Lecture 8

1 Last time: Root system embeddings and virtual crystals

Assume $X \hookrightarrow Y$ is one of the following embeddings of Lie algebras / root systems / Cartan types:

- (1) $X = C_n \hookrightarrow A_{2n-1} = Y$,
- (2) $X = B_n \hookrightarrow D_{n+1} = Y$,
- (3) $X = F_4 \hookrightarrow E_6 = Y$, or
- (4) $X = G_2 \hookrightarrow D_4 = Y.$

Let Λ^X , Λ^Y be the corresponding semisimple weight lattices and let Φ^X , Φ^Y be the corresponding root systems. Write α_i^X , α_i^Y and ϖ_i^X , ϖ_i^Y for the corresponding simple roots and fundamental weights. Let I^X and I^Y be the indexing sets for the simple roots (and fundamental weights) in each case. Last time, we specified a particular injective linear map $\Psi : \Lambda^X \to \Lambda^Y$ given by the formula

$$\Psi(\varpi_i^X) = \gamma_i \sum_{j \in \sigma(i)} \varpi_j^Y \quad \text{and} \quad \Psi(\alpha_i^X) = \gamma_i \sum_{j \in \sigma(i)} \alpha_j^Y \quad \text{for } i \in I^X$$
(1.1)

where γ_i are positive integers and σ is a map $I^X \to \{$ nonempty subsets of $I^Y \}$ with $I^Y = \bigsqcup_{i \in I^X} \sigma(i)$. We then gave a definition of *virtual crystals* of type X in terms of γ_i and σ .

Specifically, let $\widehat{\mathcal{V}}$ be a Stembridge crystal of type Y with weight map $\widehat{\mathbf{wt}} : \widehat{\mathcal{V}} \to \Lambda^Y$, crystal operators \widehat{e}_i , \widehat{f}_i , and string lengths $\widehat{\varepsilon}_i$, $\widehat{\varphi}_i$ for $i \in I^Y$. We call $\widehat{\mathcal{V}}$ the *ambient crystal*. Define virtual crystal operators

$$e_i := \prod_{j \in \sigma(i)} (\widehat{e}_j)^{\gamma_i} \quad \text{and} \quad f_i := \prod_{j \in \sigma(i)} \left(\widehat{f}_j\right)^{\gamma_i} \quad \text{for } i \in I^X.$$

Definition 1.1. A subset $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a *virtual crystal* if for each $b \in \mathcal{V}$ and $i \in I^X$ the following holds:

(V1) The string length $\hat{\varepsilon}_i(b)$ has the same value for all $j \in \sigma(i)$ and this value is a multiple of γ_i .

The string length $\widehat{\varphi}_i(b)$ has the same value for all $j \in \sigma(i)$ and this value is a multiple of γ_i .

This lets us define
$$\varepsilon_i(b) := \frac{1}{\gamma_i} \widehat{\varepsilon}_j(b) \in \mathbb{N}$$
 and $\varphi_i(b) := \frac{1}{\gamma_i} \widehat{\varphi}_j(b) \in \mathbb{N}$ for any $j \in \sigma(i)$

(V2) The virtual crystal operators e_i and f_i restrict to maps $\mathcal{V} \to \mathcal{V} \sqcup \{0\}$ and we have

$$\varepsilon_i(b) = \max\{k \ge 0 : e_i^k(b) \ne 0\} \quad \text{and} \quad \varphi_i(b) = \max\{k \ge 0 : f_i^k(b) \ne 0\}.$$

Assume $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal and define $\mathbf{wt} : \mathcal{V} \to \Lambda^X$ by $\mathbf{wt}(b) := \sum_{i \in I^X} (\varphi_i(b) - \varepsilon_i(b)) \, \varpi_i^X$.

We showed last time that $\Psi(\mathbf{wt}(b)) = \widehat{\mathbf{wt}}(b)$ for all $b \in \mathcal{V}$ and that \mathcal{V} is a seminormal crystal of type X. The subsets in the image of the map σ are the orbits of a certain permutation $\mathsf{aut} : I^Y \to I^Y$ that induces an automorphism of the root system Φ^Y and weight lattice Λ^Y , which we also denote by aut .

If \mathcal{V} and $\widehat{\mathcal{V}}$ are both connected, then there exists a bijection $\widehat{\mathcal{V}} \to \widehat{\mathcal{V}}$, which becomes an automorphism of the crystal graph after we permute the edge labels by aut, that fixes every element of \mathcal{V} .

Finally, any highest weight element $u \in \mathcal{V}$ is a highest weight element of $\widehat{\mathcal{V}}$ and $\widehat{\mathbf{wt}}(u) = \operatorname{aut}\left(\widehat{\mathbf{wt}}(u)\right)$.

2 Properties of virtual crystals

We start today by leveraging our setup from last time to prove three "Stembridge-like" properties of virtual crystals. Continue to let $X \hookrightarrow Y$ be one of our four Lie algebra embeddings.

Theorem 2.1. Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ and $\mathcal{W} \subseteq \widehat{\mathcal{W}}$ are virtual crystals for the embedding $X \hookrightarrow Y$.

Then $\mathcal{V} \otimes \mathcal{W} \subseteq \widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ is also a virtual crystal for the embedding $X \hookrightarrow Y$.

Proof. We may assume that all crystals here are connected. The tensor product of Stembridge crystals $\widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ remains a Stembridge crystal, so we just need to check axioms (V1) and (V2).

Fix $i \in I^X$, $v \in \mathcal{V}$, and $w \in \mathcal{W}$.

Since the automorphism **aut** fixes each element of \mathcal{V} and \mathcal{W} while permuting transitively the edge labels $j \in \sigma(i)$, it follows that **aut** also induces an automorphism of the crystal graph of $\widehat{\mathcal{V}} \otimes \widehat{\mathcal{W}}$ after permuting edge labels. Thus $\widehat{\varepsilon}_j(v \otimes w)$ and $\widehat{\varphi}_j(v \otimes w)$ take the same value for all $j \in \sigma(i)$.

Since $\widehat{\mathcal{V}}$ and $\widehat{\mathcal{W}}$ are finite type crystals, the definition of \otimes gives

$$\widehat{\varphi}_{i}(v \otimes w) = \widehat{\varphi}_{i}(v) + \max\{0, \widehat{\varphi}_{i}(w) - \widehat{\varepsilon}_{i}(v)\}$$

for any $j \in I^Y$. By axiom (V1) applied to \mathcal{V} and \mathcal{W} , this means that

$$\widehat{\varphi}_{i}(v \otimes w) = \gamma_{i} \left(\varphi_{i}(v) + \max\{0, \varphi_{i}(w) - \varepsilon_{i}(v)\} \right)$$

whenever $j \in \sigma(i)$. The right side is γ_i times the formula for $\varphi_i(v \otimes w)$ from the definition of \otimes , so we get $\gamma_i \varphi_i(v \otimes w) = \widehat{\varphi}_i(v \otimes w)$ for any $j \in \sigma(i)$ as needed.

It follows similarly that $\gamma_i \varepsilon_i (v \otimes w) = \widehat{\varepsilon}_i (v \otimes w)$ for any $j \in \sigma(i)$, so (V1) holds.

Since tensor products of seminormal crystals are seminormal, to check axiom (V2) it suffices to show that $f_i(v \otimes w)$ is either $f_i(v) \otimes w$ or $v \otimes f_i(w)$, and that $e_i(v \otimes w)$ is either $e_i(v) \otimes w$ or $v \otimes e_i(w)$. We just prove the first property since the argument for e_i is similar.

If $\gamma_i = 1$ then f_i is a product of distinct commuting crystal operators \hat{f}_j so the desired claim is easy to check directly. Assume $\gamma_i > 1$. After reviewing our definitions of γ_i and σ from last lecture, one finds that in this case $\sigma(i) = \{j\}$ always consists of a single element. Therefore

$$f_i(v \otimes w) = (\widehat{f_j})^{\gamma_i}(v \otimes w) = \begin{cases} (\widehat{f_j})^{\gamma_i}(v) \otimes w & \text{if } \widehat{\varphi_j}(w) \le \widehat{\varepsilon_j}(v), \\ v \otimes (\widehat{f_j})^{\gamma_i}(w) & \text{if } \widehat{\varphi_j}(w) \ge \widehat{\varepsilon_j}(v) + \gamma_i. \end{cases}$$

We cannot have $\widehat{\varepsilon}_j(v) < \widehat{\varphi}_j(w) < \widehat{\varepsilon}_j(v) + \gamma_i$ since $\widehat{\varepsilon}_j(v)$ and $\widehat{\varphi}_j(w)$ are multiples of γ_i by axiom (V1). Thus $f_i(v \otimes w) \in \{f_i(v) \otimes w, v \otimes f_i(w)\}$ as needed and we conclude that (V2) holds for $\mathcal{V} \otimes \mathcal{W}$.

Theorem 2.2. Suppose $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal for the embedding $X \hookrightarrow Y$.

If \mathcal{V} is connected (as a crystal of type X) then it has a unique highest weight element.

Proof. The connected virtual crystal \mathcal{V} is contained in a full subcrystal the Stembridge crystal $\hat{\mathcal{V}}$, which has a unique highest weight element. This must also be the unique highest weight element of \mathcal{V} since any highest weight element for \mathcal{V} is a highest weight element for $\hat{\mathcal{V}}$.

Theorem 2.3. Suppose $\mathcal{V}, \mathcal{V}' \subseteq \widehat{\mathcal{V}}$ are two connected virtual crystals whose unique highest weight elements have the same weight. Then \mathcal{V} and \mathcal{V}' are isomorphic as type X crystals.

Proof. Let $u \in \mathcal{V}$ and $u' \in \mathcal{V}'$ be the relevant highest weight elements.

Since $\mathbf{wt}(u) = \mathbf{wt}(u') \in \Lambda^X$ we also have $\widehat{\mathbf{wt}}(u) = \Psi(\mathbf{wt}(u)) = \Psi(\mathbf{wt}(u')) = \widehat{\mathbf{wt}}(u') \in \Lambda^Y$.

The elements u and u' are highest weights in the Stembridge crystal $\hat{\mathcal{V}}$, so they belong to isomorphic (Stembridge) full subcrystals.

This means that \mathcal{V} and \mathcal{V}' are generated by elements of equal weight in isomorphic full subcrystals with the same crystal operators, so we must have $\mathcal{V} \cong \mathcal{V}'$.

3 Fundamental crystals

We turn our attention to the classical Cartan types A_n , B_n , C_n , and D_n .

Assume Φ is a root system of one of these types and Λ is a corresponding weight lattice. As usual write $\{\alpha_i : i \in I\}$ and $\{\overline{\omega}_i : i \in I\}$ for the simple roots and fundamental weights. We assume Λ is simply-connected is the sense that $\Lambda = \mathbb{R}$ -span $\{\overline{\omega}_i : i \in I\}$.

We have $\varpi_i = \mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_i$ in all cases except in type B_n when i = n or type D_n when $i \in \{n-1, n\}$. In type B_n one has $\varpi_n = \frac{1}{2}(\mathbf{e}_1 + \dots + \mathbf{e}_n)$. In type D_n , one has $\varpi_{n-1} = \frac{1}{2}(\mathbf{e}_1 + \dots + \mathbf{e}_{n-1} - \mathbf{e}_n)$ and $\varpi_n = \frac{1}{2}(\mathbf{e}_1 + \dots + \mathbf{e}_{n-1} + \mathbf{e}_n)$. We refer to these exceptions as *spin fundamental weights*.

Let \mathbb{B} be the standard crystal associated to (Φ, Λ) and recall that an element b of a crystal is a highest weight element of $e_i(b) = 0$ for all i.

Proposition 3.1. Each full subcrystal of the tensor power $\mathbb{B}^{\otimes m}$ has a unique highest weight element.

Proof. In types A_n and D_n , this holds because \mathbb{B} is a Stembridge crystal.

In the remaining types, by the theorems in the previous section, it suffices to show that \mathbb{B} is isomorphic to a virtual crystal for the appropriate root system embedding.

In type C_n , the standard crystal \mathbb{B} can be realized as a virtual crystal for the embedding $C_n \hookrightarrow A_{2n-1}$ by taking $\widehat{\mathcal{V}} = \text{SSYT}_{2n}(\lambda)$ for $\lambda = 1^{2n-2}2$ and letting \mathcal{V} be generated by the highest weight element

$$T = \boxed{\begin{array}{c|c} 1 & 1 \\ \hline 2 \\ \hline \vdots \\ \hline 2n-1 \end{array}} \in \mathrm{SSYT}_{2n}(\lambda)$$

under the crystal operators $f_i = \hat{f}_i \hat{f}_{2n-i}$ for $1 \le i < n$ and $f_n = (\hat{f}_n)^2$.

Applying $f_i \cdots f_2 f_1$ to T has the effect of adding 1 to the last *i* boxes in the first column and adding *i* to the second box in the first row. Applying $f_{n-i} \cdots f_{n-2} f_{n-1}$ to $f_n \cdots f_2 f_1(T)$ then continues to add 1 to successive boxes in the first column while also adding to the second box in the first row. We discussed this construction for n = 2 in the previous lecture.

In type B_n , the standard crystal \mathbb{B} can be realized as a virtual crystal for the embedding $B_n \hookrightarrow D_{n+1}$ by taking $\hat{\mathcal{V}}$ to be the tensor product two copies of the standard crystal for type D_{n+1} and letting \mathcal{V} be generated by the highest weight element $[1] \otimes [1]$ under $f_i = (\hat{f}_i)^2$ for $1 \le i < r$ and $f_r = \hat{f}_r \hat{f}_{r+1}$.

See Figure 5.4 in Bump and Schilling's book for an example of this construction when n = 2.

More details are needed to thoroughly check that the virtual crystals just described are in fact isomorphic to the standard crystals in types B_n and C_n . But this is a completely straightforward exercise, using the signature rule in type $C_n \hookrightarrow A_{2n-1}$ or the definition of the tensor product in type $B_n \hookrightarrow D_{n+1}$. \Box

Our next goal is to construct a "fundamental crystal" \mathcal{B}_{ϖ_i} with unique highest weight ϖ_i for each $i \in I$. This is accomplished for the first fundamental prior to be acting \mathcal{B}_{ϖ_i} .

This is accomplished for the first fundamental weight by setting $\mathcal{B}_{\varpi_1} = \mathbb{B}$, since in all four classical types, the crystal \mathbb{B} itself has unique highest weight element \square with weight $\varpi_1 = \mathbf{e}_1$.

The following proposition covers almost all of the remaining weights:

Proposition 3.2. If $k \in \{1, 2, ..., n\}$ and ϖ_k is not a spin fundamental weight in types B_n or D_n , then $\mathbb{B}^{\otimes k}$ has a full subcrystal with a unique highest weight element of weight $\varpi_k = \mathbf{e}_1 + \cdots + \mathbf{e}_k$.

Proof. We need to exhibit $u \in \mathbb{B}^{\otimes k}$ with $\mathbf{wt}(u) = \varpi_k = \mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_k$ and $e_i(u) = 0$ for all $i \in I$. Since we dealing with seminormal crystals, the second condition is equivalent to $\varepsilon_i(u) = 0$ for all $i \in I$. The element $u = [k] \otimes \dots \otimes [2] \otimes [1] \in \mathbb{B}^{\otimes k}$ has the right weight, and one can show by induction that

$$\varepsilon_i(u) = \max_{1 \le j \le k} \left(\sum_{h=1}^j \varepsilon_i(\underline{h}) - \sum_{h=1}^{j-1} \varphi_i(\underline{h}) \right).$$

Since $\varepsilon_i(\boxed{1}) = 0$ we can rewrite this as $\varepsilon_i(u) = \max_{1 \le j \le k} \left(\sum_{h=1}^{j-1} \left(\varepsilon_i(\boxed{h+1}) - \varphi_i(\boxed{h}) \right) \right)$. This expression is always zero, as needed, since $\varepsilon_i(\boxed{h+1}) = \varphi_i(\boxed{h}) \in \{0,1\}$ in all of our standard crystals.

No full subcrystal of $\mathbb{B}^{\otimes k}$ has highest weight ϖ_k when ϖ_k is one of the spin fundamental weights in type B_n or D_n because all weights for $\mathbb{B}^{\otimes k}$ are in \mathbb{Z}^n , which does not contain either of the spin weights. \Box

To complete our construction of fundamental crystals for all fundamental weights, we need to identify "spin" crystals corresponding to ϖ_n in type B_n and to ϖ_{n-1} and ϖ_n in type D_n . We will provide such crystals using *minuscule weights*, which are defined as follows.

A weight $\lambda \in \Lambda$ is *minuscule* if $\langle \lambda, \alpha^{\vee} \rangle \in \{-1, 0, 1\}$ for all $\alpha \in \Phi$, where $\alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$.

Here is the classification of the minuscule fundamental weights in the irreducible Cartan types:

- In type A_n , all fundamental weights are minuscule.
- In type B_n , only the spin fundamental weight $\varpi_n = \frac{1}{2}(\mathbf{e}_1 + \cdots + \mathbf{e}_n)$ is minuscule.
- In type C_n , only $\varpi_1 = \mathbf{e}_1$ is minuscule.
- In type D_n , both $\varpi_1 = \mathbf{e}_1$ and the spin fundamental weights $\frac{1}{2}(\mathbf{e}_1 + \cdots + \mathbf{e}_{n-1} \pm \mathbf{e}_n)$ are minuscule.
- In type E_6 , there are two minuscule fundamental weights (ϖ_1, ϖ_6 in Bump and Schilling's notation).
- In type E_7 , there is just one minuscule fundamental weight (ϖ_7 in Bump and Schilling's notation).
- In types F_4 , G_2 , and E_8 , there are no minuscule fundamental weights.

As a set, \mathcal{M}_{λ} consists of elements v_{μ} indexed by the weights $\mu \in \{w \cdot \lambda : w \in W\}$ in the *W*-orbit of λ . The crystal operators $f_i, e_i : \mathcal{M}_{\lambda} \to \mathcal{M}_{\lambda} \sqcup \{0\}$ for $i \in I$ are given by the formulas

$$f_i(v_{\mu}) = \begin{cases} v_{\mu-\alpha_i} & \text{if } \langle \mu, \alpha_i^{\vee} \rangle = 1\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad e_i(v_{\mu}) = \begin{cases} v_{\mu+\alpha_i} & \text{if } \langle \mu, \alpha_i^{\vee} \rangle = -1\\ 0 & \text{otherwise.} \end{cases}$$

The weight map for \mathcal{M}_{λ} is $\mathbf{wt}(v_{\mu}) = \mu$.

Example 3.3. Let's consider the B_n case of \mathcal{M}_{λ} where $\lambda = \varpi_n = \frac{1}{2}(\mathbf{e}_1 + \dots + \mathbf{e}_n)$. The weights that can appear in the *W*-orbit of λ are $\mu = \frac{1}{2} \sum_{i=1}^n \epsilon_i \mathbf{e}_i$ where $\epsilon_i = \pm$. Write this weight as the sequence of signs $\epsilon_1 \epsilon_2 \cdots \epsilon_n$ and the element $v_{\mu} \in \mathcal{M}_{\lambda}$ as $\epsilon_1 \epsilon_2 \cdots \epsilon_n$. For example, + + - denotes v_{μ} for $\mu = \frac{1}{2}(\mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3)$.

The crystal graph of this example for n = 3 is shown below:

Proposition 3.4. Continue to assume $\lambda \in \Lambda^+$ is minuscule. Then there is a unique seminormal crystal structure on \mathcal{M}_{λ} for the crystal operators and weight map just given. In this structure, v_{λ} is the unique highest weight element.

We omit the proof of this proposition, which is a routine exercise

Proposition 3.5. Continue to assume $\lambda \in \Lambda^+$ is minuscule. Let \mathcal{B} be a seminormal crystal with a highest weight element u such that $\mathbf{wt}(u) = \lambda$. Assume \mathcal{B} has the property that no two elements have the same weight. Then there is a unique crystal morphism $\psi : \mathcal{M}_{\lambda} \to \mathcal{B}$ with $\psi(v_{\lambda}) = u$.

Proof. By results in Lecture 5, these assumptions imply that \mathcal{B} has a unique element b_{μ} of weight μ for every μ in the W-orbit of λ . The desired morphism is the map $\psi(v_{\mu}) = b_{\mu}$.

Proposition 3.6. Suppose Φ is a simply-laced root system and $\lambda \in \Lambda^+$ is a minuscule dominant weight. Then \mathcal{M}_{λ} is a Stembridge crystal.

Proof. One must show that every branched subcrystal of \mathcal{M}_{λ} of types A_2 or $A_1 \times A_1$ is a Stembridge crystal. The connected components of such subcrystals satisfy the conditions of the previous proposition, so they are isomorphic to twists of minuscule crystals of types A_2 or $A_1 \times A_1$.

It is easy to work out the latter crystals explicitly: in type A_2 they are isomorphic to twists of $SSYT_3(\lambda)$ for $\lambda = (1)$ and $\lambda = (1, 1)$, and something similar happens in type $A_1 \times A_1$. In either cases all crystals in sight are Stembridge crystals.

We can now list explicit constructions of fundamental crystals:

Definition 3.7. For the spin fundamental weights ϖ_k in types B_n and D_n , we take $\mathcal{B}_{\varpi_k} = \mathcal{M}_{\varpi_k}$ to be the corresponding fundamental crystal. We refer to \mathcal{B}_{ϖ_k} in these cases as a *spin crystal*.

For the other fundamental weights ϖ_k we take \mathcal{B}_{ϖ_k} to be the full subcrystal described in Proposition 3.2. The crystals \mathcal{B}_{ϖ_k} will be called the *fundamental crystals* of classical type.

If ϖ_k is not a spin weight then \mathcal{B}_{ϖ_k} is a Stembridge crystal or a virtual crystal (as full subcrystal of $\mathbb{B}^{\otimes k}$). If ϖ_k is a spin weight for type D_n then \mathcal{B}_{ϖ_k} is a Stembridge crystal by the previous proposition. Finally, if ϖ_k is the spin weight for type B_n then \mathcal{B}_{ϖ_k} is a virtual crystal:

Proposition 3.8. Let $\widehat{\mathcal{V}} = \mathcal{B}_{\varpi_n} \otimes \mathcal{B}_{\varpi_{n+1}}$ be the tensor product of the spin crystals for type D_{n+1} .

Let $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ be the subset generated by applying the virtual crystal operators

$$f_i = (\widehat{f}_i)^2$$
 for $1 \le i < n$ and $f_n = \widehat{f}_n \widehat{f}_{n+1}$

to the highest weight element $v_{\varpi_n} \otimes v_{\varpi_{n+1}}$. Then $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ is a virtual crystal for the embedding $B_n \hookrightarrow D_{n+1}$ and this crystal is isomorphic to the spin crystal of type B_n .

Proof. One checks using the definition of minuscule crystals that $\varepsilon_i(b) = \frac{1}{2}\widehat{\varepsilon}_i(b)$ for $1 \leq i < n$ and $\varepsilon_n(b) = \widehat{\varepsilon}_n(b) = \widehat{\varepsilon}_{n+1}(b)$ for all $b \in V$, and similarly for φ_i . It follows that \mathcal{V} is a virtual crystal.

One can also check that the map $\Psi: \Lambda^{B_n} \hookrightarrow \Lambda^{D_{n+1}}$ has $\Psi(\varpi_n^{B_n}) = \varpi_n^{D_{n+1}} + \varpi_{n+1}^{D_{n+1}}$.

Therefore \mathcal{V} is a virtual crystal with the same highest highest weight as the spin crystal of type B_n . Using Proposition 3.5, one can now deduce that \mathcal{V} is isomorphic to this spin crystal.

Corollary 3.9. Each fundamental crystal \mathcal{B}_{ϖ_k} has a unique highest weight element with weight ϖ_k and is either a Stembridge crystal (in types A_n and D_n) or a virtual crystal (in types B_n or C_n).

4 Adjoint crystals

Let Φ be any root system with weight lattice Λ and simple roots $\{\alpha_i : i \in I\}$.

We define an *adjoint crystal* that is an analogue of the adjoint representation of the corresponding Lie algebra. This crystal $\mathcal{B}_{adjoint}$ consists as a set of formal elements v_{α} for each root $\alpha \in \Phi$, along with an element \tilde{v}_i for each $i \in I$. Define $\mathbf{wt}(v_{\alpha}) = \alpha$ and $\mathbf{wt}(\tilde{v}_i) = 0$. The crystal operators f_i are given by

$$f_i(v_{\alpha}) = \begin{cases} v_{\alpha-\alpha_i} & \text{if } \alpha - \alpha_i \in \Phi\\ \tilde{v}_i & \text{if } \alpha = \alpha_i\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad f_i(\tilde{v}_j) = \begin{cases} v_{-\alpha_i} & \text{if } i = j\\ 0 & \text{otherwise} \end{cases}$$

The crystal operators e_i are given by

$$e_i(v_{\alpha}) = \begin{cases} v_{\alpha+\alpha_i} & \text{if } \alpha + \alpha_i \in \Phi\\ \tilde{v}_i & \text{if } \alpha = -\alpha_i\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad e_i(\tilde{v}_j) = \begin{cases} v_{\alpha_i} & \text{if } i = j\\ 0 & \text{otherwise} \end{cases}$$

The string lengths ε_i and φ_i are given in terms of the crystal operators by the usual seminormal formulas.

Proposition 4.1. The set $\mathcal{B}_{adjoint}$ is a seminormal crystal with respect to the operators just given.

Lemma 4.2. Assume Φ is simply-laced and let $\alpha, \beta \in \Phi$ If $\alpha + k\beta \in \Phi$ for an integer k > 1, then k = 2 and $\alpha = -\beta$.

Proof. Consider the maximal string of roots

 $\alpha, \alpha + \beta, \alpha + 2\beta, \dots, \alpha + k\beta \in \Phi.$

Then if r_{β} is the reflection in the hyperplane orthogonal to β^{\vee} , we have $r_{\beta}(\alpha) = \alpha + k\beta$.

Therefore $k = \langle \alpha, \beta^{\vee} \rangle$. The intersection of Φ with the vector space spanned by α and β is a root system, and since α and β have the same length, this intersection is of type A_2 or $A_1 \times A_1$ or A_1 (when $\alpha = \pm \beta$). One checks that in these cases $\langle \alpha, \beta^{\vee} \rangle \leq 2$, with equality only when $\alpha = -\beta$.

Proposition 4.3. Assume Φ is simple-laced. Then $\mathcal{B}_{adjoint}$ is a Stembridge crystal.

Proof. By the lemma, the length k of the maximal string of roots

$$\alpha, \alpha + \beta, \alpha + 2\beta, \dots, \alpha + k\beta \in \Phi$$

is bounded by 1, except when $\alpha = -\beta$ when k = 2. Thus $\varphi_i(v_\alpha) + \varepsilon_i(v_\alpha) \le 1$ except when $\alpha = \pm \alpha_i$. On the other hand $\varphi_i(v_\alpha) - \varepsilon_i(v_\alpha) = \langle \alpha, \alpha_i^{\vee} \rangle$ so we have

$$\varphi_i(v_{\alpha}) = \begin{cases} 2 & \text{if } \alpha = \alpha_i \\ 1 & \text{if } \langle \alpha, \alpha_i^{\vee} \rangle = 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \varepsilon_i(v_{\alpha}) = \begin{cases} 2 & \text{if } \alpha = -\alpha_i \\ 1 & \text{if } \langle \alpha, \alpha_i^{\vee} \rangle = -1 \\ 0 & \text{otherwise} \end{cases}$$

From these identities, the Stembridge axioms are easy to verify.

For more details, see Section 5.5 in Bump and Schilling's book.

Question / exercise: in type A_{n-1} , what is $\mathcal{B}_{adjoint}$ in terms of crystals of tableaux SSYT_n(λ)?