
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 8

1 Last time: Root system embeddings and virtual crystals

Assume X ↪→ Y is one of the following embeddings of Lie algebras / root systems / Cartan types:

(1) X = Cn ↪→ A2n−1 = Y ,

(2) X = Bn ↪→ Dn+1 = Y ,

(3) X = F4 ↪→ E6 = Y , or

(4) X = G2 ↪→ D4 = Y .

Let ΛX , ΛY be the corresponding semisimple weight lattices and let ΦX , ΦY be the corresponding root
systems. Write αXi , αYi and $X

i , $Y
i for the corresponding simple roots and fundamental weights.

Let IX and IY be the indexing sets for the simple roots (and fundamental weights) in each case.

Last time, we specified a particular injective linear map Ψ : ΛX → ΛY given by the formula

Ψ($X
i ) = γi

∑
j∈σ(i)

$Y
j and Ψ(αXi ) = γi

∑
j∈σ(i)

αYj for i ∈ IX (1.1)

where γi are positive integers and σ is a map IX → { nonempty subsets of IY } with IY =
⊔
i∈IX σ(i).

We then gave a definition of virtual crystals of type X in terms of γi and σ.

Specifically, let V̂ be a Stembridge crystal of type Y with weight map ŵt : V̂ → ΛY , crystal operators êi,
f̂i, and string lengths ε̂i, ϕ̂i for i ∈ IY . We call V̂ the ambient crystal. Define virtual crystal operators

ei :=
∏
j∈σ(i)

(êj)
γi and fi :=

∏
j∈σ(i)

(
f̂j

)γi
for i ∈ IX .

Definition 1.1. A subset V ⊆ V̂ is a virtual crystal if for each b ∈ V and i ∈ IX the following holds:

(V1) The string length ε̂j(b) has the same value for all j ∈ σ(i) and this value is a multiple of γi.

The string length ϕ̂j(b) has the same value for all j ∈ σ(i) and this value is a multiple of γi.

This lets us define εi(b) := 1
γi
ε̂j(b) ∈ N and ϕi(b) := 1

γi
ϕ̂j(b) ∈ N for any j ∈ σ(i).

(V2) The virtual crystal operators ei and fi restrict to maps V → V t {0} and we have

εi(b) = max{k ≥ 0 : eki (b) 6= 0} and ϕi(b) = max{k ≥ 0 : fki (b) 6= 0}.

Assume V ⊆ V̂ is a virtual crystal and define wt : V → ΛX by wt(b) :=
∑
i∈IX

(ϕi(b)− εi(b))$X
i .

We showed last time that Ψ (wt(b)) = ŵt(b) for all b ∈ V and that V is a seminormal crystal of type X.

The subsets in the image of the map σ are the orbits of a certain permutation aut : IY → IY that induces
an automorphism of the root system ΦY and weight lattice ΛY , which we also denote by aut.

If V and V̂ are both connected, then there exists a bijection V̂ → V̂, which becomes an automorphism of
the crystal graph after we permute the edge labels by aut, that fixes every element of V.

Finally, any highest weight element u ∈ V is a highest weight element of V̂ and ŵt(u) = aut
(
ŵt(u)

)
.
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2 Properties of virtual crystals

We start today by leveraging our setup from last time to prove three “Stembridge-like” properties of
virtual crystals. Continue to let X ↪→ Y be one of our four Lie algebra embeddings.

Theorem 2.1. Suppose V ⊆ V̂ and W ⊆ Ŵ are virtual crystals for the embedding X ↪→ Y .

Then V ⊗W ⊆ V̂ ⊗ Ŵ is also a virtual crystal for the embedding X ↪→ Y .

Proof. We may assume that all crystals here are connected. The tensor product of Stembridge crystals
V̂ ⊗ Ŵ remains a Stembridge crystal, so we just need to check axioms (V1) and (V2).

Fix i ∈ IX , v ∈ V, and w ∈ W.

Since the automorphism aut fixes each element of V and W while permuting transitively the edge labels
j ∈ σ(i), it follows that aut also induces an automorphism of the crystal graph of V̂ ⊗ Ŵ after permuting
edge labels. Thus ε̂j(v ⊗ w) and ϕ̂j(v ⊗ w) take the same value for all j ∈ σ(i).

Since V̂ and Ŵ are finite type crystals, the definition of ⊗ gives

ϕ̂j(v ⊗ w) = ϕ̂j(v) + max{0, ϕ̂j(w)− ε̂j(v)}

for any j ∈ IY . By axiom (V1) applied to V and W, this means that

ϕ̂j(v ⊗ w) = γi (ϕi(v) + max{0, ϕi(w)− εi(v)})

whenever j ∈ σ(i). The right side is γi times the formula for ϕi(v ⊗ w) from the definition of ⊗, so we
get γiϕi(v ⊗ w) = ϕ̂j(v ⊗ w) for any j ∈ σ(i) as needed.

It follows similarly that γiεi(v ⊗ w) = ε̂j(v ⊗ w) for any j ∈ σ(i), so (V1) holds.

Since tensor products of seminormal crystals are seminormal, to check axiom (V2) it suffices to show that
fi(v ⊗ w) is either fi(v) ⊗ w or v ⊗ fi(w), and that ei(v ⊗ w) is either ei(v) ⊗ w or v ⊗ ei(w). We just
prove the first property since the argument for ei is similar.

If γi = 1 then fi is a product of distinct commuting crystal operators f̂j so the desired claim is easy to
check directly. Assume γi > 1. After reviewing our definitions of γi and σ from last lecture, one finds
that in this case σ(i) = {j} always consists of a single element. Therefore

fi(v ⊗ w) = (f̂j)
γi(v ⊗ w) =

{
(f̂j)

γi(v)⊗ w if ϕ̂j(w) ≤ ε̂j(v),

v ⊗ (f̂j)
γi(w) if ϕ̂j(w) ≥ ε̂j(v) + γi.

We cannot have ε̂j(v) < ϕ̂j(w) < ε̂j(v) + γi since ε̂j(v) and ϕ̂j(w) are multiples of γi by axiom (V1).
Thus fi(v ⊗ w) ∈ {fi(v)⊗ w, v ⊗ fi(w)} as needed and we conclude that (V2) holds for V ⊗W.

Theorem 2.2. Suppose V ⊆ V̂ is a virtual crystal for the embedding X ↪→ Y .

If V is connected (as a crystal of type X) then it has a unique highest weight element.

Proof. The connected virtual crystal V is contained in a full subcrystal the Stembridge crystal V̂, which
has a unique highest weight element. This must also be the unique highest weight element of V since any
highest weight element for V is a highest weight element for V̂.

Theorem 2.3. Suppose V,V ′ ⊆ V̂ are two connected virtual crystals whose unique highest weight
elements have the same weight. Then V and V ′ are isomorphic as type X crystals.
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Proof. Let u ∈ V and u′ ∈ V ′ be the relevant highest weight elements.

Since wt(u) = wt(u′) ∈ ΛX we also have ŵt(u) = Ψ(wt(u)) = Ψ(wt(u′)) = ŵt(u′) ∈ ΛY .

The elements u and u′ are highest weights in the Stembridge crystal V̂, so they belong to isomorphic
(Stembridge) full subcrystals.

This means that V and V ′ are generated by elements of equal weight in isomorphic full subcrystals with
the same crystal operators, so we must have V ∼= V ′.

3 Fundamental crystals

We turn our attention to the classical Cartan types An, Bn, Cn, and Dn.

Assume Φ is a root system of one of these types and Λ is a corresponding weight lattice. As usual
write {αi : i ∈ I} and {$i : i ∈ I} for the simple roots and fundamental weights. We assume Λ is
simply-connected is the sense that Λ = R-span{$i : i ∈ I}.

We have $i = e1 +e2 + · · ·+ei in all cases except in type Bn when i = n or type Dn when i ∈ {n−1, n}.

In type Bn one has $n = 1
2 (e1 + · · ·+ en).

In type Dn, one has $n−1 = 1
2 (e1 + · · ·+ en−1 − en) and $n = 1

2 (e1 + · · ·+ en−1 + en).

We refer to these exceptions as spin fundamental weights.

Let B be the standard crystal associated to (Φ,Λ) and recall that an element b of a crystal is a highest
weight element of ei(b) = 0 for all i.

Proposition 3.1. Each full subcrystal of the tensor power B⊗m has a unique highest weight element.

Proof. In types An and Dn, this holds because B is a Stembridge crystal.

In the remaining types, by the theorems in the previous section, it suffices to show that B is isomorphic
to a virtual crystal for the appropriate root system embedding.

In type Cn, the standard crystal B can be realized as a virtual crystal for the embedding Cn ↪→ A2n−1
by taking V̂ = SSYT2n(λ) for λ = 12n−22 and letting V be generated by the highest weight element

T =

1 1

2

...

2n− 1

∈ SSYT2n(λ)

under the crystal operators fi = f̂if̂2n−i for 1 ≤ i < n and fn = (f̂n)2.

Applying fi · · · f2f1 to T has the effect of adding 1 to the last i boxes in the first column and adding i to
the second box in the first row. Applying fn−i · · · fn−2fn−1 to fn · · · f2f1(T ) then continues to add 1 to
successive boxes in the first column while also adding to the second box in the first row. We discussed
this construction for n = 2 in the previous lecture.
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In type Bn, the standard crystal B can be realized as a virtual crystal for the embedding Bn ↪→ Dn+1

by taking V̂ to be the tensor product two copies of the standard crystal for type Dn+1 and letting V be

generated by the highest weight element 1 ⊗ 1 under fi = (f̂i)
2 for 1 ≤ i < r and fr = f̂rf̂r+1.

See Figure 5.4 in Bump and Schilling’s book for an example of this construction when n = 2.

More details are needed to thoroughly check that the virtual crystals just described are in fact isomorphic
to the standard crystals in types Bn and Cn. But this is a completely straightforward exercise, using the
signature rule in type Cn ↪→ A2n−1 or the definition of the tensor product in type Bn ↪→ Dn+1.

Our next goal is to construct a “fundamental crystal” B$i
with unique highest weight $i for each i ∈ I.

This is accomplished for the first fundamental weight by setting B$1
= B, since in all four classical types,

the crystal B itself has unique highest weight element 1 with weight $1 = e1.

The following proposition covers almost all of the remaining weights:

Proposition 3.2. If k ∈ {1, 2, . . . , n} and $k is not a spin fundamental weight in types Bn or Dn, then
B⊗k has a full subcrystal with a unique highest weight element of weight $k = e1 + · · ·+ ek.

Proof. We need to exhibit u ∈ B⊗k with wt(u) = $k = e1 + e2 + · · ·+ ek and ei(u) = 0 for all i ∈ I.

Since we dealing with seminormal crystals, the second condition is equivalent to εi(u) = 0 for all i ∈ I.

The element u = k ⊗ · · · ⊗ 2 ⊗ 1 ∈ B⊗k has the right weight, and one can show by induction that

εi(u) = max
1≤j≤k

(
j∑

h=1

εi( h )−
j−1∑
h=1

ϕi( h )

)
.

Since εi( 1 ) = 0 we can rewrite this as εi(u) = max1≤j≤k

(∑j−1
h=1

(
εi( h+ 1 )− ϕi( h )

))
. This expres-

sion is always zero, as needed, since εi( h+ 1 ) = ϕi( h ) ∈ {0, 1} in all of our standard crystals.

No full subcrystal of B⊗k has highest weight $k when $k is one of the spin fundamental weights in type
Bn or Dn because all weights for B⊗k are in Zn, which does not contain either of the spin weights.

To complete our construction of fundamental crystals for all fundamental weights, we need to identify
“spin” crystals corresponding to $n in type Bn and to $n−1 and $n in type Dn. We will provide such
crystals using minuscule weights, which are defined as follows.

A weight λ ∈ Λ is minuscule if 〈λ, α∨〉 ∈ {−1, 0, 1} for all α ∈ Φ, where α∨ = 2α
〈α,α〉 .

Here is the classification of the minuscule fundamental weights in the irreducible Cartan types:

• In type An, all fundamental weights are minuscule.

• In type Bn, only the spin fundamental weight $n = 1
2 (e1 + · · ·+ en) is minuscule.

• In type Cn, only $1 = e1 is minuscule.

• In type Dn, both $1 = e1 and the spin fundamental weights 1
2 (e1 + · · ·+ en−1±en) are minuscule.

• In type E6, there are two minuscule fundamental weights ($1, $6 in Bump and Schilling’s notation).

• In type E7, there is just one minuscule fundamental weight ($7 in Bump and Schilling’s notation).

• In types F4, G2, and E8, there are no minuscule fundamental weights.
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Suppose λ ∈ Λ+ is a minuscule dominant weight. We define an associated crystal Mλ as follows.

Recall that W = 〈si : i ∈ I〉 where si = rαi
: x 7→ x− 〈x, α∨i 〉αi.

As a set, Mλ consists of elements vµ indexed by the weights µ ∈ {w · λ : w ∈W} in the W -orbit of λ.

The crystal operators fi, ei :Mλ →Mλ t {0} for i ∈ I are given by the formulas

fi(vµ) =

{
vµ−αi

if 〈µ, α∨i 〉 = 1

0 otherwise
and ei(vµ) =

{
vµ+αi

if 〈µ, α∨i 〉 = −1

0 otherwise.

The weight map for Mλ is wt(vµ) = µ.

Example 3.3. Let’s consider the Bn case of Mλ where λ = $n = 1
2 (e1 + · · ·+ en).

The weights that can appear in the W -orbit of λ are µ = 1
2

∑n
i=1 εiei where εi = ±.

Write this weight as the sequence of signs ε1ε2 · · · εn and the element vµ ∈Mλ as ε1ε2 · · · εn .

For example, + +− denotes vµ for µ = 1
2 (e1 + e2 − e3).

The crystal graph of this example for n = 3 is shown below:

+ + + + +− +−+

+−−

−+ +

−+− −−+ −−−3 2

3

1

1

3

2 3

Proposition 3.4. Continue to assume λ ∈ Λ+ is minuscule. Then there is a unique seminormal crystal
structure on Mλ for the crystal operators and weight map just given. In this structure, vλ is the unique
highest weight element.

We omit the proof of this proposition, which is a routine exercise

Proposition 3.5. Continue to assume λ ∈ Λ+ is minuscule. Let B be a seminormal crystal with a
highest weight element u such that wt(u) = λ. Assume B has the property that no two elements have
the same weight. Then there is a unique crystal morphism ψ :Mλ → B with ψ(vλ) = u.

Proof. By results in Lecture 5, these assumptions imply that B has a unique element bµ of weight µ for
every µ in the W -orbit of λ. The desired morphism is the map ψ(vµ) = bµ.

Proposition 3.6. Suppose Φ is a simply-laced root system and λ ∈ Λ+ is a minuscule dominant weight.
Then Mλ is a Stembridge crystal.

Proof. One must show that every branched subcrystal of Mλ of types A2 or A1 × A1 is a Stembridge
crystal. The connected components of such subcrystals satisfy the conditions of the previous proposition,
so they are isomorphic to twists of minuscule crystals of types A2 or A1 ×A1.

It is easy to work out the latter crystals explicitly: in type A2 they are isomorphic to twists of SSYT3(λ)
for λ = (1) and λ = (1, 1), and something similar happens in type A1×A1. In either cases all crystals in
sight are Stembridge crystals.
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We can now list explicit constructions of fundamental crystals:

Definition 3.7. For the spin fundamental weights $k in types Bn and Dn, we take B$k
=M$k

to be
the corresponding fundamental crystal. We refer to B$k

in these cases as a spin crystal.

For the other fundamental weights $k we take B$k
to be the full subcrystal described in Proposition 3.2.

The crystals B$k
will be called the fundamental crystals of classical type.

If $k is not a spin weight then B$k
is a Stembridge crystal or a virtual crystal (as full subcrystal of B⊗k).

If $k is a spin weight for type Dn then B$k
is a Stembridge crystal by the previous proposition.

Finally, if $k is the spin weight for type Bn then B$k
is a virtual crystal:

Proposition 3.8. Let V̂ = B$n ⊗ B$n+1 be the tensor product of the spin crystals for type Dn+1.

Let V ⊆ V̂ be the subset generated by applying the virtual crystal operators

fi = (f̂i)
2 for 1 ≤ i < n and fn = f̂nf̂n+1

to the highest weight element v$n⊗v$n+1 . Then V ⊆ V̂ is a virtual crystal for the embedding Bn ↪→ Dn+1

and this crystal is isomorphic to the spin crystal of type Bn.

Proof. One checks using the definition of minuscule crystals that εi(b) = 1
2 ε̂i(b) for 1 ≤ i < n and

εn(b) = ε̂n(b) = ε̂n+1(b) for all b ∈ V , and similarly for ϕi. It follows that V is a virtual crystal.

One can also check that the map Ψ : ΛBn ↪→ ΛDn+1 has Ψ($Bn
n ) = $

Dn+1
n +$

Dn+1

n+1 .

Therefore V is a virtual crystal with the same highest highest weight as the spin crystal of type Bn. Using
Proposition 3.5, one can now deduce that V is isomorphic to this spin crystal.

Corollary 3.9. Each fundamental crystal B$k
has a unique highest weight element with weight $k and

is either a Stembridge crystal (in types An and Dn) or a virtual crystal (in types Bn or Cn).

4 Adjoint crystals

Let Φ be any root system with weight lattice Λ and simple roots {αi : i ∈ I}.

We define an adjoint crystal that is an analogue of the adjoint representation of the corresponding Lie
algebra. This crystal Badjoint consists as a set of formal elements vα for each root α ∈ Φ, along with an
element ṽi for each i ∈ I. Define wt(vα) = α and wt(ṽi) = 0. The crystal operators fi are given by

fi(vα) =


vα−αi

if α− αi ∈ Φ

ṽi if α = αi

0 otherwise

and fi(ṽj) =

{
v−αi

if i = j

0 otherwise.

The crystal operators ei are given by

ei(vα) =


vα+αi

if α+ αi ∈ Φ

ṽi if α = −αi
0 otherwise

and ei(ṽj) =

{
vαi if i = j

0 otherwise.

The string lengths εi and ϕi are given in terms of the crystal operators by the usual seminormal formulas.

Proposition 4.1. The set Badjoint is a seminormal crystal with respect to the operators just given.

6



MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 8

Lemma 4.2. Assume Φ is simply-laced and let α, β ∈ Φ

If α+ kβ ∈ Φ for an integer k > 1, then k = 2 and α = −β.

Proof. Consider the maximal string of roots

α, α+ β, α+ 2β, . . . , α+ kβ ∈ Φ.

Then if rβ is the reflection in the hyperplane orthogonal to β∨, we have rβ(α) = α+ kβ.

Therefore k = 〈α, β∨〉. The intersection of Φ with the vector space spanned by α and β is a root system,
and since α and β have the same length, this intersection is of type A2 or A1×A1 or A1 (when α = ±β).
One checks that in these cases 〈α, β∨〉 ≤ 2, with equality only when α = −β.

Proposition 4.3. Assume Φ is simple-laced. Then Badjoint is a Stembridge crystal.

Proof. By the lemma, the length k of the maximal string of roots

α, α+ β, α+ 2β, . . . , α+ kβ ∈ Φ

is bounded by 1, except when α = −β when k = 2. Thus ϕi(vα) + εi(vα) ≤ 1 except when α = ±αi.

On the other hand ϕi(vα)− εi(vα) = 〈α, α∨i 〉 so we have

ϕi(vα) =


2 if α = αi

1 if 〈α, α∨i 〉 = 1

0 otherwise

and εi(vα) =


2 if α = −αi
1 if 〈α, α∨i 〉 = −1

0 otherwise

.

From these identities, the Stembridge axioms are easy to verify.

For more details, see Section 5.5 in Bump and Schilling’s book.

Question / exercise: in type An−1, what is Badjoint in terms of crystals of tableaux SSYTn(λ)?
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