1 Last time: the category of (type A) crystals

Fix a positive integer *n*. Let $[n-1] = \{1, 2, ..., n-1\}$.

Definition 1.1. Let $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ be the standard basis of \mathbb{Z}^n . A *crystal* is a set \mathcal{B} with maps

$$\mathbf{wt}: \mathcal{B} \to \mathbb{Z}^n \text{ and } e_i, f_i: \mathcal{B} \to \mathcal{B} \sqcup \{0\} \text{ for } i \in [n-1],$$

where $0 \notin \mathcal{B}$ is an auxiliary element, such that if $i \in [n-1]$ then:

(1a) If $b, b' \in \mathcal{B}$ then $e_i(b) = b'$ if and only if $f_i(b') = b$.

(1b) Only finite values are assumed by the string lengths $\varepsilon_i, \varphi_i : \mathcal{B} \to \{0, 1, 2, ...\}$ defined by

$$\varepsilon_i(b) := \max\{k \ge 0 : e_i^k(b) \ne 0\} \quad \text{and} \quad \varphi_i(b) := \max\{k \ge 0 : f_i^k(b) \ne 0\}$$

- (2a) If $b \in \mathcal{B}$ and $f_i(b) \neq 0$ then $\mathbf{wt}(b) \mathbf{wt}(f_i(b)) = \mathbf{e}_i \mathbf{e}_{i+1}$.
- (2b) If $b \in \mathcal{B}$ then $\mathbf{wt}(b)_i \mathbf{wt}(b)_{i+1} = \varphi_i(b) \varepsilon_i(b)$.

The function wt is the weight map of \mathcal{B} . The maps e_i and f_i are the raising and lowering crystal operators.

The crystal graph of a crystal \mathcal{B} is the labeled directed graph with vertex set \mathcal{B} and edges

 $b \xrightarrow{i} c$ for each $b, c \in \mathcal{B}$ and $i \in [n-1]$ with $f_i(b) = c$.

Conditions (1a), (1b) just tell us that the crystal graph has at most one edge labeled by i starting at a given vertex, and has no cycles or infinite paths consisting of edges with the same label.

A crystal isomorphism is a bijection $\mathcal{B} \to \mathcal{C}$ between crystals that is weight-preserving and string length-preserving, and that commutes with all crystal operators. Crystals have a tensor product:

Definition 1.2. Let \mathcal{B} and \mathcal{C} be crystals. The set $\mathcal{B} \otimes \mathcal{C} := \{b \otimes c : b \in \mathcal{B}, c \in \mathcal{C}\}$ has a unique crystal structure with weight map $\mathbf{wt}(b \otimes c) := \mathbf{wt}(b) + \mathbf{wt}(c) \in \mathbb{Z}^n$ and crystal operators defined by

$$f_i(b \otimes c) := \begin{cases} b \otimes f_i(c) & \text{if } \varepsilon_i(b) < \varphi_i(c) \\ f_i(b) \otimes c & \text{if } \varepsilon_i(b) \ge \varphi_i(c) \end{cases} \quad \text{and} \quad e_i(b \otimes c) := \begin{cases} b \otimes e_i(c) & \text{if } \varepsilon_i(b) \le \varphi_i(c) \\ e_i(b) \otimes c & \text{if } \varepsilon_i(b) > \varphi_i(c). \end{cases}$$

Here, $b \otimes 0 := 0 =: 0 \otimes c$. The natural maps $\mathcal{B} \otimes (\mathcal{C} \otimes \mathcal{D}) \to (\mathcal{B} \otimes \mathcal{C}) \otimes \mathcal{D}$ are crystal isomorphisms.

Example 1.3. There is a *standard crystal* \mathbb{B}_n with crystal graph

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n$$

and weight function $\mathbf{wt}(i) = \mathbf{e}_i$. The crystal graph of the tensor product $\mathbb{B}_3 \otimes \mathbb{B}_3$ is

$$1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{2} 1 \otimes 3$$

$$\downarrow 1 \qquad \downarrow 1$$

$$2 \otimes 1 \qquad 2 \otimes 2 \xrightarrow{2} 2 \otimes 3$$

$$2 \downarrow \qquad \downarrow 2$$

$$3 \otimes 1 \xrightarrow{1} 3 \otimes 2 \qquad 3 \otimes 3$$

The weakly connected components of the crystal graph are called *full subcrystals*. The *character* of a finite crystal \mathcal{B} is $ch(\mathcal{B}) = \sum_{b \in \mathcal{B}} x^{wt(b)} \in \mathbb{Z}[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$. If \mathcal{B} and \mathcal{C} are two finite crystals then $ch(\mathcal{B} \otimes \mathcal{C}) = ch(\mathcal{B})ch(\mathcal{C})$.

Lecture 2

2 Symmetry

Conditions (2a) and (2b) in the definition of a crystal subtly impose a lot of structure. Let $s_i = (i, i + 1)$ be the permutation of $[n] := \{1, 2, ..., n\}$ that interchanges i and i + 1. The elements $s_1, s_2, ..., s_{n-1}$ generate the group S_n of all permutations of [n]. There is a unique (left) group action of S_n on \mathbb{Z}^n with

$$s_i(\alpha_1,\ldots,\alpha_i,\alpha_{i+1},\ldots,\alpha_n) = (\alpha_1,\ldots,\alpha_{i+1},\alpha_i,\ldots,\alpha_n).$$

Let \mathcal{B} be a crystal. For each $i \in [n-1]$ we define a map $\sigma_i : \mathcal{B} \to \mathcal{B}$ as follows:

Definition 2.1. Given $x \in \mathcal{B}$, let $k = \mathbf{wt}(x)_i - \mathbf{wt}(x)_{i+1} = \varphi_i(x) - \varepsilon_i(x)$ and define

$$\sigma_i(x) = \begin{cases} f_i^k(x) & \text{if } k > 0, \\ x & \text{if } k = 0, \\ e_i^{-k}(x) & \text{if } k < 0. \end{cases}$$

For example,

Proposition 2.2. The map σ_i is a self-inverse bijection $\mathcal{B} \to \mathcal{B}$ satisfying $\mathbf{wt}(\sigma_i(x)) = s_i(\mathbf{wt}(x))$. The map σ_i has the effect of reversing each *i*-string in \mathcal{B} .

For example, for an i-string of the form

$$b_1 \xrightarrow{i} b_2 \xrightarrow{i} b_3 \xrightarrow{i} b_4 \xrightarrow{i} b_5$$

$$k = 4 \qquad 2 \qquad 0 \qquad -2 \qquad -4$$

we have $\sigma_i(b_j) = b_{6-j}$.

Proof. Fix $x \in \mathcal{B}$ and define $k = \mathbf{wt}(x)_i - \mathbf{wt}(x)_{i+1} = \varphi_i(x) - \varepsilon_i(x)$.

We can apply f_i to x exactly k times before reaching 0 if k > 0, and e_i to x exactly -k times if k < 0.

Thus σ_i defines a map $\mathcal{B} \to \mathcal{B}$ and in either case $\mathbf{wt}(\sigma_i(x)) = \mathbf{wt}(x) - k\mathbf{e}_i + k\mathbf{e}_{i+1} = s_i(\mathbf{wt}(x))$.

Within the *i*-string through x, there is a unique element of weight $s_i(\mathbf{wt}(x))$, so σ_i reverses the *i*-string end to end and is a self-inverse bijection.

Proposition 2.3. The character of a finite crystal \mathcal{B} is a symmetric polynomial in $\mathbb{Z}[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$. *Proof.* For each $i \in [n-1]$, since σ_i is a bijection, we have

$$ch(\mathcal{B}) := \sum_{b \in \mathcal{B}} x^{wt(b)} = \sum_{b \in \mathcal{B}} x^{wt(\sigma_i(b))} = \sum_{b \in \mathcal{B}} x^{s_i(wt(b))} = s_i(ch(\mathcal{B})).$$

3 Crystals of words

We can form the standard crystal \mathbb{B}_n , take tensor products, and restrict to full subcrystals. Perhaps surprisingly, it will be possible to describe everything that these operations generate. As a first step, we need to understand the tensor products $\mathbb{B}_n^{\otimes m}$ for all positive integers m, n.

We use the term *word* to mean a finite sequence of positive integers $w = w_1 w_2 \cdots w_m$. Identify the tensors $w_1 \otimes w_2 \otimes \cdots \otimes w_m$ (which are the elements of $\mathbb{B}_n^{\otimes m}$) with words $w = w_1 w_2 \cdots w_m$. Clearly $\mathbf{wt}(w)$ is the *n*-tuple whose *i*th entry is the number of occurrences of *i* in *w*. Fix $i \in [n-1]$. Replace each *i* in *w* by a right parenthesis and each i + 1 in *w* by a left parenthesis:

We have the following signature rules for the crystal operators f_i and e_i in $\mathbb{B}_n^{\otimes m}$.

Proposition 3.1. To apply the crystal operator f_i of $\mathbb{B}_n^{\otimes m}$ to w, consider the parenthesized word just described. If each right parenthesis ")" belongs to a balanced pair, then $f_i(w) = 0$. Otherwise, form $f_i(w)$ from w by changing the letter i corresponding to the **last** unbalanced right parenthesis to i + 1.

Proposition 3.2. To apply the crystal operator e_i of $\mathbb{B}_n^{\otimes m}$ to w, again consider the parenthesized word. If each left parenthesis "(" belongs to a balanced pair, then $e_i(w) = 0$. Otherwise, form $e_i(w)$ by changing the i + 1 in w corresponding to the **first** unbalanced left parenthesis to i.

Here is our running example:

$$w = 1223343212 \text{ and } i = 2 \quad \rightsquigarrow \quad \begin{bmatrix} 1 &) &) & (& (& 4 & (&) & 1 &) \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{bmatrix} \quad \rightsquigarrow \quad \begin{cases} f_2(w) = 12\underline{3}3343212 \\ e_2(w) = 122\underline{3}43212. \end{cases}$$

Let's examine a few other cases in detail before proving the propositions.

Example 3.3. If $w = w_1 = j \in \mathbb{B}_n^{\otimes 1}$ is a single letter than the parenthesized word is

•
$$\begin{bmatrix} j \\ 1 \end{bmatrix}$$
 if $i \notin \{j-1, j\}$, in which case $f_i(w) = 0$ and $e_i(w) = 0$.

Thus, in this case the rules for f_i and e_i agree with the crystal graph for $\mathbb{B}_n = \mathbb{B}_n^{\otimes 1}$:

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n$$

Example 3.4. If $w = jj \cdots j \in \mathbb{B}_n^{\otimes m}$ is one repeated letter, then the parenthesized word is

• $\begin{bmatrix} i & j & j & \cdots & j \\ 1 & 2 & \cdots & m \end{bmatrix}$ if i = j, in which case w is at the start of an i-string with m arrows: $0 \xleftarrow{e_i} w = i \cdots ii \xrightarrow{f_i} i \cdots i(i+1) \xrightarrow{f_i} i \cdots (i+1)(i+1) \xrightarrow{f_i} \cdots \xrightarrow{f_i} (i+1) \cdots (i+1)(i+1).$ • $\begin{bmatrix} (& (& \cdots & (\\ 1 & 2 & \cdots & m \end{bmatrix}$ if i + 1 = j, in which case w is the end of an i-string with m arrows:

$$0 \xleftarrow{f_i} w = (i+1)(i+1)\cdots(i+1) \xrightarrow{e_i} i(i+1)\cdots(i+1) \xrightarrow{e_i} ii\cdots(i+1) \xrightarrow{e_i} \cdots \xrightarrow{e_i} ii\cdots i.$$

• $\begin{bmatrix} j & j & \cdots & j \\ 1 & 2 & \cdots & m \end{bmatrix}$ if $i \notin \{j-1, j\}$, in which case $f_i(w) = 0$ and $e_i(w) = 0$.

Proof. We prove the propositions by induction on the number of tensor factors m.

For m = 1, we saw in the examples that the signature rule agrees with the standard crystal graph.

Now fix $i \in [n-1]$ and consider a word $w = w_1 w_2 \cdots w_m w_{m+1} \in \mathbb{B}_n^{\otimes (m+1)}$.

If $w_{m+1} \neq i$, then $\varepsilon_i(w_1 w_2 \cdots w_m) \ge 0 = \varphi_i(w_{m+1})$, so we expect to have

$$f_i(w) = f_i(w_1 w_2 \cdots w_m) w_{m+1}.$$

This holds by induction since if $w_{m+1} \neq i$ then adding w_{m+1} has no effect on the unbalanced right parentheses associated to $w_1 w_2 \cdots w_m$.

Assume $w_{m+1} = i$. Then $\varphi_i(w_{m+1}) = 1$, so (by induction) the only way we can have $\varepsilon_i(w_1w_2\cdots w_m) < \varphi_i(w_{m+1})$ is if there are no unbalanced left parentheses in the word associated to $w_1w_2\cdots w_m$. If this happens then w_{m+1} will contribute the last unbalanced right parenthesis in w and we will have

$$f_i(w) = w_1 w_2 \cdots w_m f_i(w_{m+1}),$$

as desired. Otherwise, there will be at least one unbalanced left parenthesis in the word associated to $w_1w_2\cdots w_m$, so the right parenthesis contributed by w_{m+1} will be part of a balanced pair and

$$f_i(w) = f_i(w_1 w_2 \cdots w_m) w_{m+1}$$

by induction, as needed.

The argument that the tensor product formula for e_i coincides with the signature rule is similar.

4 Crystals of tableaux

Recall from last time: a partition is a sequence of integers $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$. The Young diagram of a partition λ is the set $\mathsf{D}_{\lambda} = \{(i, j) \in \{1, 2, \dots, \ell(\lambda)\} \times \mathbb{Z} : 1 \le j \le \lambda_i\}$ A tableau of shape λ is a map $T : \mathsf{D}_{\lambda} \to \{1, 2, 3, \dots\}$, written $(i, j) \mapsto T_{ij}$.

To draw a tableau, we fill the boxes in D_{λ} , oriented using matrix coordinates, by the entries T_{ij} . A tableau T is *semistandard* if its rows are weakly increasing and its columns are strictly increasing. Let $SSYT_n(\lambda)$ denote the set of semistandard tableaux T of shape λ with all entries $T_{ij} \in \{1, 2, ..., n\}$. "SSYT" stands for "semistandard Young tableaux."

For n = 3 and $\lambda = (2, 1)$, we have

$$SSYT_n(\lambda) = \left\{ \begin{bmatrix} 1 & 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 \end{bmatrix} \right\}.$$

The set $SSYT_n(\lambda)$ is empty if λ has more than n parts.

Goal: give $SSYT_n(\lambda)$ a crystal structure for any partition λ with $\ell(\lambda) \leq n$.

The row reading word of a tableau T is the word $\operatorname{row}(T)$ formed by concatenating the rows of T in reverse order, i.e., starting with the bottom row. For example, if

$$T = \frac{\begin{vmatrix} 1 & 2 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ \hline 3 & 4 & 5 \\ \hline 7 & 7 \end{vmatrix}$$
 then $\mathfrak{row}(T) = 7734523412234.$

Proposition 4.1. The row reading word **row** is an injective map from $SSYT_n(\lambda)$ to the set of words of length $|\lambda|$ with letters in $\{1, 2, \ldots, n\}$, which we identify with $\mathbb{B}_n^{\otimes |\lambda|}$.

Proof. You can recover the rows of T by dividing $\mathfrak{row}(T)$ into maximal weakly increasing subwords. For example, 7734523412234 \rightsquigarrow 77 | 345 | 234 | 12234.

Proposition 4.2. Fix $T \in SSYT_n(\lambda)$ and $i \in [n-1]$.

- (a) If $f_i(\mathfrak{row}(T)) \neq 0$ then there is a unique $f_i(T) \in \mathrm{SSYT}_n(\lambda)$ with $\mathfrak{row}(f_i(T)) = f_i(\mathfrak{row}(T)) \in \mathbb{B}_n^{\otimes |\lambda|}$.
- (b) If $e_i(\mathfrak{row}(T)) \neq 0$ then there is a unique $e_i(T) \in \mathrm{SSYT}_n(\lambda)$ with $\mathfrak{row}(e_i(T)) = e_i(\mathfrak{row}(T)) \in \mathbb{B}_n^{\otimes |\lambda|}$.

Proof. Changing the letter corresponding to the last unbalanced right parenthesis in $\mathfrak{row}(T)$ from *i* to i+1 gives the row reading word of a tableau formed from *T* by changing the last *i* in some row to i+1:

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	i+1	j	
--	-----	---	--

The only way this could fail to be semistandard is if the changed letter is directly above another i + 1:

 i	j	\sim	•••	i+1	j
 i+1	•••			i + 1	

But column strictness implies that this can only happen if these two rows in our tableau have the form

 h	i	•••	i	j	
 x	i+1	•••	i+1	y	

where h < i < j and $x \le i + 1 < y$. But then all *i*'s in the first row are balanced right parentheses. This proves part (a). The argument for part (b) is similar.

Thus, there are unique maps $e_i, f_i : SSYT_n(\lambda) \to SSYT_n(\lambda) \sqcup \{0\}$ for $i \in [n-1]$ such that

$$\mathfrak{row}(e_i(T)) = e_i(\mathfrak{row}(T))$$
 and $\mathfrak{row}(f_i(T)) = f_i(\mathfrak{row}(T)),$

where we interpret $\mathfrak{row}(0) = 0$. Last time we defined $\mathbf{wt}(T) \in \mathbb{Z}^n$ for $T \in SSYT_n(\lambda)$, and clearly

$$\mathbf{wt}(T) = \mathbf{wt}(\mathfrak{row}(T)).$$

Theorem 4.3. Suppose λ is a partition with at most n parts.

With respect to \mathbf{wt} , e_i , f_i , the set $\mathrm{SSYT}_n(\lambda)$ is a crystal whose crystal graph is weakly connected. The map \mathbf{row} is an injective crystal morphism that identifies $\mathrm{SSYT}_n(\lambda)$ with a full subcrystal of $\mathbb{B}_n^{\otimes |\lambda|}$. Before justifying this result, let us examine some of the crystals $\mathrm{SSYT}_n(\lambda)$. Below are the crystal graphs of $\mathrm{SSYT}_3(\lambda)$ for $\lambda \in \{(3,1), (2,2), (2,1,1)\}$.

To prove the theorem, it only remains to show that the crystal graph of $SSYT_n(\lambda)$ is weakly connected. To this end, we will use the following terminology. A *highest weight* of a crystal \mathcal{B} is an element $b \in \mathcal{B}$ with $e_i(b) = 0$ for all $i \in [n-1]$. Such an element is not the target of any edge in the crystal graph. A highest weight element in $SSYT_n(\lambda)$ is the tableau T_{λ} with all entries in row *i* equal to *i*. For example,

$$T_{\lambda} = \underbrace{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 \\ \hline 3 & 3 & 3 \\ \hline 4 & 4 \end{vmatrix}}_{\text{for } \lambda = (5, 3, 3, 2).$$

This is because, for each $i \in [n-1]$, in the word associated to $\operatorname{row}(T)$ all left parentheses are balanced. To prove that $\operatorname{SSYT}_n(\lambda)$ is weakly connected, it suffices to prove this lemma:

Lemma 4.4. The tableau T_{λ} is the unique highest weight in $SSYT_n(\lambda)$.

Proof. Let $T \in SSYT_n(\lambda) - \{T_\lambda\}$. Then T has a row containing an entry greater than the row index.

Suppose the largest entry in the first such row is i + 1.

All letters after i + 1 in $\mathfrak{row}(T)$ will be less than i, so $e_i(T) \neq 0$ and T is not a highest weight.

Observe that the $\mathbf{wt}(T_{\lambda}) = \lambda$.

Recall that the Schur polynomial of λ is $s_{\lambda}(x_1, x_2, \dots, x_n) := \sum_{T \in SSYT_n(\lambda)} x^{\mathbf{wt}(T)}$.

As corollary of the results today, we recover the theorem from last time:

Corollary 4.5. The Schur polynomial $s_{\lambda}(x_1, x_2, ..., x_n)$ is symmetric, since it is the character of the connected crystal of semistandard tableaux SSYT_n(λ).

Next time: every full subcrystal of $\mathbb{B}_n^{\otimes m}$ is isomorphic to the crystal $SSYT_n(\lambda)$ for some partition λ .