1 Last time: Root system embeddings and virtual crystals

Assume $X \hookrightarrow Y$ is one of the following embeddings of Lie algebras / root systems / Cartan types:
(1) $X=C_{n} \hookrightarrow A_{2 n-1}=Y$,
(2) $X=B_{n} \hookrightarrow D_{n+1}=Y$,
(3) $X=F_{4} \hookrightarrow E_{6}=Y$, or
(4) $X=G_{2} \hookrightarrow D_{4}=Y$.

Let Λ^{X}, Λ^{Y} be the corresponding semisimple weight lattices and let Φ^{X}, Φ^{Y} be the corresponding root systems. Write $\alpha_{i}^{X}, \alpha_{i}^{Y}$ and $\varpi_{i}^{X}, \varpi_{i}^{Y}$ for the corresponding simple roots and fundamental weights.
Let I^{X} and I^{Y} be the indexing sets for the simple roots (and fundamental weights) in each case.
Last time, we specified a particular injective linear map $\Psi: \Lambda^{X} \rightarrow \Lambda^{Y}$ given by the formula

$$
\begin{equation*}
\Psi\left(\varpi_{i}^{X}\right)=\gamma_{i} \sum_{j \in \sigma(i)} \varpi_{j}^{Y} \quad \text { and } \quad \Psi\left(\alpha_{i}^{X}\right)=\gamma_{i} \sum_{j \in \sigma(i)} \alpha_{j}^{Y} \quad \text { for } i \in I^{X} \tag{1.1}
\end{equation*}
$$

where γ_{i} are positive integers and σ is a map $I^{X} \rightarrow\left\{\right.$ nonempty subsets of $\left.I^{Y}\right\}$ with $I^{Y}=\bigsqcup_{i \in I^{X}} \sigma(i)$.
We then gave a definition of virtual crystals of type X in terms of γ_{i} and σ.
Specifically, let $\widehat{\mathcal{V}}$ be a Stembridge crystal of type Y with weight map $\widehat{\mathbf{w t}}: \widehat{\mathcal{V}} \rightarrow \Lambda^{Y}$, crystal operators \widehat{e}_{i}, \widehat{f}_{i}, and string lengths $\widehat{\varepsilon}_{i}, \widehat{\varphi}_{i}$ for $i \in I^{Y}$. We call $\widehat{\mathcal{V}}$ the ambient crystal. Define virtual crystal operators

$$
e_{i}:=\prod_{j \in \sigma(i)}\left(\widehat{e}_{j}\right)^{\gamma_{i}} \quad \text { and } \quad f_{i}:=\prod_{j \in \sigma(i)}\left(\widehat{f}_{j}\right)^{\gamma_{i}} \quad \text { for } i \in I^{X} .
$$

Definition 1.1. A subset $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal if for each $b \in \mathcal{V}$ and $i \in I^{X}$ the following holds:
(V1) The string length $\widehat{\varepsilon}_{j}(b)$ has the same value for all $j \in \sigma(i)$ and this value is a multiple of γ_{i}.
The string length $\hat{\varphi}_{j}(b)$ has the same value for all $j \in \sigma(i)$ and this value is a multiple of γ_{i}.
This lets us define $\varepsilon_{i}(b):=\frac{1}{\gamma_{i}} \widehat{\varepsilon}_{j}(b) \in \mathbb{N}$ and $\varphi_{i}(b):=\frac{1}{\gamma_{i}} \widehat{\varphi}_{j}(b) \in \mathbb{N}$ for any $j \in \sigma(i)$.
(V2) The virtual crystal operators e_{i} and f_{i} restrict to maps $\mathcal{V} \rightarrow \mathcal{V} \sqcup\{0\}$ and we have

$$
\varepsilon_{i}(b)=\max \left\{k \geq 0: e_{i}^{k}(b) \neq 0\right\} \quad \text { and } \quad \varphi_{i}(b)=\max \left\{k \geq 0: f_{i}^{k}(b) \neq 0\right\}
$$

Assume $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal and define wt: $\mathcal{V} \rightarrow \Lambda^{X}$ by $\mathbf{w t}(b):=\sum_{i \in I^{X}}\left(\varphi_{i}(b)-\varepsilon_{i}(b)\right) \varpi_{i}^{X}$.
We showed last time that $\Psi(\mathbf{w t}(b))=\widehat{\mathbf{w t}}(b)$ for all $b \in \mathcal{V}$ and that \mathcal{V} is a seminormal crystal of type X. The subsets in the image of the map σ are the orbits of a certain permutation aut : $I^{Y} \rightarrow I^{Y}$ that induces an automorphism of the root system Φ^{Y} and weight lattice Λ^{Y}, which we also denote by aut.
If \mathcal{V} and $\widehat{\mathcal{V}}$ are both connected, then there exists a bijection $\widehat{\mathcal{V}} \rightarrow \widehat{\mathcal{V}}$, which becomes an automorphism of the crystal graph after we permute the edge labels by aut, that fixes every element of \mathcal{V}.

Finally, any highest weight element $u \in \mathcal{V}$ is a highest weight element of $\widehat{\mathcal{V}}$ and $\widehat{\mathbf{w t}}(u)=\operatorname{aut}(\widehat{\mathbf{w t}}(u))$.

2 Properties of virtual crystals

We start today by leveraging our setup from last time to prove three "Stembridge-like" properties of virtual crystals. Continue to let $X \hookrightarrow Y$ be one of our four Lie algebra embeddings.

Theorem 2.1. Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ and $\mathcal{W} \subseteq \widehat{\mathcal{W}}$ are virtual crystals for the embedding $X \hookrightarrow Y$.
Then $\mathcal{V} \otimes \mathcal{W} \subseteq \widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ is also a virtual crystal for the embedding $X \hookrightarrow Y$.
Proof. We may assume that all crystals here are connected. The tensor product of Stembridge crystals $\widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ remains a Stembridge crystal, so we just need to check axioms (V1) and (V2).
Fix $i \in I^{X}, v \in \mathcal{V}$, and $w \in \mathcal{W}$.
Since the automorphism aut fixes each element of \mathcal{V} and \mathcal{W} while permuting transitively the edge labels $j \in \sigma(i)$, it follows that aut also induces an automorphism of the crystal graph of $\widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ after permuting edge labels. Thus $\widehat{\varepsilon}_{j}(v \otimes w)$ and $\widehat{\varphi}_{j}(v \otimes w)$ take the same value for all $j \in \sigma(i)$.
Since $\widehat{\mathcal{V}}$ and $\widehat{\mathcal{W}}$ are finite type crystals, the definition of \otimes gives

$$
\widehat{\varphi}_{j}(v \otimes w)=\widehat{\varphi}_{j}(v)+\max \left\{0, \widehat{\varphi}_{j}(w)-\widehat{\varepsilon}_{j}(v)\right\}
$$

for any $j \in I^{Y}$. By axiom (V 1$)$ applied to \mathcal{V} and \mathcal{W}, this means that

$$
\widehat{\varphi}_{j}(v \otimes w)=\gamma_{i}\left(\varphi_{i}(v)+\max \left\{0, \varphi_{i}(w)-\varepsilon_{i}(v)\right\}\right)
$$

whenever $j \in \sigma(i)$. The right side is γ_{i} times the formula for $\varphi_{i}(v \otimes w)$ from the definition of \otimes, so we get $\gamma_{i} \varphi_{i}(v \otimes w)=\widehat{\varphi}_{j}(v \otimes w)$ for any $j \in \sigma(i)$ as needed.
It follows similarly that $\gamma_{i} \varepsilon_{i}(v \otimes w)=\widehat{\varepsilon}_{j}(v \otimes w)$ for any $j \in \sigma(i)$, so (V 1) holds.
Since tensor products of seminormal crystals are seminormal, to check axiom (V2) it suffices to show that $f_{i}(v \otimes w)$ is either $f_{i}(v) \otimes w$ or $v \otimes f_{i}(w)$, and that $e_{i}(v \otimes w)$ is either $e_{i}(v) \otimes w$ or $v \otimes e_{i}(w)$. We just prove the first property since the argument for e_{i} is similar.
If $\gamma_{i}=1$ then f_{i} is a product of distinct commuting crystal operators \widehat{f}_{j} so the desired claim is easy to check directly. Assume $\gamma_{i}>1$. After reviewing our definitions of γ_{i} and σ from last lecture, one finds that in this case $\sigma(i)=\{j\}$ always consists of a single element. Therefore

$$
f_{i}(v \otimes w)=\left(\widehat{f}_{j}\right)^{\gamma_{i}}(v \otimes w)= \begin{cases}\left(\widehat{f}_{j}\right)^{\gamma_{i}}(v) \otimes w & \text { if } \widehat{\varphi}_{j}(w) \leq \widehat{\varepsilon}_{j}(v) \\ v \otimes\left(\widehat{f}_{j}\right)^{\gamma_{i}}(w) & \text { if } \widehat{\varphi}_{j}(w) \geq \widehat{\varepsilon}_{j}(v)+\gamma_{i}\end{cases}
$$

We cannot have $\widehat{\varepsilon}_{j}(v)<\widehat{\varphi}_{j}(w)<\widehat{\varepsilon}_{j}(v)+\gamma_{i}$ since $\widehat{\varepsilon}_{j}(v)$ and $\widehat{\varphi}_{j}(w)$ are multiples of γ_{i} by axiom (V1). Thus $f_{i}(v \otimes w) \in\left\{f_{i}(v) \otimes w, v \otimes f_{i}(w)\right\}$ as needed and we conclude that (V2) holds for $\mathcal{V} \otimes \mathcal{W}$.

Theorem 2.2. Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal for the embedding $X \hookrightarrow Y$.
If \mathcal{V} is connected (as a crystal of type X) then it has a unique highest weight element.

Proof. The connected virtual crystal \mathcal{V} is contained in a full subcrystal the Stembridge crystal $\widehat{\mathcal{V}}$, which has a unique highest weight element. This must also be the unique highest weight element of \mathcal{V} since any highest weight element for \mathcal{V} is a highest weight element for $\widehat{\mathcal{V}}$.

Theorem 2.3. Suppose $\mathcal{V}, \mathcal{V}^{\prime} \subseteq \widehat{\mathcal{V}}$ are two connected virtual crystals whose unique highest weight elements have the same weight. Then \mathcal{V} and \mathcal{V}^{\prime} are isomorphic as type X crystals.

Proof. Let $u \in \mathcal{V}$ and $u^{\prime} \in \mathcal{V}^{\prime}$ be the relevant highest weight elements.
Since $\mathbf{w t}(u)=\mathbf{w t}\left(u^{\prime}\right) \in \Lambda^{X}$ we also have $\widehat{\mathbf{w t}}(u)=\Psi(\mathbf{w} \mathbf{t}(u))=\Psi\left(\mathbf{w t}\left(u^{\prime}\right)\right)=\widehat{\mathbf{w t}}\left(u^{\prime}\right) \in \Lambda^{Y}$.
The elements u and u^{\prime} are highest weights in the Stembridge crystal $\widehat{\mathcal{V}}$, so they belong to isomorphic (Stembridge) full subcrystals.

This means that \mathcal{V} and \mathcal{V}^{\prime} are generated by elements of equal weight in isomorphic full subcrystals with the same crystal operators, so we must have $\mathcal{V} \cong \mathcal{V}^{\prime}$.

3 Fundamental crystals

We turn our attention to the classical Cartan types A_{n}, B_{n}, C_{n}, and D_{n}.
Assume Φ is a root system of one of these types and Λ is a corresponding weight lattice. As usual write $\left\{\alpha_{i}: i \in I\right\}$ and $\left\{\varpi_{i}: i \in I\right\}$ for the simple roots and fundamental weights. We assume Λ is simply-connected is the sense that $\Lambda=\mathbb{R}$-span $\left\{\varpi_{i}: i \in I\right\}$.

We have $\varpi_{i}=\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{i}$ in all cases except in type B_{n} when $i=n$ or type D_{n} when $i \in\{n-1, n\}$.
In type B_{n} one has $\varpi_{n}=\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)$.
In type D_{n}, one has $\varpi_{n-1}=\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n-1}-\mathbf{e}_{n}\right)$ and $\varpi_{n}=\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n-1}+\mathbf{e}_{n}\right)$.
We refer to these exceptions as spin fundamental weights.

Let \mathbb{B} be the standard crystal associated to (Φ, Λ) and recall that an element b of a crystal is a highest weight element of $e_{i}(b)=0$ for all i.

Proposition 3.1. Each full subcrystal of the tensor power $\mathbb{B}^{\otimes m}$ has a unique highest weight element.
Proof. In types A_{n} and D_{n}, this holds because \mathbb{B} is a Stembridge crystal.
In the remaining types, by the theorems in the previous section, it suffices to show that \mathbb{B} is isomorphic to a virtual crystal for the appropriate root system embedding.
In type C_{n}, the standard crystal \mathbb{B} can be realized as a virtual crystal for the embedding $C_{n} \hookrightarrow A_{2 n-1}$ by taking $\widehat{\mathcal{V}}=\operatorname{SSYT}_{2 n}(\lambda)$ for $\lambda=1^{2 n-2} 2$ and letting \mathcal{V} be generated by the highest weight element

under the crystal operators $f_{i}=\widehat{f}_{i} \widehat{f}_{2 n-i}$ for $1 \leq i<n$ and $f_{n}=\left(\widehat{f}_{n}\right)^{2}$.
Applying $f_{i} \cdots f_{2} f_{1}$ to T has the effect of adding 1 to the last i boxes in the first column and adding i to the second box in the first row. Applying $f_{n-i} \cdots f_{n-2} f_{n-1}$ to $f_{n} \cdots f_{2} f_{1}(T)$ then continues to add 1 to successive boxes in the first column while also adding to the second box in the first row. We discussed this construction for $n=2$ in the previous lecture.

In type B_{n}, the standard crystal \mathbb{B} can be realized as a virtual crystal for the embedding $B_{n} \hookrightarrow D_{n+1}$ by taking $\widehat{\mathcal{V}}$ to be the tensor product two copies of the standard crystal for type D_{n+1} and letting \mathcal{V} be generated by the highest weight element $\widehat{1} \otimes 1$ under $f_{i}=\left(\widehat{f_{i}}\right)^{2}$ for $1 \leq i<r$ and $f_{r}=\widehat{f}_{r} \widehat{f}_{r+1}$.
See Figure 5.4 in Bump and Schilling's book for an example of this construction when $n=2$.
More details are needed to thoroughly check that the virtual crystals just described are in fact isomorphic to the standard crystals in types B_{n} and C_{n}. But this is a completely straightforward exercise, using the signature rule in type $C_{n} \hookrightarrow A_{2 n-1}$ or the definition of the tensor product in type $B_{n} \hookrightarrow D_{n+1}$.

Our next goal is to construct a "fundamental crystal" $\mathcal{B}_{\varpi_{i}}$ with unique highest weight ϖ_{i} for each $i \in I$. This is accomplished for the first fundamental weight by setting $\mathcal{B}_{\varpi_{1}}=\mathbb{B}$, since in all four classical types, the crystal \mathbb{B} itself has unique highest weight element 1 with weight $\varpi_{1}=\mathbf{e}_{1}$.

The following proposition covers almost all of the remaining weights:

Proposition 3.2. If $k \in\{1,2, \ldots, n\}$ and ϖ_{k} is not a spin fundamental weight in types B_{n} or D_{n}, then $\mathbb{B}^{\otimes k}$ has a full subcrystal with a unique highest weight element of weight $\varpi_{k}=\mathbf{e}_{1}+\cdots+\mathbf{e}_{k}$.

Proof. We need to exhibit $u \in \mathbb{B}^{\otimes k}$ with $\mathbf{w t}(u)=\varpi_{k}=\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{k}$ and $e_{i}(u)=0$ for all $i \in I$.
Since we dealing with seminormal crystals, the second condition is equivalent to $\varepsilon_{i}(u)=0$ for all $i \in I$.
The element $u=k \otimes \cdots \otimes \boxed{2} \otimes 1 \in \mathbb{B}^{\otimes k}$ has the right weight, and one can show by induction that

$$
\varepsilon_{i}(u)=\max _{1 \leq j \leq k}\left(\sum_{h=1}^{j} \varepsilon_{i}(\boxed{h})-\sum_{h=1}^{j-1} \varphi_{i}(\boxed{h})\right) .
$$

Since $\varepsilon_{i}(\boxed{1})=0$ we can rewrite this as $\varepsilon_{i}(u)=\max _{1 \leq j \leq k}\left(\sum_{h=1}^{j-1}\left(\varepsilon_{i}(\boxed{h+1})-\varphi_{i}(\boxed{h})\right)\right)$. This expression is always zero, as needed, since $\varepsilon_{i}(h+1)=\varphi_{i}(h) \in\{0,1\}$ in all of our standard crystals.
No full subcrystal of $\mathbb{B}^{\otimes k}$ has highest weight ϖ_{k} when ϖ_{k} is one of the spin fundamental weights in type B_{n} or D_{n} because all weights for $\mathbb{B}^{\otimes k}$ are in \mathbb{Z}^{n}, which does not contain either of the spin weights.

To complete our construction of fundamental crystals for all fundamental weights, we need to identify "spin" crystals corresponding to ϖ_{n} in type B_{n} and to ϖ_{n-1} and ϖ_{n} in type D_{n}. We will provide such crystals using minuscule weights, which are defined as follows.

A weight $\lambda \in \Lambda$ is minuscule if $\left\langle\lambda, \alpha^{\vee}\right\rangle \in\{-1,0,1\}$ for all $\alpha \in \Phi$, where $\alpha^{\vee}=\frac{2 \alpha}{\langle\alpha, \alpha\rangle}$.
Here is the classification of the minuscule fundamental weights in the irreducible Cartan types:

- In type A_{n}, all fundamental weights are minuscule.
- In type B_{n}, only the spin fundamental weight $\varpi_{n}=\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)$ is minuscule.
- In type C_{n}, only $\varpi_{1}=\mathbf{e}_{1}$ is minuscule.
- In type D_{n}, both $\varpi_{1}=\mathbf{e}_{1}$ and the spin fundamental weights $\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n-1} \pm \mathbf{e}_{n}\right)$ are minuscule.
- In type E_{6}, there are two minuscule fundamental weights (ϖ_{1}, ϖ_{6} in Bump and Schilling's notation).
- In type E_{7}, there is just one minuscule fundamental weight (ϖ_{7} in Bump and Schilling's notation).
- In types F_{4}, G_{2}, and E_{8}, there are no minuscule fundamental weights.

Suppose $\lambda \in \Lambda^{+}$is a minuscule dominant weight. We define an associated crystal \mathcal{M}_{λ} as follows.
Recall that $W=\left\langle s_{i}: i \in I\right\rangle$ where $s_{i}=r_{\alpha_{i}}: x \mapsto x-\left\langle x, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.
As a set, \mathcal{M}_{λ} consists of elements v_{μ} indexed by the weights $\mu \in\{w \cdot \lambda: w \in W\}$ in the W-orbit of λ.
The crystal operators $f_{i}, e_{i}: \mathcal{M}_{\lambda} \rightarrow \mathcal{M}_{\lambda} \sqcup\{0\}$ for $i \in I$ are given by the formulas

$$
f_{i}\left(v_{\mu}\right)=\left\{\begin{array}{ll}
v_{\mu-\alpha_{i}} & \text { if }\left\langle\mu, \alpha_{i}^{\vee}\right\rangle=1 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad e_{i}\left(v_{\mu}\right)= \begin{cases}v_{\mu+\alpha_{i}} & \text { if }\left\langle\mu, \alpha_{i}^{\vee}\right\rangle=-1 \\
0 & \text { otherwise } .\end{cases}\right.
$$

The weight map for \mathcal{M}_{λ} is $\mathbf{w t}\left(v_{\mu}\right)=\mu$.
Example 3.3. Let's consider the B_{n} case of \mathcal{M}_{λ} where $\lambda=\varpi_{n}=\frac{1}{2}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}\right)$.
The weights that can appear in the W-orbit of λ are $\mu=\frac{1}{2} \sum_{i=1}^{n} \epsilon_{i} \mathbf{e}_{i}$ where $\epsilon_{i}= \pm$. Write this weight as the sequence of signs $\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n}$ and the element $v_{\mu} \in \mathcal{M}_{\lambda}$ as $\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n}$.

For example, ++- denotes v_{μ} for $\mu=\frac{1}{2}\left(\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}\right)$.
The crystal graph of this example for $n=3$ is shown below:

Proposition 3.4. Continue to assume $\lambda \in \Lambda^{+}$is minuscule. Then there is a unique seminormal crystal structure on \mathcal{M}_{λ} for the crystal operators and weight map just given. In this structure, v_{λ} is the unique highest weight element.

We omit the proof of this proposition, which is a routine exercise
Proposition 3.5. Continue to assume $\lambda \in \Lambda^{+}$is minuscule. Let \mathcal{B} be a seminormal crystal with a highest weight element u such that $\mathbf{w t}(u)=\lambda$. Assume \mathcal{B} has the property that no two elements have the same weight. Then there is a unique crystal morphism $\psi: \mathcal{M}_{\lambda} \rightarrow \mathcal{B}$ with $\psi\left(v_{\lambda}\right)=u$.

Proof. By results in Lecture 5 , these assumptions imply that \mathcal{B} has a unique element b_{μ} of weight μ for every μ in the W-orbit of λ. The desired morphism is the map $\psi\left(v_{\mu}\right)=b_{\mu}$.

Proposition 3.6. Suppose Φ is a simply-laced root system and $\lambda \in \Lambda^{+}$is a minuscule dominant weight. Then \mathcal{M}_{λ} is a Stembridge crystal.

Proof. One must show that every branched subcrystal of \mathcal{M}_{λ} of types A_{2} or $A_{1} \times A_{1}$ is a Stembridge crystal. The connected components of such subcrystals satisfy the conditions of the previous proposition, so they are isomorphic to twists of minuscule crystals of types A_{2} or $A_{1} \times A_{1}$.
It is easy to work out the latter crystals explicitly: in type A_{2} they are isomorphic to twists of $\operatorname{SSYT}_{3}(\lambda)$ for $\lambda=(1)$ and $\lambda=(1,1)$, and something similar happens in type $A_{1} \times A_{1}$. In either cases all crystals in sight are Stembridge crystals.

We can now list explicit constructions of fundamental crystals:
Definition 3.7. For the spin fundamental weights ϖ_{k} in types B_{n} and D_{n}, we take $\mathcal{B}_{\varpi_{k}}=\mathcal{M}_{\varpi_{k}}$ to be the corresponding fundamental crystal. We refer to $\mathcal{B}_{\varpi_{k}}$ in these cases as a spin crystal.
For the other fundamental weights ϖ_{k} we take $\mathcal{B}_{\varpi_{k}}$ to be the full subcrystal described in Proposition 3.2 .
The crystals $\mathcal{B}_{\varpi_{k}}$ will be called the fundamental crystals of classical type.

If ϖ_{k} is not a spin weight then $\mathcal{B}_{\varpi_{k}}$ is a Stembridge crystal or a virtual crystal (as full subcrystal of $\mathbb{B}^{\otimes k}$).
If ϖ_{k} is a spin weight for type D_{n} then $\mathcal{B}_{\varpi_{k}}$ is a Stembridge crystal by the previous proposition.
Finally, if ϖ_{k} is the spin weight for type B_{n} then $\mathcal{B}_{\varpi_{k}}$ is a virtual crystal:
Proposition 3.8. Let $\widehat{\mathcal{V}}=\mathcal{B}_{\varpi_{n}} \otimes \mathcal{B}_{\varpi_{n+1}}$ be the tensor product of the spin crystals for type D_{n+1}.
Let $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ be the subset generated by applying the virtual crystal operators

$$
f_{i}=\left(\widehat{f}_{i}\right)^{2} \text { for } 1 \leq i<n \quad \text { and } \quad f_{n}=\widehat{f}_{n} \widehat{f}_{n+1}
$$

to the highest weight element $v_{\varpi_{n}} \otimes v_{\varpi_{n+1}}$. Then $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal for the embedding $B_{n} \hookrightarrow D_{n+1}$ and this crystal is isomorphic to the spin crystal of type B_{n}.

Proof. One checks using the definition of minuscule crystals that $\varepsilon_{i}(b)=\frac{1}{2} \widehat{\varepsilon}_{i}(b)$ for $1 \leq i<n$ and $\varepsilon_{n}(b)=\widehat{\varepsilon}_{n}(b)=\widehat{\varepsilon}_{n+1}(b)$ for all $b \in V$, and similarly for φ_{i}. It follows that \mathcal{V} is a virtual crystal.
One can also check that the map $\Psi: \Lambda^{B_{n}} \hookrightarrow \Lambda^{D_{n+1}}$ has $\Psi\left(\varpi_{n}^{B_{n}}\right)=\varpi_{n}^{D_{n+1}}+\varpi_{n+1}^{D_{n+1}}$.
Therefore \mathcal{V} is a virtual crystal with the same highest highest weight as the spin crystal of type B_{n}. Using Proposition 3.5, one can now deduce that \mathcal{V} is isomorphic to this spin crystal.

Corollary 3.9. Each fundamental crystal $\mathcal{B}_{\varpi_{k}}$ has a unique highest weight element with weight ϖ_{k} and is either a Stembridge crystal (in types A_{n} and D_{n}) or a virtual crystal (in types B_{n} or C_{n}).

4 Adjoint crystals

Let Φ be any root system with weight lattice Λ and simple roots $\left\{\alpha_{i}: i \in I\right\}$.
We define an adjoint crystal that is an analogue of the adjoint representation of the corresponding Lie algebra. This crystal $\mathcal{B}_{\text {adjoint }}$ consists as a set of formal elements v_{α} for each root $\alpha \in \Phi$, along with an element \tilde{v}_{i} for each $i \in I$. Define $\mathbf{w t}\left(v_{\alpha}\right)=\alpha$ and $\mathbf{w t}\left(\tilde{v}_{i}\right)=0$. The crystal operators f_{i} are given by

$$
f_{i}\left(v_{\alpha}\right)=\left\{\begin{array}{ll}
v_{\alpha-\alpha_{i}} & \text { if } \alpha-\alpha_{i} \in \Phi \\
\tilde{v}_{i} & \text { if } \alpha=\alpha_{i} \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad f_{i}\left(\tilde{v}_{j}\right)= \begin{cases}v_{-\alpha_{i}} & \text { if } i=j \\
0 & \text { otherwise }\end{cases}\right.
$$

The crystal operators e_{i} are given by

$$
e_{i}\left(v_{\alpha}\right)=\left\{\begin{array}{ll}
v_{\alpha+\alpha_{i}} & \text { if } \alpha+\alpha_{i} \in \Phi \\
\tilde{v}_{i} & \text { if } \alpha=-\alpha_{i} \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad e_{i}\left(\tilde{v}_{j}\right)= \begin{cases}v_{\alpha_{i}} & \text { if } i=j \\
0 & \text { otherwise }\end{cases}\right.
$$

The string lengths ε_{i} and φ_{i} are given in terms of the crystal operators by the usual seminormal formulas.
Proposition 4.1. The set $\mathcal{B}_{\text {adjoint }}$ is a seminormal crystal with respect to the operators just given.

Lemma 4.2. Assume Φ is simply-laced and let $\alpha, \beta \in \Phi$
If $\alpha+k \beta \in \Phi$ for an integer $k>1$, then $k=2$ and $\alpha=-\beta$.
Proof. Consider the maximal string of roots

$$
\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+k \beta \in \Phi .
$$

Then if r_{β} is the reflection in the hyperplane orthogonal to β^{\vee}, we have $r_{\beta}(\alpha)=\alpha+k \beta$.
Therefore $k=\left\langle\alpha, \beta^{\vee}\right\rangle$. The intersection of Φ with the vector space spanned by α and β is a root system, and since α and β have the same length, this intersection is of type A_{2} or $A_{1} \times A_{1}$ or A_{1} (when $\alpha= \pm \beta$). One checks that in these cases $\left\langle\alpha, \beta^{\vee}\right\rangle \leq 2$, with equality only when $\alpha=-\beta$.

Proposition 4.3. Assume Φ is simple-laced. Then $\mathcal{B}_{\text {adjoint }}$ is a Stembridge crystal.
Proof. By the lemma, the length k of the maximal string of roots

$$
\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+k \beta \in \Phi
$$

is bounded by 1 , except when $\alpha=-\beta$ when $k=2$. Thus $\varphi_{i}\left(v_{\alpha}\right)+\varepsilon_{i}\left(v_{\alpha}\right) \leq 1$ except when $\alpha= \pm \alpha_{i}$.
On the other hand $\varphi_{i}\left(v_{\alpha}\right)-\varepsilon_{i}\left(v_{\alpha}\right)=\left\langle\alpha, \alpha_{i}^{\vee}\right\rangle$ so we have

$$
\varphi_{i}\left(v_{\alpha}\right)=\left\{\begin{array}{ll}
2 & \text { if } \alpha=\alpha_{i} \\
1 & \text { if }\left\langle\alpha, \alpha_{i}^{\vee}\right\rangle=1 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \varepsilon_{i}\left(v_{\alpha}\right)= \begin{cases}2 & \text { if } \alpha=-\alpha_{i} \\
1 & \text { if }\left\langle\alpha, \alpha_{i}^{\vee}\right\rangle=-1 \\
0 & \text { otherwise }\end{cases}\right.
$$

From these identities, the Stembridge axioms are easy to verify.
For more details, see Section 5.5 in Bump and Schilling's book.
Question / exercise: in type A_{n-1}, what is $\mathcal{B}_{\text {adjoint }}$ in terms of crystals of tableaux $\operatorname{SSYT}_{n}(\lambda)$?

