
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 6

1 Last time: crystals for general Cartan types

Fix a root system Φ ⊂ V with simple roots {αi : i ∈ I} and weight lattice Λ. Write α∨i = 2αi

〈αi,αi〉 .

A crystal of type (Φ,Λ) is a nonempty set B with maps

wt : B → Λ, ei, fi : B → B t {0} for i ∈ I, and εi, ϕi : B → Z t {−∞} for i ∈ I,

where 0 /∈ B is an auxiliary element, satisfying two main axioms.

A crystal comes with notions of a crystal graph, full subcrystals, and highest weights. A crystal is semi-
normal if ϕi & εi measure how many times you can apply fi & ei to an element before reaching zero.

Possibly useful fact: if Φ spans the ambient space V and the string lengths never take value −∞ (i.e., Φ
is semisimple and the crystal is of finite type), then the crystal graph of B determines wt.

Example 1.1. Last time we introduced standard crystals for all classical Cartan types:

• Type An−1:

1 2 3 · · · n1 2 3 n− 1

• Type Bn:

1 2 · · · n 0 n̄ · · · 2̄ 1̄
1 2 n− 1 n n n− 1 2 1

• Type Cn:

1 2 · · · n n̄ · · · 2̄ 1̄
1 2 n− 1 n n− 1 2 1

• Type Dn:

1 2 · · · n− 1

n

n̄

n− 1 · · · 2̄ 1̄
1 2 n− 2

n− 1

n

n

n− 1

n− 2 2 1

Each of these crystals is seminormal (so the string lengths are determined by the crystal graph),

and the weight map is defined by wt( i ) = ei and wt( ī ) = −ei and wt( 0 ) = 0.

A morphism between crystals is a map B → C t {0} that preserves weights and string lengths and
commutes with the crystal operators in all cases when the relevant conditions make sense. A morphism is
an isomorphism if it induces a bijection between crystal graphs. With this notion of morphisms, crystals
for a given Cartan type form a monoidal category with a tensor product ⊗.

The formulas for the weight map, crystal operators, and string lengths of a tensor product of crystals
B ⊗ C are similar to what we saw in the first few lectures for the (seminormal) type A case.

Finally, we discussed crystal characters. Let E be the free abelian group spanned by tλ for λ ∈ Λ.

Let si ∈ GL(V ) be the reflection x 7→ x− 〈x, α∨i 〉αi. Then si(Λ) = Λ.

The Weyl group W := 〈si : i ∈ I〉 acts linearly on E by the formula si · tλ = tsi(λ).

If B is finite then its character is ch(B) =
∑
b∈B t

wt(b). This is aways a W -invariant element of E .
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2 Product Cartan types and Levi branching

Let Φ1 and Φ2 be root systems in ambient spaces V1 and V2 with weight lattices Λ1 and Λ2.

Define V = V1 ⊕ V2 to be the orthogonal direct sum of the real inner product spaces Vi.

Then let Λ = Λ1 ⊕ Λ2 and Φ = Φ1 t Φ2.

(One sometimes writes Φ1 ⊕ Φ2 in place of the disjoint union Φ1 t Φ2.)

The pair (Φ,Λ) then consists of a root system Φ ⊂ V with a weight lattice Λ, so is a Cartan type.

If X and Y are the Cartan types of (Φ1,Λ1) and (Φ2,Λ2), then we say that (Φ,Λ) has type X × Y .

As a special case, if X = Y = GL(n) then we say that (Φ,Λ) has type GL(n)×GL(N) or An−1 ×An−1.

Suppose B1 is a crystal for Cartan type (Φ1,Λ1) and B2 is a crystal for Cartan type (Φ2,Λ2)

We can form a crystal B1 × B2 for Cartan type (Φ,Λ) = (Φ1 t Φ2,Λ1 ⊕ Λ2).

The elements of B1 × B2 are pairs (b1, b2) with bi ∈ Bi.

The weight map is wt(b1, b2) = wt(b1) + wt(b2).

If i indexes a simple root αi ∈ Φ1, then fi(b1, b2) = (fi(b1), b2) and ϕi(b1, b2) = ϕi(b1)

If i indexes a simple root αi ∈ Φ2, then fi(b1, b2) = (b1, fi(b2)) and ϕi(b1, b2) = ϕi(b2).

Here we interpret (0, b2) = (b1, 0) = 0. The maps ei and εi are defined analogously.

Note that B1 × B2 is not the same as B1 ⊗ B2, although the crystals are in bijections as sets.

Example 2.1. The crystal graph of B3 × B3, where B3 is the standard crystal of type A2, is(
1 , 1

) (
1 , 2

) (
1 , 3

)
(
2 , 1

) (
2 , 2

) (
2 , 3

)
(
3 , 1

) (
3 , 2

) (
3 , 3

)

1 2

1 1 1

21

2 2 2

1 2

This crystal is of type A2 ×A2, whereas B3 ⊗ B3 is still of type A2.

By erasing some arrows from the crystal graph, we can view a crystal for a given Cartan type (Φ,Λ) as
a crystal for a “smaller” Cartan type (Φ′,Λ), with root system Φ′ ⊂ Φ.

This process, called branching, may turn a connected crystal of type (Φ,Λ) into a disconnected crystal
of type (Φ′,Λ). Crystals correspond to representations of Lie groups and this kind of branching reflects
what happens when a representation is restricted to a Levi subgroup.

We can describe the branching process more explicitly.

Suppose (Φ,Λ) is a Cartan type with corresponding simple roots {αi : i ∈ I}.

Let J ⊂ I be any subset of the indexing set for the simple roots (and fundamental weights).

The corresponding Levi root sytem is then ΦJ := Φ ∩ Z-span{αi : i ∈ J}.

Recall that si ∈ GL(V ) denotes the reflection x 7→ x− 2 〈x,αi〉
〈αi,αi

αi and W = 〈si : i ∈ I〉.
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Define WJ = 〈si : i ∈ J〉 ⊂W . One can show that ΦJ = {α ∈ Φ : α = w(αi) for some w ∈WJ , i ∈ J}.

Example 2.2. Suppose Φ is type A3 root system with 12 elements

Φ = {±(e1 − e2),±(e1 − e3),±(e1 − e4),±(e2 − e3),±(e2 − e4),±(e3 − e4)}

and simple roots αi = ei − ei+1 for i ∈ I = {1, 2, 3}. If J = {1, 3} then

ΦJ = {±(e1 − e2)} t {±(e3 − e4)}

so ΦJ has type A1 ×A1.

Example 2.3. It is a standard exercise to observe that if Φ has classical type Bn, Cn, or Dn, so that
our index set is I = [n], then ΦJ for J = [n− 1] is just the root system of type An−1.

If you know about Dynkin diagrams, then observe that the Levi root system ΦJ may be read off from the
Dynkin diagram of Φ by erasing the vertices indexed by i /∈ J along with any incident edges. See §2.8 of
Bump and Schilling’s book for more details.

To form a Cartan type from the Levi root system, one can take the same ambient space V and weight
lattice Λ. In particular, (ΦJ ,Λ) is another Cartan type.

Suppose B is a crystal for Cartan type (Φ,Λ). To obtain a crystal for Cartan type (ΦJ ,Λ), we simply
forget the maps fi, ei, ϕi, and εi for all indices i /∈ J . The resulting crystal structure is called the (Levi)
branched crystal and is sometimes denoted BJ . The weight map of the new crystal is unchanged, and its
crystal graph is obtained from the graph of B by erasing all edges labeled by i /∈ J .

Example 2.4. Let Φ be the classical root system of type Bn, Cn, or Dn so I = [n].

Suppose J = [n− 1] and B is the standard crystal for Φ.

As usual write Bn for the standard crystal of type An−1, i.e., Cartan type GL(n).

Then BJ is isomorphic to Bn t B∨n in types Bn and Dn, and to Bn t B∨n t T0 in type Cn.

3 Normal crystals

A root system Φ is simply-laced if all roots α ∈ Φ have the same length.

This occurs in classical types An, Dn and exceptional types E6, E7, E8, but not in types Bn, Cn.

Let B be a crystal for Cartan type GL(n).

Recall our notion of normal crystals from a few lectures ago:

• B is normal if each of its full subcrystals is isomorphic to a full subcrystal of B⊗mn for some m ≥ 1.

• In fact, every connected normal crystal B is isomorphic to SSYTn(λ) for some partition λ.

• Consequently, each connected normal crystal B has a unique highest weight element.

The highest weight of this element is always the (unique) partition λ ∈ Nn such that B ∼= SSYTn(λ).

Our main topic today is a completely different way of characterizing normal crystals.

Specifically, we will see that a normal crystal can be detected by examining its branched crystals just to
Levi root systems of rank two. An advantage of this approach, pioneered by Stembridge around 2003, is
that it will generalize immediately to all simply-laced root systems.
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We have some freedom in how we define “normal” crystals of an arbitrary Cartan type.

What do we want from such crystals?

First let B be a crystal for an arbitrary Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}.

Recall that a highest weight element u ∈ B is an element with ei(u) = 0 for all i ∈ I.

Define a partial order � on B by setting y � x if a path connects x to y in the crystal graph.

This means that y � x if and only if x = ei1ei2 · · · eik(y) for some indices i1, i2, . . . ik ∈ I, in which case

wt(x) = wt(y) + αi1 + αi2 + · · ·+ αik .

Thus wt(y) � wt(x) where � is the partial order Λ with λ ≺ λ+ αi for all i ∈ I.

(We may have wt(y) � wt(x) without y � x, however.)

Observation 3.1. If B has a unique highest weight element u then x � u for all x ∈ B so B is connnected.

Proof. Any u ∈ B that is maximal under � is clearly a highest weight element.

For crystals of Cartan type (Φ,Λ), “normal” crystals should solve the following problem:

Associate to each dominant weight λ ∈ Λ+ a (necessarily connected) seminormal crystal Bλ with a
unique highest weight element uλ satisfying wt(uλ) = λ. Construct this correspondence in such a
way that each connected component of Bλ⊗Bµ for λ, µ ∈ Λ+ is isomorphic to Bν for some ν ∈ Λ+.

The category of all seminormal crystals is too large to satisfy these requirements.

4 Stembridge crystals

Fix a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}. We assume Φ is simply-laced.

In this section we will define a full subcategory of crystals for type (Φ,Λ) in terms of some axioms the
depend solely on the the structure of branched crystals to Levi root systems of rank two.

Fix distinct indices i, j ∈ I. Because Φ is simply-laced, we have either 〈αi, αj〉 = 0 or 〈αi, αj〉 = −1.

Choose a crystal B of type (Φ,Λ) and let J = {i, j}. The branched crystal BJ has one of two forms.

If αi and αj are orthogonal then BJ has type A1 ×A1.

Every type A1 crystal graph is a disjoint union of paths • −→ • −→ · · · −→ •.

Thus a type A1×A1 crystal graph is a disjoint union of rectangles given by Cartesian products of paths.

Remark. This is consistent with the fact that all connected (normal) crystals of type A1 (type GL(2))
are isomorphic to crystals of semistandard tableaux SSYT2(λ). The partition λ is required to have at
most 2 parts. If λ = (k) has only one part then the crystal graph of SSYT2(λ) is clearly a path:

1 1 1
1−−→ 1 1 2

1−−→ 1 2 2
1−−→ 2 2 2 .

In general, if λ ∈ Nn is a partition and η = (1, 1, . . . , 1) ∈ Nn, then λ+ η is a partition and

SSYTn(λ+ η) ∼= SSYTn(λ)⊗ Tη.
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This is because if we add column with n boxes to a semistandard tableau T ∈ SSYTn(λ) then the entries
in these boxes must be 1, 2, 3, . . . , n consecutively:

∈ SSYT3(λ) ;

1

2

3

∈ SSYT3(λ+ η).

Thus if λ = (j + k, j) then SSYT2(λ) ∼= SSYTn((k))⊗ T(j,j) still has crystal graph which is a path.

If αi and αj are not orthogonal then BJ is a crystal of type A2 (type GL(3)).

More can happen in this case; e.g., BJ could be isomorphic to SSYT3(λ) for any partition λ ∈ N3.

The axioms governing our category of interest are somewhat technical. I will not spend as much time
motivating these axioms as Bump and Schilling do in Chapter 4 of their book. I am also going to omit
most of the relevant proofs of the important properties of the result crystals. These arguments can get
somewhat complicated, though everything ultimately boils down to accessible computations.

Definition 4.1. A crystal B of simply-laced Cartan type (Φ,Λ), with simple roots {αi : i ∈ I}, is a weak
Stembridge crystal if the following axioms hold for all distinct indices i, j ∈ I:

(S0) If ei(x) = 0 then εi(x) = 0.

(S1) Suppose x, y ∈ B and y = ei(x). Then εj(y)− εj(x) ∈ {0, 1}.

In the case when αi and αj are orthogonal, εj(y) = εj(x).

(S2) If x ∈ B with εi(x) > 0 and εj(ei(x)) = εj(x) > 0 then eiej(x) = ejei(x) and ϕi(ej(x)) = ϕi(x).

(S3) Suppose x ∈ B has εj(ei(x)) = εj(x) + 1 > 1 and εi(ej(x)) = εi(x) + 1 > 1. Then

eje
2
i ej(x) = eie

2
jei(x) 6= 0, ϕi(ej(x)) = ϕi(e

2
jei(x)), and ϕj(ei(x)) = ϕj(e

2
i ej(x)).

We also require the following dual axioms:

(S0′) If fi(x) = 0 then ϕi(x) = 0.

(S1′) Suppose x, y ∈ B and y = fi(x). Then ϕj(y)− ϕj(x) ∈ {0, 1}.

In the case when αi and αj are orthogonal, ϕj(y) = ϕj(x).

(S2′) If x ∈ B with ϕi(x) > 0 and ϕj(fi(x)) = ϕj(x) > 0 then fifj(x) = fjfi(x) and εi(fj(x)) = εi(x).

(S3′) Suppose x ∈ B has ϕj(fi(x)) = ϕj(x) + 1 > 1 and ϕi(fj(x)) = ϕi(x) + 1 > 1. Then

fjf
2
i fj(x) = fif

2
j fi(x) 6= 0, εi(fj(x)) = εi(f

2
j fi(x)), and εj(fi(x)) = εj(f

2
i fj(x)).

If B is seminormal then axioms (S0) and (S0′) are automatically satisfied.

A Stembridge crystal is a weak Stembridge crystal B that is also seminormal.

The existence of these simple (but not too simple) local axioms is conceptually appealing, and sometimes
checking the axioms is an effective proof strategy.

Theorem 4.2. If B and C are Stembridge crystals for the same Cartan type then so is B ⊗ C.

Checking this result directly from the Stembridge axioms is one of the more complicated proofs in Bump
and Schilling’s book. In Stembridge’s original paper, the axioms were given to characterize a family of
crystals that was already known to be closed under tensor products, using connections representation
theory that we have so far not discussed.
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Morphisms between Stembridge crystals are crystal morphisms in the usual sense.

It follows that Stembridge crystals form a monoidal category.

Theorem 4.3. Let Bn be the standard crystal of type An−1 or Dn. Then Bn is a Stembridge crystal.

Consequently, any full subcrystal of B⊗mn for some m is a Stembridge crystal.

Proof. Checking that Bn satisfies the Stembridge axioms is an easy exercise.

Tensor powers of a Stembridge crystal are Stembridge crystals by the previous theorem.

By construction, if a crystal satisfies the Stembridge axioms then so do all of its full subcrystals.

The following results are fundamental. The proofs from the Stembridge are not as complicated as checking
that tensor products of Stembridge crystals are Stembridge crystals; see Bump and Schilling’s book.

Theorem 4.4. A connected Stembridge crystal has a unique highest weight element.

The highest weight of a crystal with highest weight element u is wt(u) ∈ Λ+.

Theorem 4.5. If two connected Stembridge crystals for the same Cartan type have the same unique
highest weights, then the crystals are isomorphic.

Recall that if η is in the orthogonal complement of RΦ in V then we can twist a crystal by adding η to
the weights of all elements.

Corollary 4.6. In type An−1, all normal crystals are Stembridge crystals and all Stembridge crystals are
twists of normal crystals. In other words, up to twisting, the categories of normal crystals and Stembridge
crystals for Cartan type GL(n) are the same.

Proof. Every normal crystal is a Stembridge crystal by Theorem 4.3.

A connected Stembridge crystal B in type An−1 has a unique highest weight λ.

This weight is dominant but might fail to be a partition if λn < 0.

However, we can certainly twist B by a weight so that the highest weight becomes a partition

The twisted crystal is then normal since if its highest weight is λ then it must be isomorphic to the
Stembridge crystal SSYTn(λ).

This leads to the following simpler, but less explicit, way of phrasing the Stembridge axioms:

Corollary 4.7. A crystal B of simply-laced Cartan type (Φ,Λ), with simple roots {αi : i ∈ I}, is a
Stembridge crystal if and only if B is seminormal and for all distinct indices i, j ∈ I:

• If 〈αi, αj〉 = 0 then each full subcrystal of BJ for J = {i, j} has crystal graph that is a rectangle.

• If 〈αi, αj〉 6= 0 then each full subcrystal of BJ for J = {i, j} has crystal graph ∼= to some SSYT3(λ).
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