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1 Last time: normal crystals

Fix a positive integer n as usual. Here is a useful fact:

Observation 1.1. Schur polynomials sλ(x1, . . . , xn) =
∑
T∈SSYTn(λ) x

wt(λ) are linearly independent.

Proof. Let ≺ be the partial order on Zn with α+ ei − ei+1 ≺ α for all i ∈ [n− 1].

Then sλ(x1, . . . , xn) = xλ + ( monomials indexed by higher order terms under ≺ ).

So we get linear independence from a standard triangularity argument.

Unimportant terminology: from a category, one forms a full subcategory by taking a subset of objects
but keeping all morphisms between these objects that were in the original category.

So for example, finite dimensional complex vector spaces form a full subcategory of the category of all
complex vector spaces with linear maps as morphisms. On the other hand, topological vector spaces form
a subcategory that is not full, since we only keep continuous linear maps as morphisms.

Last time we showed that our category of crystals has a full subcategory whose objects we call normal
crystals, characterized by the following properties:

• The standard crystal Bn is a normal crystal.

• Tensor products of normal crystals are normal.

• Full subcrystals of normal crystals are normal.

• Disjoint unions of normal crystals are normal.

• Each connected normal crystal is isomorphic to SSYTn(λ) for some partition λ with ≤ n parts.

• None of the crystals SSYTn(λ) are isomorphic since each has a distinct highest weight, namely λ.

• Each connected normal crystal has a unique highest weight which determines its isomorphism class.

• Since ch(SSYTn(λ)) = sλ(x1, . . . , xn), the character of any finite normal crystal is Schur positive.

• Two finite normal crystals are isomorphic if and only if they have the same character.

Our goal going forward is to replicate the construction of this category for any Cartan type.

For this, we will need to introduce more general notions of crystals.

2 Aside: Littlewood-Richardson coefficients

An application of all this is a concrete interpretation of the Littlewood-Richardson coefficients cνλµ ∈ N.

Let λ and µ be partitions. The tensor product SSYTn(λ) ⊗ SSYTn(µ) is a normal crystal, so there are
unique coefficients cνλµ ∈ N indexed by partitions ν such that

SSYTn(λ)⊗ SSYTn(µ) ∼=
⊔
ν

SSYTn(ν) t SSYTn(ν) t · · · t SSYTn(ν)︸ ︷︷ ︸
cνλµ times

.

(In this disjoint union, we skip any indices ν with cνλµ = 0.)

Specifically, cνλµ is the number of highest weight elements in SSYTn(λ)⊗ SSYTn(µ) with weight ν.

Since ch(B ⊗ C) = ch(B)ch(C) and ch(B t C) = ch(B) + ch(C), taking characters gives

sλ(x1, . . . , xn)sµ(x1, . . . , xn) =
∑
ν

cνλµsν(x1, . . . , xn) ∈ N-span
{
sν(x1, . . . , xn) : ν ` |λ|+ |ν|

}
. (2.1)
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Here, “ν ` k” means |ν| = k.

The way we have defined cνλµ has an implicit dependence n. We can remove this dependence as follows.

Definition 2.1. Given partitions λ, µ, ν, define cνλµ ∈ N to be the number of pairs (T ′, T ′′) of semistan-
dard tableaux of shape λ and µ, respectively, such that PRSK(row(T ′)row(T ′′)) is the unique tableau of
shape ν with all entries in row i equal to i. One calls these integers cνλµ Littlewood-Richardson coefficients.

If ν has `(ν) parts then the set of entries in T ′ or T ′′ for any such pair must be exactly {1, 2, 3, . . . , `(ν)}.
Therefore, by results last time, cνλµ is exactly the number of highest weight elements in the tensor product
SSYTn(λ)⊗ SSYTn(µ) with weight ν whenever n ≥ max{`(λ), `(µ), `(ν)}.

Since sλ(x1, . . . , xn) = 0 if n < `(λ), it follows that (2.1) still holds for our new definition of cνλµ.

Our definition of cνλµ is now independent of n. This means that we can extend (2.1) to an identity for

the Schur functions sλ :=
∑
T∈SSYT(λ) x

wt(T ) = limn→∞ sλ(x1, . . . , xn).

Here SSYT(λ) :=
⋃
n≥1 SSYTn(λ). Schur functions are formal power series.

Theorem 2.2. For any partitions λ and µ, it holds that sλsµ =
∑
ν`|λ|+|µ| c

ν
λµsν .

We can always specialize a power series by setting xn+1 = xn+2 = · · · = 0, so this generalizes (2.1).

3 Cartan types

In this course, a Cartan type consists of a pair (Φ,Λ) where Φ is a root system and Λ is a weight lattice.

Informally, a root system Φ is a finite set of vectors in a real vector space V , and a weight lattice is a
finitely generated abelian subgroup Λ of V that spans V , modulo a few other conditions.

The vector space V has an inner product 〈·, ·〉 which is the standard form when V = Rn.

The set of roots Φ has a subset of positive roots Φ+ and simple roots {αi : i ∈ I}.

The simple roots determine a set of dominant weights Λ+ ⊂ Λ and fundamental weights {$i : i ∈ I}.

The simple roots and fundamental weights have the same indexing set I, whose size is the rank.

Before discussing the precise axioms, let’s present two main examples.

Example 3.1 (Cartan type An−1, GL(n) version).

For this Cartan type we take V = Rn, Λ = Zn, and Φ = {ei − ej : i, j ∈ [n], i 6= j}.

The positive roots are Φ+ = {ei−ej : 1 ≤ i < j ≤ n}. The simple roots are αi = ei−ei+1 for i ∈ [n−1].

The dominant weights are the vectors λ = (λ1, λ2, . . . , λn) ∈ Zn with λ1 ≥ λ2 ≥ · · · ≥ λn.

The fundamental weights are $i = e1 + e2 + · · ·+ ei for i ∈ [n− 1].

We have been implicitly working with this Cartan type in the lectures so far.

There is one other “type A” Cartan type:

Example 3.2 (Cartan type An−1, SL(n) version).

For this Cartan type we take V = Rn/R-span{e1 + e2 + · · ·+ en} to be a quotient vector space.

The root system Φ and weight lattice Λ are the images of {ei − ej : i 6= j} and Zn in this quotient.

The positive roots, simple roots, dominant weights, and fundamental weights are also just the images in
this quotient of their counterparts for the GL(n)-case.
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We now give the definitions in general, before presenting types B, C, and D.

Let V be a real vector space with an inner product 〈·, ·〉. An inner product is a symmetric positive definite
bilinear form. We can usually think of this as the standard form on Rn.

Each nonzero α ∈ V determines a linear map rα : V → V by the formula

rα(x) = x− 2 〈x,α〉〈α,α〉α for x ∈ V.

You can check that (rα)2 = 1 and rα(α) = −α. Given any nonzero α ∈ V , let α∨ = 2α
〈α,α〉 .

Definition 3.3. A root system in V is a set of nonzero vectors Φ ⊂ V \ {0} such that

(1) We have rα(Φ) = Φ for all α ∈ Φ.

(2) We have 〈α, β∨〉 ∈ Z for all α, β ∈ Φ.

(3) If β ∈ Φ is a multiple of α ∈ Φ then β = ±α.

Assume Φ is a root system in V . Then Φ = −Φ since rα(α) = −α.

Elements of Φ are often called roots. Elements of Φ∨ := {α∨ : α ∈ Φ} are called coroots.

In both type A Cartan types, we have Φ = Φ∨.

If we can write Φ = Φ1 tΦ2 where each Φi is a nonempty set and 〈α1, α2〉 = 0 for all αi ∈ Φi, then each
of the subsets Φi is itself a root system and we say that Φ is reducible.

When this is not possible, Φ is irreducible or simple. Every root system is a disjoint union of a finite
number of irreducible root systems. These have a fairly tame classification, which will be covered in any
introductory course on Lie algebras.

A root system is simply-laced if every root has the same length. This is always the case in type A.

The root system Φ is semisimple if V = RΦ, i.e., if V is spanned by Φ.

This occurs in the Cartan type for SL(n) but not GL(n).

Definition 3.4. Let Φ be a root system in V .

A weight lattice Λ for Φ is a finitely generated abelian subgroup of V such that:

(1) We have V = RΛ, i.e., the R-span of Λ is V .

(2) The root system Φ is a subset of Λ.

(3) We have 〈λ, α∨〉 ∈ Z for all λ ∈ Λ and α ∈ Φ.

These conditions trivially hold for Λ = Zn in the GL(n) Cartan type.

Let Λ be a weight lattice for the root system Φ in V . Elements of Λ are called weights.

Choose a codimension one subspace H ⊂ V that does not intersect Φ.

Equivalently, choose a vector ρ (orthogonal to H) that is not orthogonal to any root in Φ.

Whether 〈α, ρ〉 is positive or negative tells us which side of H the root α is on.

The set of positive roots in Φ is then Φ+ = {α : 〈α, ρ〉 > 0}. The negative roots are Φ− = −Φ+.

In the GL(n) Cartan type, the positive roots were constructed using the vector ρ = (n− 1, . . . , 2, 1, 0).

A root α ∈ Φ+ is simple if it cannot be written as the sum of two positive roots.
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Let {αi : i ∈ I} be the set of simple roots in Φ+. We usually identify the indexing set I with set [n].

We recall some nontrivial facts (omitting the proofs):

• The simple roots are linearly independent.

• If i, j ∈ I then i 6= j then 〈αi, αj〉 ≤ 0.

• Each positive root is a linear combination of simple roots with nonnegative coefficients.

Also define si = rαi for i ∈ I. Then:

• Each reflection si maps αi 7→ −αi and acts as a permutation of Φ+ \ {αi}.

• The set of reflections {si : i ∈ I} is the simple generating set of a Coxeter group W .

In type An−1, the group W is isomorphic (though not obviously) to the symmetric group Sn.

A weight λ ∈ Λ is dominant if 〈λ, α∨i 〉 ≥ 0 for all i ∈ I.

A dominant weight is strictly dominant if these inner products are always positive.

Let Λ+ be the set of dominant weights in Λ.

One can show that Λ+ always contains the Weyl vector ρ = 1
2

∑
α∈Φ+ α.

In type An−1 we have α∨i = αi so λ = (λ1, λ2, . . . , λn) is dominant when its entries are weakly decreasing.

We make one final choice: let {$i : i ∈ I} be a set of vectors in V such that

〈$i, α
∨
j 〉 =

{
1 if i = j

0, if i 6= j.

We call these elements fundamental weights.

If Φ is semisimple then the weights are the unique basis dual to the basis of simple coroots.

Otherwise, we have some flexibility in our choice of fundamental weights, which need not belong to Λ.

Let Λsc = Z-span{$i : i ∈ I} and Λroot = Z-span{αi : i ∈ I}.

If Λ = Λroot then we say that the weight lattice is of adjoint type.

If Λ = Λsc then we say that the weight lattice is of simply-connected type.

The Cartan type for GL(n) is of simply-connected type while the one for SL(n) is of adjoint type.

There are five other families of classical Cartan types.

Example 3.5 (Cartan type Bn, spin(2n+ 1) version).

For this Cartan type we take V = Rn and Φ = {±ei ± ej : 1 ≤ i < j ≤ n} t {±ei : i ∈ [n]}.

The positive roots are Φ+ = {ei ± ej : 1 ≤ i < j ≤ n} t {ei : i ∈ [n]}.

The weight lattice Λ is the subset of vectors λ ∈ Qn with 2λi ∈ Z and 2λ1 ≡ 2λ2 ≡ · · · ≡ 2λn (mod 2).

The dominant weights are the weights whose entries are weakly decreasing.

The simple roots are αi = ei − ei+1 for i ∈ [n− 1] along with αn = en.

The fundamental weights are $i = e1 +e2 + · · ·+ei for i ∈ [n−1] along with $n = 1
2 (e1 +e2 + · · ·+en).

In this example the root system is not simply-laced but the weight lattice is of simply-connected type.
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Example 3.6 (Cartan type Bn, SO(2n+ 1) version).

Again let V = Rn. We take the same root system Φ as in the previous example but set Λ = Zn.

The simple roots and fundamental weights are the same as in the spin(2n+ 1) Cartan type.

Example 3.7 (Cartan type Cn).

For this Cartan type we take V = Rn and Φ = {±ei ± ej : 1 ≤ i < j ≤ n} t {±2ei : i ∈ [n]}.

The positive roots are Φ+ = {ei ± ej : 1 ≤ i < j ≤ n} t {2ei : i ∈ [n]}.

The weight lattice is Λ = Zn.

The dominant weights are the weights whose entries are weakly decreasing.

The simple roots are αi = ei − ei+1 for i ∈ [n− 1] along with αn = 2en.

The fundamental weights are $i = e1 + e2 + · · ·+ ei for i ∈ [n].

In this example the root system is not simply-laced.

Example 3.8 (Cartan type Dn, spin(2n) version).

For this Cartan type we take V = Rn and Φ = {±ei ± ej : 1 ≤ i < j ≤ n} = Φ∨.

The positive roots are Φ+ = {ei ± ej : 1 ≤ i < j ≤ n}.

The weight lattice is the same as the spin(2n+ 1) weight lattice.

The dominant weights are the weights λ with λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ |λn|.

The simple roots are αi = ei − ei+1 for i ∈ [n− 1] along with αn = en−1 + en.

The fundamental weights are $i = e1 + · · ·+ ei for i ∈ [n− 2] along with

$n−1 = 1
2 (e1 + · · ·+ en−1 − en) and $n = 1

2 (e1 + · · ·+ en−1 + en).

This example is simply-laced and of simply-connected type.

Example 3.9 (Cartan type Dn, SO(2n) version).

Again let V = Rn. We take the same root system Φ as in the previous example but set Λ = Zn.

The simple roots and fundamental weights are the same as in the spin(2n) Cartan type.

Example 3.10 (Exceptional types).

There are a finite list of exceptional Cartan types that we refer to as types G2, F4, E6, E7, and E8.

4 Kashiwara crystals

Crystals for arbitrary Cartan types are often called Kashiwara crystals. The theory of these objects was
first developed in separate papers of Kashiwara and Lusztig that first appeared in 1990.

We consider the set Z t {−∞} to be totally ordered with −∞ < n for all n ∈ Z.

In the following definition, we also let −∞+ n = −∞ for all n ∈ Z.

Definition 4.1. Fix a root system Φ with simple roots {αi : i ∈ I} and weight lattice Λ.
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A (Kashiwara) crystal of type (Φ,Λ) is a nonempty set B with maps

wt : B → Λ, ei, fi : B → B t {0} for i ∈ I, and εi, ϕi : B → Z t {−∞} for i ∈ I,

where 0 /∈ B is an auxiliary element, such that for i ∈ I the following properties hold:

(1) If x, y ∈ B then ei(x) = y if and only if fi(y) = x, in which case

wt(y) = wt(x) + αi, εi(y) = εi(x)− 1, and ϕi(y) = ϕi(x) + 1.

(2) If x ∈ B then ϕi(x) = εi(x) + 〈wt(x), α∨i 〉. In particular, if ϕi(x) = −∞ then εi(x) = −∞.

Also, if ϕi(x) = εi(x) = −∞ then we require ei(x) = fi(x) = 0.

The function wt is the weight map of B.

The maps ei and fi are the raising and lowering crystal operators.

The maps εi and ϕi are the string lengths.

If ϕi and εi do not take the value −∞, then the crystal is of finite type. If

εi(b) = max{k ≥ 0 : eki (b) 6= 0} and ϕi(b) = max{k ≥ 0 : fki (b) 6= 0}

for all i ∈ I, then the crystal is seminormal.

Any seminormal crystal is of finite type, but finite type crystals may have an infinite number of elements.

The crystals we considered in the first three lectures were all seminormal of Cartan type GL(n).
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