to be semistandard is if the changed letter is directly above another $i+1$:

But column strictness implies that this can only happen if these two rows in our tableau have the form

\ldots	h	i	\ldots	i	j	\ldots
\ldots	x	$i+1$	\ldots	$i+1$	y	\ldots

where $h<i<j$ and $x \leq i+1<y$. But then all i 's in the first row are balanced right parentheses. This proves part (a). The argument for part (b) is similar.

Thus, there are unique maps $e_{i}, f_{i}: \operatorname{SSYT}_{n}(\lambda) \rightarrow \operatorname{SSYT}_{n}(\lambda) \sqcup\{0\}$ for $i \in[n-1]$ such that

$$
\mathfrak{r o w}\left(e_{i}(T)\right)=e_{i}(\mathfrak{r o w}(T)) \quad \text { and } \quad \operatorname{row}\left(f_{i}(T)\right)=f_{i}(\mathfrak{r o w}(T)),
$$

where we interpret $\mathfrak{r o w}(0)=0$. Last time we defined $\mathbf{w t}(T) \in \mathbb{Z}^{n}$ for $T \in \operatorname{SSYT}_{n}(\lambda)$, and clearly

$$
\mathbf{w} \mathbf{t}(T)=\mathbf{w} \mathbf{t}(\mathfrak{r o w}(T))
$$

Theorem 4.3. Suppose λ is a partition with at most n parts.
With respect to $\mathbf{w t}, e_{i}, f_{i}$, the set $\operatorname{SSYT}_{n}(\lambda)$ is a crystal whose crystal graph is weakly connected.
The map row is an injective crystal morphism that identifies $\operatorname{SSYT}_{n}(\lambda)$ with a full subcrystal of $\mathbb{B}_{n}^{\otimes|\lambda|}$.
Before justifying this result, let us examine some of the crystals $\operatorname{SSYT}_{n}(\lambda)$.
Below are the crystal graphs of $\operatorname{SSYT}_{3}(\lambda)$ for $\lambda \in\{(3,1),(2,2),(2,1,1)\}$.

To prove the theorem, it only remains to show that the crystal graph of $\operatorname{SSYT}_{n}(\lambda)$ is weakly connected. To this end, we will use the following terminology. A highest weight of a crystal \mathcal{B} is an element $b \in \mathcal{B}$ with $e_{i}(b)=0$ for all $i \in[n-1]$. Such an element is not the target of any edge in the crystal graph.

A highest weight element in $\operatorname{SSYT}_{n}(\lambda)$ is the tableau T_{λ} with all entries in row i equal to i. For example,

$$
T_{\lambda}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & & \\
\hline 3 & 3 & 3 & & \\
\cline { 1 - 2 } & 4 & 4 & & \\
\hline
\end{array} \quad \text { for } \lambda=(5,3,3,2)
$$

This is because, for each $i \in[n-1]$, in the word associated to $\mathfrak{r o w}(T)$ all left parentheses are balanced.
To prove that $\operatorname{SSYT}_{n}(\lambda)$ is weakly connected, it suffices to prove this lemma:
Lemma 4.4. The tableau T_{λ} is the unique highest weight in $\operatorname{SSYT}_{n}(\lambda)$.
Proof. Let $T \in \operatorname{SSYT}_{n}(\lambda)-\left\{T_{\lambda}\right\}$. Then T has a row containing an entry greater than the row index.

Suppose the largest entry in the first such row is $i+1$.
All letters after $i+1$ in $\mathfrak{r o w}(T)$ will be less than i, so $e_{i}(T) \neq 0$ and T is not a highest weight.
Observe that the $\mathbf{w t}\left(T_{\lambda}\right)=\lambda$.
Recall that the Schur polynomial of λ is $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{T \in \operatorname{SSYT}_{n}(\lambda)} x^{\mathbf{w t}(T)}$.
As corollary of the results today, we recover the theorem from last time:
Corollary 4.5. The Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is symmetric, since it is the character of the connected crystal of semistandard tableaux $\operatorname{SSYT}_{n}(\lambda)$.

Next time: every full subcrystal of $\mathbb{B}_{n}^{\otimes m}$ is isomorphic to the crystal $\operatorname{SSYT}_{n}(\lambda)$ for some partition λ.

