1 Last time: Stembridge crystals

Remark: whenever we say "(Cartan) type A_{n-1} " we mean the same thing as "(Cartan) type GL(n)."
Suppose $\left(\Phi_{1}, \Lambda_{1}\right)$ and $\left(\Phi_{2}, \Lambda_{2}\right)$ are Cartan types. Then $(\Phi, \Lambda)=\left(\Phi_{1} \sqcup \Phi_{2}, \Lambda_{1} \oplus \Lambda_{2}\right)$ is also a Cartan type. If \mathcal{B}_{1} is a crystal for Cartan type $\left(\Phi_{1}, \Lambda_{1}\right)$ and \mathcal{B}_{2} is a crystal for Cartan type $\left(\Phi_{2}, \Lambda_{2}\right)$ then we can form a crystal $\mathcal{B}_{1} \times \mathcal{B}_{2}$ for Cartan type (Φ, Λ). The elements of $\mathcal{B}_{1} \times \mathcal{B}_{2}$ are pairs $\left(b_{1}, b_{2}\right)$ with $b_{i} \in \mathcal{B}_{i}$.

Suppose \mathcal{B}_{1} and \mathcal{B}_{2} are connected seminormal crystals of type A_{1}. The crystal graphs of these crystals are paths of the form $\bullet \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \bullet \bullet \stackrel{1}{\longrightarrow}$. Let 1 and $\overline{1}$ be the indices for the distinct simple roots in the root system of type $A_{1} \times A_{1}$. Then $\mathcal{B}_{1} \times \mathcal{B}_{2}$ has a crystal graph that looks like

(This picture corresponds to $\left|\mathcal{B}_{1}\right|=4$ and $\left|\mathcal{B}_{2}\right|=3$.) We say that a type $A_{1} \times A_{1}$ crystal is a rectangle if its crystal graph is isomorphic to a Cartesian product of this form. We ignore the weight map in this definition. Not every $A_{1} \times A_{1}$ crystal is a rectangle: one could have a crystal graph like $\bullet \stackrel{\overline{1}}{\longleftrightarrow} \bullet \xrightarrow{1} \bullet$.

Suppose (Φ, Λ) is a Cartan type with corresponding simple roots $\left\{\alpha_{i}: i \in I\right\}$. Let $J \subset I$. Then $\Phi_{J}:=\Phi \cap \mathbb{Z}$-span $\left\{\alpha_{i}: i \in J\right\}$ is a root system and $\left(\Phi_{J}, \Lambda\right)$ is another Cartan type. Suppose \mathcal{B} is a crystal for Cartan type (Φ, Λ). To obtain a crystal for Cartan type $\left(\Phi_{J}, \Lambda\right)$, we simply forget the maps f_{i}, e_{i}, φ_{i}, and ε_{i} for all indices $i \notin J$. We denote resulting crystal structure by \mathcal{B}_{J}.

It is convenient to modify our definition of a normal crystal as follows:
Definition 1.1. A type A_{n-1} crystal is normal if each of its full subcrystals is isomorphic to a twist of a full subcrystal of $\mathbb{B}_{n}^{\otimes m}$ for some m. (The twisting part of this definition is different from last time.)
Recall that twisting just refers to altering the weight map by adding some $\eta \in \mathbb{Z}$-span $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{n}\right\}$ to all values. The crystal obtained by twisting \mathcal{B} by η is isomorphic to $\mathcal{B} \otimes \mathcal{T}_{\eta}$ where \mathcal{T}_{η} is the 1-element crystal with unique weight η.

Theorem 1.2. Each connected, normal type A_{n-1} crystal is isomorphic to $\operatorname{SSYT}_{n}(\lambda) \otimes \mathcal{T}_{\eta}$ for a unique choice of a partition λ with at most $n-1$ parts and a weight $\eta \in \mathbb{Z}$-span $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{n}\right\}$.

Proof. We know that such a crystal is isomorphic to $\operatorname{SSYT}_{n}(\lambda) \otimes \mathcal{T}_{\eta}$ for some choice of λ and η, and that it has a unique highest weight element. If the weight of this element is $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathbb{Z}^{n}$, then w is dominant and we can take $\eta=w_{n} \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{n}\right)$ and $\lambda=w-\eta$.

Remark. Recall that the dual \mathcal{B}^{\vee} of a crystal \mathcal{B} is obtained interchanging all crystal operators $e_{i} \leftrightarrow f_{i}$ and string lengths $\varepsilon_{i} \leftrightarrow \varphi_{i}$ and negating the weight map. This reverses all arrows in the crystal graph. The dual \mathbb{B}_{n}^{\vee} of the standard crystal of type A_{n-1} is connected but not isomorphic to any $\operatorname{SSYT}_{n}(\lambda)$ because its weights all have negative coefficients. However, we do have $\mathbb{B}_{n}^{\vee} \cong \operatorname{SSYT}_{n}(\lambda) \otimes \mathcal{T}_{\eta}$ for some λ and η, so \mathbb{B}_{n}^{\vee} is a normal crystal under our new definition. This will be explored further in HW2.

Now suppose (Φ, Λ) is a simply-laced Cartan type with simple roots $\left\{\alpha_{i}: i \in I\right\}$. This means that all roots in Φ have the same length, so if Φ is irreducible then it has type A, D, or E.

Definition 1.3. A crystal \mathcal{B} of simply-laced Cartan type (Φ, Λ) is a Stembridge crystal if \mathcal{B} is seminormal and for each 2-element subset $J=\{i, j\} \subseteq I$, the following holds:
(1) If $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=0$ then each full subcrystal of \mathcal{B}_{J} is a type $A_{1} \times A_{1}$ crystal that is a rectangle.
(2) If $\left\langle\alpha_{i}, \alpha_{j}\right\rangle \neq 0$ then each full subcrystal of \mathcal{B}_{J} is a type A_{2} crystal that is normal.

This was our second characterization of Stembridge crystals from last lecture. Our first definition consisted of eight Stembridge axioms stated in terms of the operators $e_{i}, e_{j}, f_{i}, f_{j}, \varepsilon_{i}, \varepsilon_{j}, \varphi_{i}, \varphi_{j}$. Key facts:

- The standard crystals for types A_{n-1} and D_{n} are Stembridge crystals.
- Tensor products of Stembridge crystals are Stembridge crystals.
- Each connected Stembridge crystal has a unique highest weight element.
- Two connected Stembridge crystals of the same type with the same highest weight are isomorphic.
- In type A_{n-1}, Stembridge crystals are the same thing as normal crystals (as defined today).

Lemma 1.4. Suppose \mathcal{B} is a Stembridge crystal of type (Φ, Λ) and $i, j \in I$ are such that $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=0$. Then the crystal operators e_{i} and e_{j} (respectively, f_{i} and f_{j}) for \mathcal{B} commute (setting $e_{i}(0)=f_{i}(0)=0$).

Proof. This holds because the crystal graph of \mathcal{B}_{J} for $J=\{i, j\}$ is a rectangle.

Lemma 1.5. If \mathcal{B} is a Stembridge crystal then the dual \mathcal{B}^{\vee} is a Stembridge crystal for the same type.
Proof. This property will be checked in HW2.

2 Root system embeddings

The theme of our next few lectures will be generalizing Stembridge crystals to non-simply-laced types. A key ingredient in the relevant constructions will be certain embeddings of non-simply-laced weight lattices inside simply-laced weight lattices.
Suppose we have an embedding of Lie algebras $X \hookrightarrow Y$. Then there is a natural restriction map $\Lambda^{Y} \rightarrow \Lambda^{X}$ of the associated weight lattices. We are interested in the adjoint $\Lambda^{X} \hookrightarrow \Lambda^{Y}$ of this map.

It is enough to consider $X \hookrightarrow Y$ in the following cases, in which Y is simply-laced but X is not:
(1) $X=C_{n} \hookrightarrow A_{2 n-1}=Y$,
(2) $X=B_{n} \hookrightarrow D_{n+1}=Y$,
(3) $X=F_{4} \hookrightarrow E_{6}=Y$, or
(4) $X=G_{2} \hookrightarrow D_{4}=Y$.

Let Λ^{X}, Λ^{Y} be the corresponding weight lattices and let Φ^{X}, Φ^{Y} be the corresponding root systems. Today, we always assume each weight lattice is semisimple. This means that both the fundamental weights and the simple roots form a \mathbb{Z}-basis for each weight lattice.
We write $\alpha_{i}^{X}, \alpha_{i}^{Y}$ and $\varpi_{i}^{X}, \varpi_{i}^{Y}$ for the corresponding simple roots and fundamental weights.
Let I^{X} and I^{Y} be the indexing sets of the simple roots / fundamental weights in each case. If X has rank m and Y has rank n then we will always have $I^{X}=\{1,2, \ldots, m\}$ and $I^{Y}=\{1,2, \ldots, n\}$.
The embedding of weight lattices we wish to describe will be a linear map $\Psi: \Lambda^{X} \rightarrow \Lambda^{Y}$ satisfying

$$
\begin{equation*}
\Psi\left(\varpi_{i}^{X}\right)=\gamma_{i} \sum_{j \in \sigma(i)} \varpi_{j}^{Y} \quad \text { and } \quad \Psi\left(\alpha_{i}^{X}\right)=\gamma_{i} \sum_{j \in \sigma(i)} \alpha_{j}^{Y} \quad \text { for } i \in I^{X} \tag{2.1}
\end{equation*}
$$

where γ_{i} are certain positive integers and σ is a certain map $I^{X} \rightarrow\left\{\right.$ subsets of $\left.I^{Y}\right\}$.

The map σ will always have the following properties:

- For each $i \in I^{X}$, the simple roots indexed by $j \in \sigma(i)$ are mutually orthogonal.
- The sets $\sigma(i)$ for $i \in I^{X}$ are disjoint and $I^{Y}=\bigsqcup_{i \in I^{X}} \sigma(i)$.

Briefly, here are the specific values of the relevant parameters:
(1) Suppose $(X, Y)=\left(C_{n}, A_{2 n-1}\right)$. Then the simple roots are

$$
\begin{aligned}
\alpha_{1}^{X} & =\mathbf{e}_{1}-\mathbf{e}_{2} & \alpha_{1}^{Y} & =\mathbf{e}_{1}-\mathbf{e}_{2} \\
\alpha_{2}^{X} & =\mathbf{e}_{2}-\mathbf{e}_{3} & \alpha_{2}^{Y} & =\mathbf{e}_{2}-\mathbf{e}_{3} \\
\vdots & \text { and } & \alpha_{3}^{Y} & =\mathbf{e}_{3}-\mathbf{e}_{4} \\
\alpha_{n-1}^{X} & =\mathbf{e}_{n-1}-\mathbf{e}_{n} & \vdots & \\
\alpha_{n}^{X} & =2 \mathbf{e}_{n} & \alpha_{2 n-1}^{Y} & =\mathbf{e}_{2 n-1}-\mathbf{e}_{2 n}
\end{aligned}
$$

and we set $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{n-1}=1, \gamma_{n}=2$, and $\sigma(i)=\{i, 2 n-i\}$ for $1 \leq i \leq n$.

The fundamental weights in this case are

$$
\begin{array}{rlrl}
\varpi_{1}^{X} & =\mathbf{e}_{1} & \varpi_{1}^{Y} & =\mathbf{e}_{1} \\
\varpi_{2}^{X} & =\mathbf{e}_{1}+\mathbf{e}_{2} & \varpi_{2}^{Y} & =\mathbf{e}_{1}+\mathbf{e}_{2} \\
\vdots & \text { and } & \varpi_{3}^{Y} & =\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3} \\
\varpi_{n-1}^{X} & =\mathbf{e}_{1}+\cdots+\mathbf{e}_{n-1} & \vdots \\
\varpi_{n}^{X} & =\mathbf{e}_{1}+\cdots+\mathbf{e}_{n} & \varpi_{2 n-1}^{Y} & =\mathbf{e}_{1}+\cdots+\mathbf{e}_{2 n-1} .
\end{array}
$$

Since we are assuming that our weight lattices are semisimple, the ambient vector space for $A_{2 n-1}$ is the quotient vector space $V=\mathbb{R}^{2 n} / \mathbb{R}$-span $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{2 n}\right\}$.
(2) Suppose $(X, Y)=\left(B_{n}, D_{n+1}\right)$. Then the simple roots are

$$
\begin{aligned}
\alpha_{1}^{X} & =\mathbf{e}_{1}-\mathbf{e}_{2} & \alpha_{1}^{Y} & =\mathbf{e}_{1}-\mathbf{e}_{2} \\
\alpha_{2}^{X} & =\mathbf{e}_{2}-\mathbf{e}_{3} & \alpha_{2}^{Y} & =\mathbf{e}_{2}-\mathbf{e}_{3} \\
\vdots & \text { and } & \vdots & \\
\alpha_{n-1}^{X} & =\mathbf{e}_{n-1}-\mathbf{e}_{n} & \alpha_{n}^{Y} & =\mathbf{e}_{n}-\mathbf{e}_{n+1} \\
\alpha_{n}^{X} & =\mathbf{e}_{n} & \alpha_{n+1}^{Y} & =\mathbf{e}_{n}+\mathbf{e}_{n+1}
\end{aligned}
$$

and we set $\gamma_{i}=2$ and $\sigma(i)=\{i\}$ for $1 \leq i<n$, along with $\gamma_{n}=1$ and $\sigma(n)=\{n, n+1\}$.
The fundamental weights in this case are

$$
\begin{aligned}
\varpi_{1}^{X} & =\mathbf{e}_{1} \\
\varpi_{2}^{X} & =\mathbf{e}_{1}+\mathbf{e}_{2} \\
\vdots & \\
\varpi_{n-1}^{X} & =\mathbf{e}_{1}+\cdots+\mathbf{e}_{n-1} \\
\varpi_{n}^{X} & =\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\varpi_{1}^{Y} & =\mathbf{e}_{1} \\
\varpi_{2}^{Y} & =\mathbf{e}_{1}+\mathbf{e}_{2} \\
\vdots & \\
\varpi_{n}^{Y} & =\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}-\mathbf{e}_{n+1}\right) \\
\varpi_{n+1}^{Y} & =\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}+\mathbf{e}_{n+1}\right) .
\end{aligned}
$$

and
(3) Suppose $(X, Y)=\left(F_{4}, E_{6}\right)$. Then the simple roots are

$$
\begin{array}{ll}
& \alpha_{1}^{Y}=\mathbf{e}_{1}-\mathbf{e}_{2} \\
\alpha_{1}^{X}=\mathbf{e}_{1}-\mathbf{e}_{2} & \alpha_{2}^{Y}=\mathbf{e}_{2}-\mathbf{e}_{3} \\
\alpha_{2}^{X}=\mathbf{e}_{2}-\mathbf{e}_{3} & \alpha_{3}^{Y}=\mathbf{e}_{3}-\mathbf{e}_{4} \\
\alpha_{3}^{X}=\mathbf{e}_{3} & \text { and } \\
\alpha_{4}^{X}=-\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right) & \alpha_{4}^{Y}=\mathbf{e}_{4}-\mathbf{e}_{5} \\
& \alpha_{5}^{Y}=\mathbf{e}_{4}+\mathbf{e}_{5} \\
& \alpha_{6}^{Y}=-\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}+\mathbf{e}_{6}+\mathbf{e}_{7}+\mathbf{e}_{8}\right) .
\end{array}
$$

and we set $\gamma_{1}=\gamma_{2}=2, \gamma_{3}=\gamma_{4}=1$ and $\sigma(1)=\{4\}, \sigma(2)=\{3\}, \sigma(3)=\{2,5\}, \sigma(4)=\{1,6\}$.
The fundamental weights in this case are

$$
\begin{array}{ll}
& \varpi_{1}^{Y}=\mathbf{e}_{1}-\frac{1}{3}\left(\mathbf{e}_{6}+\mathbf{e}_{7}+\mathbf{e}_{8}\right) \\
\varpi_{1}^{X}=\mathbf{e}_{1}-\mathbf{e}_{4} & \varpi_{2}^{Y}=\mathbf{e}_{1}+\mathbf{e}_{2}-\frac{2}{3}\left(\mathbf{e}_{6}+\mathbf{e}_{7}+\mathbf{e}_{8}\right) \\
\varpi_{2}^{X}=\mathbf{e}_{1}+\mathbf{e}_{2}-2 \mathbf{e}_{4} & \varpi_{3}^{Y}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}-\left(\mathbf{e}_{6}+\mathbf{e}_{7}+\mathbf{e}_{8}\right) \\
\varpi_{3}^{X}=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}-3 \mathbf{e}_{4}\right) & \text { and } \\
\varpi_{4}^{X}=-\mathbf{e}_{4} & \varpi_{4}^{Y}=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}-\mathbf{e}_{5}-\mathbf{e}_{6}-\mathbf{e}_{7}-\mathbf{e}_{8}\right) \\
& \varpi_{5}^{Y}=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}-\frac{5}{3} \mathbf{e}_{6}-\frac{5}{3} \mathbf{e}_{7}-\frac{5}{3} \mathbf{e}_{8}\right) \\
& \varpi_{6}^{Y}=-\frac{2}{3}\left(\mathbf{e}_{6}+\mathbf{e}_{7}+\mathbf{e}_{8}\right) .
\end{array}
$$

Since we are assuming that our weight lattices are semisimple, the ambient vector space for E_{6} is the quotient vector space $V=\mathbb{R}^{8} / \mathbb{R}$-span $\left\{\mathbf{e}_{6}-\mathbf{e}_{7}, \mathbf{e}_{7}-\mathbf{e}_{8}\right\}$.
(4) Suppose $(X, Y)=\left(G_{2}, D_{4}\right)$. Then the simple roots are

$$
\begin{array}{lll}
\alpha_{1}^{X}=\mathbf{e}_{1}-\mathbf{e}_{2} & \alpha_{1}^{Y} & =\mathbf{e}_{1}-\mathbf{e}_{2} \\
\alpha_{2}^{X}=-\mathbf{e}_{1}+2 \mathbf{e}_{2}-\mathbf{e}_{3} & \text { and } & \alpha_{2}^{Y}
\end{array}=\mathbf{e}_{2}-\mathbf{e}_{3},
$$

and we set $\gamma_{1}=1$ and $\gamma_{2}=3$ along with $\sigma(1)=\{1,3,4\}$, and $\sigma(2)=\{2\}$.
The fundamental weights in this case are

$$
\begin{aligned}
& \varpi_{1}^{X}=\mathbf{e}_{1}-\mathbf{e}_{3} \\
& \varpi_{2}^{X}=\mathbf{e}_{1}+\mathbf{e}_{2}-2 \mathbf{e}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \varpi_{1}^{Y}=\mathbf{e}_{1} \\
& \varpi_{2}^{Y}=\mathbf{e}_{1}+\mathbf{e}_{2} \\
& \varpi_{3}^{Y}=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}-\mathbf{e}_{4}\right) \\
& \varpi_{4}^{Y}=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)
\end{aligned}
$$

Since we are assuming that our weight lattices are semisimple, the ambient vector space for G_{2} is the quotient vector space $V=\mathbb{R}^{3} / \mathbb{R}$-span $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right\}$.

Example 2.1. If $(X, Y)=\left(C_{2}, A_{3}\right)$ then $\gamma_{1}=1, \gamma_{2}=2, \sigma(1)=\{1,3\}$, and $\sigma(2)=\{2\}$, so

$$
\begin{aligned}
\Psi\left(\mathbf{e}_{1}\right) & =\Psi\left(\varpi_{1}^{C_{2}}\right)=\varpi_{1}^{A_{3}}+\varpi_{3}^{A_{3}}=2 \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3} \\
\Psi\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) & =\Psi\left(\varpi_{2}^{C_{2}}\right)=2 \varpi_{2}^{A_{3}}=2 \mathbf{e}_{1}+2 \mathbf{e}_{2}
\end{aligned}
$$

while

$$
\begin{aligned}
\Psi\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right) & =\Psi\left(\alpha_{1}^{C_{2}}\right)=\alpha_{1}^{A_{3}}+\alpha_{3}^{A_{3}}=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}-\mathbf{e}_{4} \\
\Psi\left(2 \mathbf{e}_{2}\right) & =\Psi\left(\alpha_{2}^{C_{2}}\right)=2 \alpha_{2}^{A_{3}}=2 \mathbf{e}_{2}-2 \mathbf{e}_{3} .
\end{aligned}
$$

These identities imply $\Psi\left(\mathbf{e}_{1}\right)=2 \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}=\mathbf{e}_{1}-\mathbf{e}_{4}$ which is consistent in $\mathbb{R}^{4} / \mathbb{R}$-span $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right\}$.

3 Virtual crystals

Continue to let $X \hookrightarrow Y$ be an embedding of Lie algebras described by (1), (2), (3), or (4).
Note that this means that Y is of simply-laced type.
Our next task is to use the embedding $\Psi: \Lambda^{X} \rightarrow \Lambda^{Y}$ to construct certain crystals of non-simply-laced type X that will be our analogues of Stembridge crystals.
For now, we still assume the weight lattices Λ^{X} and Λ^{Y} are semisimple.
Let $\widehat{\mathcal{V}}$ be a Stembridge crystal of type Y with weight map $\widehat{\mathbf{w t}}: \widehat{\mathcal{V}} \rightarrow \Lambda^{Y}$, crystal operators $\widehat{e}_{i}, \widehat{f}_{i}$, and string lengths $\widehat{\varepsilon}_{i}, \widehat{\varphi}_{i}$ for $i \in I^{Y}$. We call this structure the ambient crystal.
Define virtual crystal operators (of type X) for $i \in I^{X}$ by the formulas

$$
e_{i}:=\prod_{j \in \sigma(i)}\left(\widehat{e}_{j}\right)^{\gamma_{i}} \quad \text { and } \quad f_{i}:=\prod_{j \in \sigma(i)}\left(\widehat{f}_{j}\right)^{\gamma_{i}}
$$

where $\sigma: I^{X} \rightarrow\left\{\right.$ subsets of $\left.I^{Y}\right\}$ and $\gamma_{i} \in \mathbb{N}$ correspond to (X, Y) as in the previous section.
These products give well-defined maps $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}} \sqcup\{0\}$, regardless of the order in which they are evaluated, as a consequence of Lemma 1.4. Also define the virtual string lengths (of type X) for $i \in I^{X}$ by

$$
\varepsilon_{i}(b)=\frac{1}{\gamma_{i}} \cdot \frac{1}{|\sigma(i)|} \sum_{j \in \sigma(i)} \widehat{\varepsilon}_{j}(b) \quad \text { and } \quad \varphi_{i}(b)=\frac{1}{\gamma_{i}} \cdot \frac{1}{|\sigma(i)|} \sum_{j \in \sigma(i)} \widehat{\varphi}_{j}(b) \quad \text { for } b \in \widehat{\mathcal{V}} .
$$

Since $\widehat{\mathcal{V}}$ is seminormal, the virtual string lengths could have nonnegative rational values.
Definition 3.1. A subset $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal if for each $b \in \mathcal{V}$ and $i \in I^{X}$ the following holds:
(V1) The string lengths $\widehat{\varepsilon}_{j}(b)$ and $\widehat{\varphi}_{j}(b)$ have the same values for all $j \in \sigma(i)$ and these values are multiples of γ_{i}. Consequently $\varepsilon_{i}(b)=\frac{1}{\gamma_{i}} \widehat{\varepsilon}_{j}(b) \in \mathbb{N}$ and $\varphi_{i}(b)=\frac{1}{\gamma_{i}} \widehat{\varphi}_{j}(b) \in \mathbb{N}$ for any $j \in \sigma(i)$.
(V2) The virtual crystal operators e_{i} and f_{i} restrict to maps $\mathcal{V} \rightarrow \mathcal{V} \sqcup\{0\}$ and we have

$$
\varepsilon_{i}(b)=\max \left\{k \geq 0: e_{i}^{k}(b) \neq 0\right\} \quad \text { and } \quad \varphi_{i}(b)=\max \left\{k \geq 0: f_{i}^{k}(b) \neq 0\right\}
$$

Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal. Define wt : $\mathcal{V} \rightarrow \Lambda^{X}$ by

$$
\mathbf{w t}(b):=\sum_{i \in I^{X}}\left(\varphi_{i}(b)-\varepsilon_{i}(b)\right) \varpi_{i}^{X}
$$

Proposition 3.2. It holds that $\Psi(\mathbf{w} \mathbf{t}(b))=\widehat{\mathbf{w t}}(b)$ for all $b \in \mathcal{V}$.
Proof. If $b \in \mathcal{V}$ then, using axiom (V1), we have

$$
\begin{aligned}
\Psi(\mathbf{w} \mathbf{t}(b)) & =\sum_{i \in I^{X}}\left(\varphi_{i}(b)-\varepsilon_{i}(b)\right) \Psi\left(\varpi_{i}^{X}\right) \\
& =\sum_{i \in I^{X}} \sum_{j \in \sigma(i)} \gamma_{i}\left(\varphi_{i}(b)-\varepsilon_{i}(b)\right) \varpi_{j}^{Y}=\sum_{i \in I^{X}} \sum_{j \in \sigma(i)}\left(\widehat{\varphi}_{j}(b)-\widehat{\varepsilon}_{j}(b)\right) \varpi_{j}^{Y} .
\end{aligned}
$$

The summation $\sum_{i \in I^{X}} \sum_{j \in \sigma(i)}$ is the same as $\sum_{j \in I^{Y}}$ so the last expression is equal to the weight map of $\widehat{\mathcal{V}}$ evaluated at b by a result in Lecture 5 (which requires Λ^{Y} to semisimple).

Proposition 3.3. Continue to let $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ be a virtual crystal. Then \mathcal{V} is a seminormal crystal of type X relative to the operators $\mathbf{w} \mathbf{t}, e_{i}, f_{i}, \varepsilon_{i}, \varphi_{i}$.

Proof. Suppose $x, y \in \mathcal{V}$ and $i \in I^{X}$. The first axiom we need to check from the definition of a crystal is that $e_{i}(x)=y$ if and only if $f_{i}(y)=x$. This holds because the same axiom applied (repeatedly) to $\widehat{\mathcal{V}}$ implies that $y=\prod_{j \in \sigma(i)} \widehat{e}_{j}^{\gamma_{i}}(x)$ if and only if $x=\prod_{j \in \sigma(i)} \widehat{f}_{j}^{\gamma_{i}}(y)$. In this event, we have

$$
\varepsilon_{i}(y)=\frac{1}{\gamma_{i}} \widehat{\varepsilon}_{j}(y)=\frac{1}{\gamma_{i}}\left(\widehat{\varepsilon}_{j}(x)-\gamma_{i}\right)=\varepsilon_{i}(x)-1
$$

and it follows similarly that $\varphi_{i}(y)=\varphi_{i}(x)+1$; moreover, it holds that

$$
\Psi(\mathbf{w} \mathbf{t}(y))=\widehat{\mathbf{w} \mathbf{t}}(y)=\widehat{\mathbf{w} \mathbf{t}}(x)+\gamma_{i} \sum_{j \in \sigma(i)} \alpha_{j}^{Y}=\widehat{\mathbf{w} \mathbf{t}}(x)+\Psi\left(\alpha_{i}^{X}\right)=\Psi\left(\mathbf{w} \mathbf{t}(x)+\alpha_{i}^{X}\right)
$$

so $\mathbf{w} \mathbf{t}(y)=\mathbf{w} \mathbf{t}(x)+\alpha_{i}^{X}$ since Ψ is injective. This confirms the first crystal axiom for \mathcal{V}.
To check the second crystal axiom it suffices to show that $\varphi_{i}(x)-\varepsilon_{i}(x)=\left\langle\mathbf{w} \mathbf{t}(x), \alpha_{i}^{\vee}\right\rangle$. But this is immediate from the definition of $\mathbf{w t}(x)$ since the fundamental weights and coroots are dual bases (when the weight lattices are semimple, as we are currently assuming).

Thus \mathcal{V} is a crystal of type X. This crystal is seminormal by condition (V2).

Example 3.4. We consider the embedding $C_{2} \hookrightarrow A_{3}$ and take $\widehat{\mathcal{V}}=\operatorname{SSYT}_{4}(\lambda)$ for $\lambda=(2,1,1)$.
The type A_{3} lowering operators are $\widehat{f_{1}}, \widehat{f_{2}}, \widehat{f_{3}}$ and the crystal graph is shown below:

The lowering operators for type C_{2} are $f_{1}=\widehat{f}_{1} \widehat{f}_{3}$ and $f_{2}=\widehat{f_{2}} \widehat{f}_{2}$.

This crystal \mathcal{V} is isomorphic to the standard crystal for type C_{2}.

For each of the four embeddings $X \hookrightarrow Y$, we defined an associated map $\sigma: I^{X} \rightarrow\left\{\right.$ subsets of $\left.I^{Y}\right\}$.
Each subset in the image of σ is an orbit under a certain permutation aut : $I^{Y} \rightarrow I^{Y}$ that induces an automorphism of the root system Φ^{Y} and weight lattice Λ^{Y}, which we also denote by aut. Specifically:
(1) If the embedding is $C_{n} \hookrightarrow A_{2 n-1}$, then aut is the map $i \mapsto 2 n-i$.
(2) If the embedding is $B_{n} \hookrightarrow D_{n+1}$, then aut interchanges $n \leftrightarrow n+1$ while fixing $1 \leq i<n$.
(3) If the embedding is $F_{4} \hookrightarrow E_{6}$ then aut interchanges $1 \leftrightarrow 6$ and $2 \leftrightarrow 5$ while fixing 3 and 4 .
(4) If the embedding is $G_{2} \hookrightarrow D_{4}$ then aut maps $1 \mapsto 4 \mapsto 3 \mapsto 1$ while fixing 2 .

Proposition 3.5. Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal for the embedding $X \hookrightarrow Y$.
(a) Any highest weight element $u \in \mathcal{V}$ is a highest weight element of $\widehat{\mathcal{V}}$ and $\widehat{\mathbf{w t}}(u)=\operatorname{aut}(\widehat{\mathbf{w t}}(u)) \in \Lambda^{Y}$.
(b) If \mathcal{V} and $\widehat{\mathcal{V}}$ are both connected, then there exists a bijection $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}}$, which becomes an automorphism of the crystal graph after we permute the edge labels by aut, that fixes every element of \mathcal{V}.

Remark. In the example on the previous page, the bijection $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}}$ described by this result is the map that flips the displayed crystal graph of $\widehat{\mathcal{V}}=\operatorname{SSYT}_{4}(\lambda)$ across its central vertical axis. From this example, we see that not all fixed points are necessarily elements of the virtual crystal \mathcal{V}; consider $T=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 |
| 4 | | .

Proof. An element $u \in \mathcal{V}$ is a highest weight element if and only if $\varepsilon_{i}(u)=0$ for all $i \in I^{X}$, but axiom (V1) implies that this holds if and only if $\widehat{\varepsilon}_{j}(u)=0$ for all $j \in I^{Y}$. In this case, by Proposition 3.2, we have $\widehat{\mathbf{w t}}(u)=\Psi(\mathbf{w t}(u))$, so $\widehat{\mathbf{w t}}(u)=\operatorname{aut}(\widehat{\mathbf{w t}}(u))$ since aut $\circ \Psi=\Psi$.
Assume \mathcal{V} and $\widehat{\mathcal{V}}$ are connected. Since $\widehat{\mathcal{V}}$ is a Stembridge crystal, it has a unique highest weight element u. By the first paragraph, this element must also be the unique highest weight of \mathcal{V}. Permuting the labels of the edges in the crystal graph of $\widehat{\mathcal{V}}$ gives a new Stembridge crystal with highest weight aut $(\widehat{w \mathbf{t}}(u))$.
Since this is equal to $\widehat{\mathbf{w t}}(u)$, there must exist an isomorphism between the new crystal and the original crystal. This isomorphism induces a bijection $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}}$ of crystal graphs which must fix the unique highest weight element u. It is clear from the definitions that any element of \mathcal{V} derived from u by an application of the virtual crystal operators is also a fixed point of the bijection $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}}$.

