
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 2

1 Last time: the category of (type A) crystals

Fix a positive integer n. Let [n− 1] = {1, 2, . . . , n− 1}.

Definition 1.1. Let e1, e2, . . . , en be the standard basis of Zn. A crystal is a set B with maps

wt : B → Zn and ei, fi : B → B t {0} for i ∈ [n− 1],

where 0 /∈ B is an auxiliary element, such that if i ∈ [n− 1] then:

(1a) If b, b′ ∈ B then ei(b) = b′ if and only if fi(b
′) = b.

(1b) Only finite values are assumed by the string lengths εi, ϕi : B → {0, 1, 2, . . . } defined by

εi(b) := max{k ≥ 0 : eki (b) 6= 0} and ϕi(b) := max{k ≥ 0 : fki (b) 6= 0}.

(2a) If b ∈ B and fi(b) 6= 0 then wt(b)−wt(fi(b)) = ei − ei+1.

(2b) If b ∈ B then wt(b)i −wt(b)i+1 = ϕi(b)− εi(b).

The function wt is the weight map of B. The maps ei and fi are the raising and lowering crystal operators.

The crystal graph of a crystal B is the labeled directed graph with vertex set B and edges

b
i−−→ c for each b, c ∈ B and i ∈ [n− 1] with fi(b) = c.

Conditions (1a), (1b) just tell us that the crystal graph has at most one edge labeled by i starting at a
given vertex, and has no cycles or infinite paths consisting of edges with the same label.

A crystal isomorphism is a bijection B → C between crystals that is weight-preserving and string length-
preserving, and that commutes with all crystal operators. Crystals have a tensor product:

Definition 1.2. Let B and C be crystals. The set B ⊗ C := {b ⊗ c : b ∈ B, c ∈ C} has a unique crystal
structure with weight map wt(b⊗ c) := wt(b) + wt(c) ∈ Zn and crystal operators defined by

fi(b⊗ c) :=

{
b⊗ fi(c) if εi(b) < ϕi(c)

fi(b)⊗ c if εi(b) ≥ ϕi(c)
and ei(b⊗ c) :=

{
b⊗ ei(c) if εi(b) ≤ ϕi(c)
ei(b)⊗ c if εi(b) > ϕi(c).

Here, b⊗ 0 := 0 =: 0⊗ c. The natural maps B ⊗ (C ⊗ D)→ (B ⊗ C)⊗D are crystal isomorphisms.

Example 1.3. There is a standard crystal Bn with crystal graph

1 2 3 · · · n1 2 3 n− 1

and weight function wt( i ) = ei. The crystal graph of the tensor product B3 ⊗ B3 is

1 ⊗ 1 1 ⊗ 2 1 ⊗ 3

2 ⊗ 1 2 ⊗ 2 2 ⊗ 3

3 ⊗ 1 3 ⊗ 2 3 ⊗ 3

1 2

1 1

2

2 2

1

The weakly connected components of the crystal graph are called full subcrystals.

The character of a finite crystal B is ch(B) =
∑
b∈B x

wt(b) ∈ Z[x±11 , x±12 , . . . , x±1n ].

If B and C are two finite crystals then ch(B ⊗ C) = ch(B)ch(C).
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2 Symmetry

Conditions (2a) and (2b) in the definition of a crystal subtly impose a lot of structure.

Let si = (i, i+ 1) be the permutation of [n] := {1, 2, . . . , n} that interchanges i and i+ 1.

The elements s1, s2, . . . , sn−1 generate the group Sn of all permutations of [n].

There is a unique (left) group action of Sn on Zn with

si(α1, . . . , αi, αi+1, . . . , αn) = (α1, . . . , αi+1, αi, . . . , αn).

Let B be a crystal. For each i ∈ [n− 1] we define a map σi : B → B as follows:

Definition 2.1. Given x ∈ B, let k = wt(x)i −wt(x)i+1 = ϕi(x)− εi(x) and define

σi(x) =


fki (x) if k > 0,

x if k = 0,

e−ki (x) if k < 0.

For example,

σ1


F

E

C D

B

A

2

1
2

2
1

1



=


D

E

B F

C

A

2

1
2

2
1

1



and σ2


F

E

C D

B

A

2

1
2

2
1

1



=


F

C

E A

B

D

2

1
2

2
1

1



.

Proposition 2.2. The map σi is a self-inverse bijection B → B satisfying wt(σi(x)) = si(wt(x)).

The map σi has the effect of reversing each i-string in B.

For example, for an i-string of the form

b1
i−−−→ b2

i−−−→ b3
i−−−→ b4

i−−−→ b5

k = 4 2 0 −2 −4

we have σi(bj) = b6−j .

Proof. Fix x ∈ B and define k = wt(x)i −wt(x)i+1 = ϕi(x)− εi(x).

We can apply fi to x exactly k times before reaching 0 if k > 0, and ei to x exactly −k times if k < 0.

Thus σi defines a map B → B and in either case wt(σi(x)) = wt(x)− kei + kei+1 = si(wt(x)).

Within the i-string through x, there is a unique element of weight si(wt(x)), so σi reverses the i-string
end to end and is a self-inverse bijection.
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There is also a unique action of the symmetric group Sn on Z[x±11 , x±12 , . . . , x±1n ] with six
±1
j = x±1si(j).

The symmetric polynomials in Z[x±11 , x±12 , . . . , x±1n ] are the elements fixed by this action.

Proposition 2.3. The character of a finite crystal B is a symmetric polynomial in Z[x±11 , x±12 , . . . , x±1n ].

Proof. For each i ∈ [n− 1], since σi is a bijection, we have

ch(B) :=
∑
b∈B

xwt(b) =
∑
b∈B

xwt(σi(b)) =
∑
b∈B

xsi(wt(b)) = si(ch(B)).

3 Crystals of words

We can form the standard crystal Bn, take tensor products, and restrict to full subcrystals.

Perhaps surprisingly, it will be possible to describe everything that these operations generate.

As a first step, we need to understand the tensor products B⊗mn for all positive integers m,n.

We use the term word to mean a finite sequence of positive integers w = w1w2 · · ·wm.

Identify the tensors w1 ⊗ w2 ⊗ · · · ⊗ wm (which are the elements of B⊗mn ) with words w = w1w2 · · ·wm.

Clearly wt(w) is the n-tuple whose ith entry is the number of occurrences of i in w.

Fix i ∈ [n− 1]. Replace each i in w by a right parenthesis and each i+ 1 in w by a left parenthesis:

w = 1223343212 and i = 2 ;

[
1 ) ) ( ( 4 ( ) 1 )
1 2 3 4 5 6 7 8 9 10

]
.

We have the following signature rules for the crystal operators fi and ei in B⊗mn .

Proposition 3.1. To apply the crystal operator fi of B⊗mn to w, consider the parenthesized word just
described. If each right parenthesis “)” belongs to a balanced pair, then fi(w) = 0. Otherwise, form
fi(w) from w by changing the letter i corresponding to the last unbalanced right parenthesis to i+ 1.

Proposition 3.2. To apply the crystal operator ei of B⊗mn to w, again consider the parenthesized word.
If each left parenthesis “(” belongs to a balanced pair, then ei(w) = 0. Otherwise, form ei(w) by changing
the i+ 1 in w corresponding to the first unbalanced left parenthesis to i.

Here is our running example:

w = 1223343212 and i = 2 ;

[
1 ) ) ( ( 4 ( ) 1 )
1 2 3 4 5 6 7 8 9 10

]
;

{
f2(w) = 1233343212

e2(w) = 1222343212.

Let’s examine a few other cases in detail before proving the propositions.

Example 3.3. If w = w1 = j ∈ B⊗1n is a single letter then the parenthesized word is

•
[

)
1

]
if i = j, in which case fi(w) = j + 1 and ei(w) = 0.

•
[

(
1

]
if i+ 1 = j, in which case fi(w) = 0 and ei(w) = j − 1.
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•
[
j
1

]
if i /∈ {j − 1, j}, in which case fi(w) = 0 and ei(w) = 0.

Thus, in this case the rules for fi and ei agree with the crystal graph for Bn = B⊗1n :

1 2 3 · · · n1 2 3 n− 1

Example 3.4. If w = jj · · · j ∈ B⊗mn is one repeated letter, then the parenthesized word is

•
[

) ) . . . )
1 2 . . . m

]
if i = j, in which case w is at the start of an i-string with m arrows:

0
ei←− w = i · · · ii fi−→ i · · · i(i+ 1)

fi−→ i · · · (i+ 1)(i+ 1)
fi−→ · · · fi−→ (i+ 1) · · · (i+ 1)(i+ 1).

•
[

( ( . . . (
1 2 . . . m

]
if i+ 1 = j, in which case w is the end of an i-string with m arrows:

0
fi←− w = (i+ 1)(i+ 1) · · · (i+ 1)

ei−→ i(i+ 1) · · · (i+ 1)
ei−→ ii · · · (i+ 1)

ei−→ · · · ei−→ ii · · · i.

•
[
j j . . . j
1 2 . . . m

]
if i /∈ {j − 1, j}, in which case fi(w) = 0 and ei(w) = 0.

Proof. We prove the propositions by induction on the number of tensor factors m.

For m = 1, we saw in the examples that the signature rule agrees with the standard crystal graph.

Now fix i ∈ [n− 1] and consider a word w = w1w2 · · ·wmwm+1 ∈ B⊗(m+1)
n .

If wm+1 6= i, then εi(w1w2 · · ·wm) ≥ 0 = ϕi(wm+1), so we expect to have

fi(w) = fi(w1w2 · · ·wm)wm+1.

This holds by induction since if wm+1 6= i then adding wm+1 has no effect on the unbalanced right
parentheses associated to w1w2 · · ·wm.

Assume wm+1 = i. Then ϕi(wm+1) = 1, so (by induction) the only way we can have εi(w1w2 · · ·wm) <
ϕi(wm+1) is if there are no unbalanced left parentheses in the word associated to w1w2 · · ·wm. If this
happens then wm+1 will contribute the last unbalanced right parenthesis in w and we will have

fi(w) = w1w2 · · ·wmfi(wm+1),

as desired. Otherwise, there will be at least one unbalanced left parenthesis in the word associated to
w1w2 · · ·wm, so the right parenthesis contributed by wm+1 will be part of a balanced pair and

fi(w) = fi(w1w2 · · ·wm)wm+1

by induction, as needed.

The argument that the tensor product formula for ei coincides with the signature rule is similar.

4 Crystals of tableaux

Recall from last time: a partition is a sequence of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0).

The Young diagram of a partition λ is the set Dλ = {(i, j) ∈ {1, 2, . . . , `(λ)} × Z : 1 ≤ j ≤ λi}

A tableau of shape λ is a map T : Dλ → {1, 2, 3, . . . }, written (i, j) 7→ Tij .
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To draw a tableau, we fill the boxes in Dλ, oriented using matrix coordinates, by the entries Tij .

A tableau T is semistandard if its rows are weakly increasing and its columns are strictly increasing.

Let SSYTn(λ) denote the set of semistandard tableaux T of shape λ with all entries Tij ∈ {1, 2, . . . , n}.

“SSYT” stands for “semistandard Young tableaux.”

For n = 3 and λ = (2, 1), we have

SSYTn(λ) =

{
1 1
2

,
1 1
3

,
1 2
2

,
1 2
3

,
1 3
2

,
1 3
3

,
2 2
3

,
2 3
3

}
.

The set SSYTn(λ) is empty if λ has more than n parts.

Goal: give SSYTn(λ) a crystal structure for any partition λ with `(λ) ≤ n.

The row reading word of a tableau T is the word row(T ) formed by concatenating the rows of T in reverse
order, i.e., starting with the bottom row. For example, if

T =

1 2 2 3 4

2 3 4

3 4 5

7 7

then row(T ) = 7734523412234.

Proposition 4.1. The row reading word row is an injective map from SSYTn(λ) to the set of words of

length |λ| with letters in {1, 2, . . . , n}, which we identify with B⊗|λ|n .

Proof. You can recover the rows of T by dividing row(T ) into maximal weakly increasing subwords.

For example, 7734523412234 ; 77 | 345 | 234 | 12234.

Proposition 4.2. Fix T ∈ SSYTn(λ) and i ∈ [n− 1].

(a) If fi(row(T )) 6= 0 then there is a unique fi(T ) ∈ SSYTn(λ) with row(fi(T )) = fi(row(T )) ∈ B⊗|λ|n .

(b) If ei(row(T )) 6= 0 then there is a unique ei(T ) ∈ SSYTn(λ) with row(ei(T )) = ei(row(T )) ∈ B⊗|λ|n .

Proof. Changing the letter corresponding to the last unbalanced right parenthesis in row(T ) from i to
i+ 1 gives the row reading word of a tableau formed from T by changing the last i in some row to i+ 1:

· · · i j ; · · · i+ 1 j .

The only way this could fail to be semistandard is if the changed letter is directly above another i+ 1:

· · · i j

· · · i+ 1 · · ·
;

· · · i+ 1 j

· · · i+ 1 · · ·
.

But column strictness implies that this can only happen if these two rows in our tableau have the form

· · · h i · · · i j · · ·

· · · x i+ 1 · · · i+ 1 y · · ·
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where h < i < j and x ≤ i+ 1 < y. But then all i’s in the first row are balanced right parentheses.

This proves part (a). The argument for part (b) is similar.

Thus, there are unique maps ei, fi : SSYTn(λ)→ SSYTn(λ) t {0} for i ∈ [n− 1] such that

row(ei(T )) = ei(row(T )) and row(fi(T )) = fi(row(T )),

where we interpret row(0) = 0. Last time we defined wt(T ) ∈ Zn for T ∈ SSYTn(λ), and clearly

wt(T ) = wt(row(T )).

Theorem 4.3. Suppose λ is a partition with at most n parts.

With respect to wt, ei, fi, the set SSYTn(λ) is a crystal whose crystal graph is weakly connected.

The map row is an injective crystal morphism that identifies SSYTn(λ) with a full subcrystal of B⊗|λ|n .

Before justifying this result, let us examine some of the crystals SSYTn(λ).

Below are the crystal graphs of SSYT3(λ) for λ ∈ {(3, 1), (2, 2), (2, 1, 1)}.
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To prove the theorem, it only remains to show that the crystal graph of SSYTn(λ) is weakly connected.

To this end, we will use the following terminology. A highest weight of a crystal B is an element b ∈ B
with ei(b) = 0 for all i ∈ [n− 1]. Such an element is not the target of any edge in the crystal graph.

A highest weight element in SSYTn(λ) is the tableau Tλ with all entries in row i equal to i. For example,

Tλ =

1 1 1 1 1

2 2 2

3 3 3

4 4

for λ = (5, 3, 3, 2).

This is because, for each i ∈ [n− 1], in the word associated to row(T ) all left parentheses are balanced.

To prove that SSYTn(λ) is weakly connected, it suffices to prove this lemma:

Lemma 4.4. The tableau Tλ is the unique highest weight in SSYTn(λ).

Proof. Let T ∈ SSYTn(λ)− {Tλ}. Then T has a row containing an entry greater than the row index.
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Suppose the largest entry in the first such row is i+ 1.

All letters after i+ 1 in row(T ) will be less than i, so ei(T ) 6= 0 and T is not a highest weight.

Observe that the wt(Tλ) = λ.

Recall that the Schur polynomial of λ is sλ(x1, x2, . . . , xn) :=
∑
T∈SSYTn(λ)

xwt(T ).

As corollary of the results today, we recover the theorem from last time:

Corollary 4.5. The Schur polynomial sλ(x1, x2, . . . , xn) is symmetric, since it is the character of the
connected crystal of semistandard tableaux SSYTn(λ).

Next time: every full subcrystal of B⊗mn is isomorphic to the crystal SSYTn(λ) for some partition λ.
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