
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 7

1 Last time: Stembridge crystals

Remark: whenever we say “(Cartan) type An−1” we mean the same thing as “(Cartan) type GL(n).”

Suppose (Φ1,Λ1) and (Φ2,Λ2) are Cartan types. Then (Φ,Λ) = (Φ1 tΦ2,Λ1⊕Λ2) is also a Cartan type.
If B1 is a crystal for Cartan type (Φ1,Λ1) and B2 is a crystal for Cartan type (Φ2,Λ2) then we can form
a crystal B1 × B2 for Cartan type (Φ,Λ). The elements of B1 × B2 are pairs (b1, b2) with bi ∈ Bi.

Suppose B1 and B2 are connected seminormal crystals of type A1. The crystal graphs of these crystals

are paths of the form • 1−−→ • 1−−→ • · · · • 1−−→ •. Let 1 and 1̄ be the indices for the distinct simple roots
in the root system of type A1 ×A1. Then B1 × B2 has a crystal graph that looks like

• • • •

• • • •

• • • •

1 1 1

1 1 1

1 1 1

1̄ 1̄ 1̄ 1̄

1̄ 1̄ 1̄ 1̄

(This picture corresponds to |B1| = 4 and |B2| = 3.) We say that a type A1 × A1 crystal is a rectangle
if its crystal graph is isomorphic to a Cartesian product of this form. We ignore the weight map in this

definition. Not every A1 ×A1 crystal is a rectangle: one could have a crystal graph like • 1̄←−− • 1−−→ •.

Suppose (Φ,Λ) is a Cartan type with corresponding simple roots {αi : i ∈ I}. Let J ⊂ I. Then
ΦJ := Φ∩Z-span{αi : i ∈ J} is a root system and (ΦJ ,Λ) is another Cartan type. Suppose B is a crystal
for Cartan type (Φ,Λ). To obtain a crystal for Cartan type (ΦJ ,Λ), we simply forget the maps fi, ei,
ϕi, and εi for all indices i /∈ J . We denote resulting crystal structure by BJ .

It is convenient to modify our definition of a normal crystal as follows:

Definition 1.1. A type An−1 crystal is normal if each of its full subcrystals is isomorphic to a twist of
a full subcrystal of B⊗mn for some m. (The twisting part of this definition is different from last time.)

Recall that twisting just refers to altering the weight map by adding some η ∈ Z-span{e1 +e2 + · · ·+en}
to all values. The crystal obtained by twisting B by η is isomorphic to B ⊗ Tη where Tη is the 1-element
crystal with unique weight η.

Theorem 1.2. Each connected, normal type An−1 crystal is isomorphic to SSYTn(λ)⊗Tη for a unique
choice of a partition λ with at most n− 1 parts and a weight η ∈ Z-span{e1 + e2 + · · ·+ en}.

Proof. We know that such a crystal is isomorphic to SSYTn(λ)⊗Tη for some choice of λ and η, and that
it has a unique highest weight element. If the weight of this element is w = (w1, w2, . . . , wn) ∈ Zn, then
w is dominant and we can take η = wn · (e1 + e2 + · · ·+ en) and λ = w − η.

Remark. Recall that the dual B∨ of a crystal B is obtained interchanging all crystal operators ei ↔ fi
and string lengths εi ↔ ϕi and negating the weight map. This reverses all arrows in the crystal graph.
The dual B∨n of the standard crystal of type An−1 is connected but not isomorphic to any SSYTn(λ)
because its weights all have negative coefficients. However, we do have B∨n ∼= SSYTn(λ)⊗ Tη for some λ
and η, so B∨n is a normal crystal under our new definition. This will be explored further in HW2.

Now suppose (Φ,Λ) is a simply-laced Cartan type with simple roots {αi : i ∈ I}. This means that all
roots in Φ have the same length, so if Φ is irreducible then it has type A, D, or E.

Definition 1.3. A crystal B of simply-laced Cartan type (Φ,Λ) is a Stembridge crystal if B is seminormal
and for each 2-element subset J = {i, j} ⊆ I, the following holds:
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(1) If 〈αi, αj〉 = 0 then each full subcrystal of BJ is a type A1 ×A1 crystal that is a rectangle.

(2) If 〈αi, αj〉 6= 0 then each full subcrystal of BJ is a type A2 crystal that is normal.

This was our second characterization of Stembridge crystals from last lecture. Our first definition con-
sisted of eight Stembridge axioms stated in terms of the operators ei, ej , fi, fj , εi, εj , ϕi, ϕj . Key facts:

• The standard crystals for types An−1 and Dn are Stembridge crystals.

• Tensor products of Stembridge crystals are Stembridge crystals.

• Each connected Stembridge crystal has a unique highest weight element.

• Two connected Stembridge crystals of the same type with the same highest weight are isomorphic.

• In type An−1, Stembridge crystals are the same thing as normal crystals (as defined today).

Lemma 1.4. Suppose B is a Stembridge crystal of type (Φ,Λ) and i, j ∈ I are such that 〈αi, αj〉 = 0.
Then the crystal operators ei and ej (respectively, fi and fj) for B commute (setting ei(0) = fi(0) = 0).

Proof. This holds because the crystal graph of BJ for J = {i, j} is a rectangle.

Lemma 1.5. If B is a Stembridge crystal then the dual B∨ is a Stembridge crystal for the same type.

Proof. This property will be checked in HW2.

2 Root system embeddings

The theme of our next few lectures will be generalizing Stembridge crystals to non-simply-laced types. A
key ingredient in the relevant constructions will be certain embeddings of non-simply-laced weight lattices
inside simply-laced weight lattices.

Suppose we have an embedding of Lie algebras X ↪→ Y . Then there is a natural restriction map ΛY → ΛX

of the associated weight lattices. We are interested in the adjoint ΛX ↪→ ΛY of this map.

It is enough to consider X ↪→ Y in the following cases, in which Y is simply-laced but X is not:

(1) X = Cn ↪→ A2n−1 = Y ,

(2) X = Bn ↪→ Dn+1 = Y ,

(3) X = F4 ↪→ E6 = Y , or

(4) X = G2 ↪→ D4 = Y .

Let ΛX , ΛY be the corresponding weight lattices and let ΦX , ΦY be the corresponding root systems.
Today, we always assume each weight lattice is semisimple. This means that both the fundamental
weights and the simple roots form a Z-basis for each weight lattice.

We write αXi , αYi and $X
i , $Y

i for the corresponding simple roots and fundamental weights.

Let IX and IY be the indexing sets of the simple roots / fundamental weights in each case. If X has
rank m and Y has rank n then we will always have IX = {1, 2, . . . ,m} and IY = {1, 2, . . . , n}.

The embedding of weight lattices we wish to describe will be a linear map Ψ : ΛX → ΛY satisfying

Ψ($X
i ) = γi

∑
j∈σ(i)

$Y
j and Ψ(αXi ) = γi

∑
j∈σ(i)

αYj for i ∈ IX (2.1)

where γi are certain positive integers and σ is a certain map IX → { subsets of IY }.
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The map σ will always have the following properties:

• For each i ∈ IX , the simple roots indexed by j ∈ σ(i) are mutually orthogonal.

• The sets σ(i) for i ∈ IX are disjoint and IY =
⊔
i∈IX σ(i).

Briefly, here are the specific values of the relevant parameters:

(1) Suppose (X,Y ) = (Cn, A2n−1). Then the simple roots are

αX1 = e1 − e2

αX2 = e2 − e3

...

αXn−1 = en−1 − en

αXn = 2en

and

αY1 = e1 − e2

αY2 = e2 − e3

αY3 = e3 − e4

...

αY2n−1 = e2n−1 − e2n

and we set γ1 = γ2 = · · · = γn−1 = 1, γn = 2, and σ(i) = {i, 2n− i} for 1 ≤ i ≤ n.

The fundamental weights in this case are

$X
1 = e1

$X
2 = e1 + e2

...

$X
n−1 = e1 + · · ·+ en−1

$X
n = e1 + · · ·+ en

and

$Y
1 = e1

$Y
2 = e1 + e2

$Y
3 = e1 + e2 + e3

...

$Y
2n−1 = e1 + · · ·+ e2n−1.

Since we are assuming that our weight lattices are semisimple, the ambient vector space for A2n−1

is the quotient vector space V = R2n/R-span{e1 + e2 + · · ·+ e2n}.

(2) Suppose (X,Y ) = (Bn, Dn+1). Then the simple roots are

αX1 = e1 − e2

αX2 = e2 − e3

...

αXn−1 = en−1 − en

αXn = en

and

αY1 = e1 − e2

αY2 = e2 − e3

...

αYn = en − en+1

αYn+1 = en + en+1

and we set γi = 2 and σ(i) = {i} for 1 ≤ i < n, along with γn = 1 and σ(n) = {n, n+ 1}.

The fundamental weights in this case are

$X
1 = e1

$X
2 = e1 + e2

...

$X
n−1 = e1 + · · ·+ en−1

$X
n = 1

2 (e1 + · · ·+ en)

and

$Y
1 = e1

$Y
2 = e1 + e2

...

$Y
n = 1

2 (e1 + · · ·+ en − en+1)

$Y
n+1 = 1

2 (e1 + · · ·+ en + en+1).
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(3) Suppose (X,Y ) = (F4, E6). Then the simple roots are

αX1 = e1 − e2

αX2 = e2 − e3

αX3 = e3

αX4 = − 1
2 (e1 + e2 + e3 + e4)

and

αY1 = e1 − e2

αY2 = e2 − e3

αY3 = e3 − e4

αY4 = e4 − e5

αY5 = e4 + e5

αY6 = − 1
2 (e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8).

and we set γ1 = γ2 = 2, γ3 = γ4 = 1 and σ(1) = {4}, σ(2) = {3}, σ(3) = {2, 5}, σ(4) = {1, 6}.

The fundamental weights in this case are

$X
1 = e1 − e4

$X
2 = e1 + e2 − 2e4

$X
3 = 1

2 (e1 + e2 + e3 − 3e4)

$X
4 = −e4

and

$Y
1 = e1 − 1

3 (e6 + e7 + e8)

$Y
2 = e1 + e2 − 2

3 (e6 + e7 + e8)

$Y
3 = e1 + e2 + e3 − (e6 + e7 + e8)

$Y
4 = 1

2 (e1 + e2 + e3 + e4 − e5 − e6 − e7 − e8)

$Y
5 = 1

2 (e1 + e2 + e3 + e4 + e5 − 5
3e6 − 5

3e7 − 5
3e8)

$Y
6 = − 2

3 (e6 + e7 + e8) .

Since we are assuming that our weight lattices are semisimple, the ambient vector space for E6 is
the quotient vector space V = R8/R-span{e6 − e7, e7 − e8}.

(4) Suppose (X,Y ) = (G2, D4). Then the simple roots are

αX1 = e1 − e2

αX2 = −e1 + 2e2 − e3
and

αY1 = e1 − e2

αY2 = e2 − e3

αY3 = e3 − e4

αY4 = e3 + e4

and we set γ1 = 1 and γ2 = 3 along with σ(1) = {1, 3, 4}, and σ(2) = {2}.

The fundamental weights in this case are

$X
1 = e1 − e3

$X
2 = e1 + e2 − 2e3

and

$Y
1 = e1

$Y
2 = e1 + e2

$Y
3 = 1

2 (e1 + e2 + e3 − e4)

$Y
4 = 1

2 (e1 + e2 + e3 + e4).

Since we are assuming that our weight lattices are semisimple, the ambient vector space for G2 is
the quotient vector space V = R3/R-span{e1 + e2 + e3}.

Example 2.1. If (X,Y ) = (C2, A3) then γ1 = 1, γ2 = 2, σ(1) = {1, 3}, and σ(2) = {2}, so

Ψ(e1) = Ψ($C2
1 ) = $A3

1 +$A3
3 = 2e1 + e2 + e3

Ψ(e1 + e2) = Ψ($C2
2 ) = 2$A3

2 = 2e1 + 2e2

while
Ψ(e1 − e2) = Ψ(αC2

1 ) = αA3
1 + αA3

3 = e1 − e2 + e3 − e4

Ψ(2e2) = Ψ(αC2
2 ) = 2αA3

2 = 2e2 − 2e3.

These identities imply Ψ(e1) = 2e1 +e2 +e3 = e1−e4 which is consistent in R4/R-span{e1 +e2 +e3 +e4}.
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3 Virtual crystals

Continue to let X ↪→ Y be an embedding of Lie algebras described by (1), (2), (3), or (4).

Note that this means that Y is of simply-laced type.

Our next task is to use the embedding Ψ : ΛX → ΛY to construct certain crystals of non-simply-laced
type X that will be our analogues of Stembridge crystals.

For now, we still assume the weight lattices ΛX and ΛY are semisimple.

Let V̂ be a Stembridge crystal of type Y with weight map ŵt : V̂ → ΛY , crystal operators êi, f̂i, and
string lengths ε̂i, ϕ̂i for i ∈ IY . We call this structure the ambient crystal.

Define virtual crystal operators (of type X) for i ∈ IX by the formulas

ei :=
∏
j∈σ(i)

(êj)
γi and fi :=

∏
j∈σ(i)

(
f̂j

)γi
where σ : IX → { subsets of IY } and γi ∈ N correspond to (X,Y ) as in the previous section.

These products give well-defined maps V̂ → V̂ t {0}, regardless of the order in which they are evaluated,
as a consequence of Lemma 1.4. Also define the virtual string lengths (of type X) for i ∈ IX by

εi(b) =
1

γi
· 1

|σ(i)|
∑
j∈σ(i)

ε̂j(b) and ϕi(b) =
1

γi
· 1

|σ(i)|
∑
j∈σ(i)

ϕ̂j(b) for b ∈ V̂.

Since V̂ is seminormal, the virtual string lengths could have nonnegative rational values.

Definition 3.1. A subset V ⊆ V̂ is a virtual crystal if for each b ∈ V and i ∈ IX the following holds:

(V1) The string lengths ε̂j(b) and ϕ̂j(b) have the same values for all j ∈ σ(i) and these values are
multiples of γi. Consequently εi(b) = 1

γi
ε̂j(b) ∈ N and ϕi(b) = 1

γi
ϕ̂j(b) ∈ N for any j ∈ σ(i).

(V2) The virtual crystal operators ei and fi restrict to maps V → V t {0} and we have

εi(b) = max{k ≥ 0 : eki (b) 6= 0} and ϕi(b) = max{k ≥ 0 : fki (b) 6= 0}.

Suppose V ⊆ V̂ is a virtual crystal. Define wt : V → ΛX by

wt(b) :=
∑
i∈IX

(ϕi(b)− εi(b))$X
i .

Proposition 3.2. It holds that Ψ (wt(b)) = ŵt(b) for all b ∈ V.

Proof. If b ∈ V then, using axiom (V1), we have

Ψ (wt(b)) =
∑
i∈IX

(ϕi(b)− εi(b)) Ψ($X
i )

=
∑
i∈IX

∑
j∈σ(i)

γi (ϕi(b)− εi(b))$Y
j =

∑
i∈IX

∑
j∈σ(i)

(ϕ̂j(b)− ε̂j(b))$Y
j .

The summation
∑
i∈IX

∑
j∈σ(i) is the same as

∑
j∈IY so the last expression is equal to the weight map

of V̂ evaluated at b by a result in Lecture 5 (which requires ΛY to semisimple).

Proposition 3.3. Continue to let V ⊆ V̂ be a virtual crystal. Then V is a seminormal crystal of type X
relative to the operators wt, ei, fi, εi, ϕi.
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Proof. Suppose x, y ∈ V and i ∈ IX . The first axiom we need to check from the definition of a crystal
is that ei(x) = y if and only if fi(y) = x. This holds because the same axiom applied (repeatedly) to V̂
implies that y =

∏
j∈σ(i) ê

γi
j (x) if and only if x =

∏
j∈σ(i) f̂

γi
j (y). In this event, we have

εi(y) = 1
γi
ε̂j(y) = 1

γi
(ε̂j(x)− γi) = εi(x)− 1

and it follows similarly that ϕi(y) = ϕi(x) + 1; moreover, it holds that

Ψ(wt(y)) = ŵt(y) = ŵt(x) + γi
∑
j∈σ(i)

αYj = ŵt(x) + Ψ(αXi ) = Ψ(wt(x) + αXi )

so wt(y) = wt(x) + αXi since Ψ is injective. This confirms the first crystal axiom for V.

To check the second crystal axiom it suffices to show that ϕi(x) − εi(x) = 〈wt(x), α∨i 〉. But this is
immediate from the definition of wt(x) since the fundamental weights and coroots are dual bases (when
the weight lattices are semimple, as we are currently assuming).

Thus V is a crystal of type X. This crystal is seminormal by condition (V2).

Example 3.4. We consider the embedding C2 ↪→ A3 and take V̂ = SSYT4(λ) for λ = (2, 1, 1).

The type A3 lowering operators are f̂1, f̂2, f̂3 and the crystal graph is shown below:

1 1
2
3

1 1
2
4

1 2
2
3

1 1
3
4

1 2
2
4

1 3
2
3

1 2
3
4

1 3
2
4

1 4
2
3

2 2
3
4

1 3
3
4

1 4
2
4

2 3
3
4

1 4
3
4

2 4
3
4

3 1

2 1 3 2

1 2 3

1 2 3

2 1 3 2

3 1

The lowering operators for type C2 are f1 = f̂1f̂3 and f2 = f̂2f̂2.

The subset V =

{
1 1
2
3

1,3−−−→
1 2
2
4

2,2−−−→
1 3
3
4

1,3−−−→
2 4
3
4

}
is a virtual crystal.

This crystal V is isomorphic to the standard crystal for type C2.
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For each of the four embeddings X ↪→ Y , we defined an associated map σ : IX → { subsets of IY }.

Each subset in the image of σ is an orbit under a certain permutation aut : IY → IY that induces an
automorphism of the root system ΦY and weight lattice ΛY , which we also denote by aut. Specifically:

(1) If the embedding is Cn ↪→ A2n−1, then aut is the map i 7→ 2n− i.

(2) If the embedding is Bn ↪→ Dn+1, then aut interchanges n↔ n+ 1 while fixing 1 ≤ i < n.

(3) If the embedding is F4 ↪→ E6 then aut interchanges 1↔ 6 and 2↔ 5 while fixing 3 and 4.

(4) If the embedding is G2 ↪→ D4 then aut maps 1 7→ 4 7→ 3 7→ 1 while fixing 2.

Proposition 3.5. Suppose V ⊆ V̂ is a virtual crystal for the embedding X ↪→ Y .

(a) Any highest weight element u ∈ V is a highest weight element of V̂ and ŵt(u) = aut
(
ŵt(u)

)
∈ ΛY .

(b) If V and V̂ are both connected, then there exists a bijection V̂ → V̂, which becomes an automorphism
of the crystal graph after we permute the edge labels by aut, that fixes every element of V.

Remark. In the example on the previous page, the bijection V̂ → V̂ described by this result is the map
that flips the displayed crystal graph of V̂ = SSYT4(λ) across its central vertical axis. From this example,

we see that not all fixed points are necessarily elements of the virtual crystal V; consider T =
1 3
2
4

.

Proof. An element u ∈ V is a highest weight element if and only if εi(u) = 0 for all i ∈ IX , but axiom
(V1) implies that this holds if and only if ε̂j(u) = 0 for all j ∈ IY . In this case, by Proposition 3.2, we

have ŵt(u) = Ψ(wt(u)), so ŵt(u) = aut
(
ŵt(u)

)
since aut ◦Ψ = Ψ.

Assume V and V̂ are connected. Since V̂ is a Stembridge crystal, it has a unique highest weight element
u. By the first paragraph, this element must also be the unique highest weight of V. Permuting the labels

of the edges in the crystal graph of V̂ gives a new Stembridge crystal with highest weight aut
(
ŵt(u)

)
.

Since this is equal to ŵt(u), there must exist an isomorphism between the new crystal and the original

crystal. This isomorphism induces a bijection V̂ → V̂ of crystal graphs which must fix the unique highest
weight element u. It is clear from the definitions that any element of V derived from u by an application
of the virtual crystal operators is also a fixed point of the bijection V̂ → V̂.
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