
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 9

1 Last time: properties of virtual crystals, specific constructions

For each embedding X ↪→ Y or type Cn ↪→ A2n−1 or Bn ↪→ Dn+1 or F4 ↪→ E6 or G2 ↪→ D4 we have a

notion of a virtual crystal. A virtual crystal V of type X is a subset of a Stembridge crystal V̂ of type Y .
This subset must be preserved by certain virtual crystal operators along with some other axioms.

We skip the precise definitions today, and just review three key properties proved last time:

Theorem 1.1. If V ⊆ V̂ and W ⊆ Ŵ are virtual crystals of type X ↪→ Y then so is V ⊗W ⊆ V̂ ⊗ Ŵ.

Theorem 1.2. Each connected virtual crystal has a unique highest weight element.

Theorem 1.3. If V,V ′ ⊆ V̂ are connected virtual crystals with the same highest weights then V ∼= V ′.

Last time, we also discussed fundamental crystals, minuscule crystals, and adjoint crystals.

Let (Φ,Λ) be a Cartan type with simple roots {αi : i ∈ I} and fundamental weights {$i : i ∈ I}.

A weight λ ∈ Λ is minuscule if 〈λ, α∨〉 ∈ {−1, 0, 1} for all α ∈ Φ, where α∨ = 2α
〈α,α〉 .

Suppose λ ∈ Λ+ is minuscule. Recall that W = 〈si : i ∈ I〉 where si = rαi : x 7→ x− 〈x, α∨i 〉αi.

Let Mλ be the set of elements vµ indexed by the weights µ ∈ {w · λ : w ∈W} in the W -orbit of λ.

Let wt(vµ) = µ and define crystal operators fi, ei :Mλ →Mλ t {0} for i ∈ I by the formulas

fi(vµ) =

{
vµ−αi

if 〈µ, α∨i 〉 = 1

0 otherwise
and ei(vµ) =

{
vµ+αi

if 〈µ, α∨i 〉 = −1

0 otherwise.

There is a seminormal crystal structure on Mλ for these operators; call this a minuscule crystal.

Proposition 1.4. If Φ is a simply-laced root system then Mλ is a Stembridge crystal.

Assume Λ = R-span{$i : i ∈ I} is simply-connected. Let B be the standard crystal for (Φ,Λ).

Usually $k = e1 + e2 + · · ·+ ek, but in types Bn and Dn are there are a few spin fundamental weights:

$Bn
n = 1

2 (e1 + · · ·+ en), $Dn
n−1 = 1

2 (e1 + · · ·+ en−1 − en), $Dn
n = 1

2 (e1 + · · ·+ en−1 + en).

Last time, we introduced fundamental crystals B$k
in all classical types for each fundamental weight $k:

• For the spin fundamental weights $k in types Bn and Dn, we defined B$k
=M$k

.

• Otherwise we defined B$k
to be the full subcrystal generated by k ⊗ · · · ⊗ 2 ⊗ 1 ∈ B⊗k.

Proposition 1.5. Each fundamental crystal B$k
has a unique highest weight element with weight $k

and is either a Stembridge crystal (in types An and Dn) or a virtual crystal (in types Bn or Cn).

Finally, we defined a seminormal crystal Badjoint consisting as a set of formal elements vα for each α ∈ Φ,
along with an element ṽi for each i ∈ I. The weight map has wt(vα) = α and wt(ṽi) = 0, and we set

fi(vα) =


vα−αi

if α− αi ∈ Φ

ṽi if α = αi

0 otherwise

and fi(ṽj) =

{
v−αi

if i = j

0 otherwise.

with similar formulas for the ei operators. (The fi’s determine the ei’s and vice versa in any crystal.)

Proposition 1.6. If Φ is a simple-laced root system then Badjoint is a Stembridge crystal.
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2 Fundamental crystals in exceptional types

Besides the irreducible root systems of classical types An, Bn, Cn, and Dn, there are five exceptional
roots systems of types E6, E7, E8, F4, and G2. Let Φ be one of these exceptional root systems.

Let Λ be a weight lattice for this root system.

Assume Λ is simply-connected, i.e., spanned by the fundamental weights {$i : i ∈ I}.

One can likewise define fundamental crystals B$k
with unique highest weight $k.

The relevant constructions are summarized as follows:

• In type E6, there are six fundamental weights $k, indexed by k ∈ {1, 2, 3, 4, 5, 6}. For two of these
(indices k = 1 and k = 6 in Bump and Schilling’s notation), one realizes B$k

=M$k
as a minuscule

crystal. The remaining fundamental crystals B$k
are then defined as certain full subcrystals

B$2
⊂ B$1

⊗ B$6
, B$3

⊂ B$1
⊗ B$1

, B$4
⊂ B$6

⊗ B$6
, and B$5

⊂ B$1
⊗ B$6

⊗ B$1
.

• In type E7, there are seven fundamental weights $k, indexed by k ∈ {1, 2, 3, 4, 5, 6, 7}. For the last
of these (in Bump and Schilling’s notation), one sets B$7 = M$7 . The remaining fundamental
crystals B$k

are then defined as certain full subcrystals

B$1 ,B$6 ⊂ (B$7)⊗2, B$2 ,B$5 ⊂ (B$7)⊗3, and B$3 ,B$4 ⊂ (B$7)⊗4.

• In type E8, there are eight fundamental weights $k, indexed by k ∈ {1, 2, 3, 4, 5, 6, 7, 8}. For the
last of these (in Bump and Schilling’s notation), one realizes B$8

= Badjoint as the adjoint crystal
for the corresponding root system. The remaining fundamental crystals B$k

are then defined as
certain full subcrystals of tensor powers (Badjoint)⊗q for q = 2, 3, 4, 5.

• In type F4, there are four fundamental weights $1, $2, $3, $4. The last fundamental crystal B$4

is defined as a certain virtual crystal inside B$1
⊗B$6

=M$1
⊗M$6

for the embedding F4 ↪→ E6.
The remaining fundamental crystals are given as full subcrystals of tensor powers of B$4 .

• In type G2, there are just two fundamental weights $1 and $2. The fundamental crystal B$1
is

defined as a certain virtual crystal inside B$1 ⊗B$3 ⊗B$4 for the embedding G2 ↪→ D4. The other
fundamental crystal is a full subcrystal of B$1 ⊗ B$1 .

More complete details about these constructions appear in Section 5.6 of Bump and Schilling’s book.

The key point is that for each fundamental weight $k in each type, we have a crystal B$k
such that:

• B$k
is connected with a unique highest weight element whose weight is $k ∈ Λ.

• B$k
is a Stembridge crystal in simply-laced types A, D, E.

• B$k
is a virtual crystal in the remaining types B, C, F, G.

Important point: our seemingly ad hoc definitions of these crystals are actually canonical, because the
isomorphism class of a connected Stembridge or virtual crystal is uniquely determined by its highest
weight. Thus, the properties just listed uniquely determine the crystals B$k

up to isomorphism.

3 Normal crystals for general Cartan types

Recall that twisting a crystal B of type (Φ,Λ) refers to shifting the values of the weight map by some
fixed element of Λ that is orthogonal to every root in Φ.

The axioms of a Stembridge crystal are preserved under twisting. However, our definition of a virtual
crystal required (Φ,Λ) to be semisimple (meaning that the ambient space V is spanned by Φ ⊂ Λ).
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To remove this requirement, we define a crystal of Cartan type Bn, Cn, G2, or F4 (with any weight
lattice) to be virtualizable if its isomorphic to a twist of a virtual crystal.

Explicitly, a crystal B of one of these types is virtualizable if there exists some weight η ∈ Λ that is
orthogonal to all simple roots such that wt(b) + η ∈ RΦ for all b ∈ B.

Definition 3.1. Suppose B is a crystal of Cartan type (Φ,Λ). If the root system Φ is irreducible, then
we define B to be normal if it is either a Stembridge crystal or a virtualizable crystal.

If the root system Φ is reducible, then (Φ,Λ) decomposes as a product of a finite number of irreducible
Cartan types, and we define B to be normal if it is a direct product of normal crystals for each irreducible
factor.

The motivation for this definition comes from results of Kashiwara in the 1990s, which show that normal
crystals are isomorphic to the “crystal bases” of representations of quantized enveloping algebras.

Later in the course, we will see that the characters of connected normal crystals are exactly the characters
of the corresponding irreducible Lie group representation with the same highest weight.

We confine our attention today to the nice algebraic properties of the class of normal crystals, which one
should expect from these connections to representation theory.

Theorem 3.2. Fix a Cartan type (Φ,Λ).

The class of normal crystals for this type is closed under tensor products and twisting.

Every normal crystal is seminormal. Every full subcrystal of a normal crystal is normal.

Every connected normal crystal has a unique highest weight element.

(The weight of a highest weight element is always in the set of dominant weights Λ+.)

For any λ ∈ Λ+, there is a unique isomorphism class of connected normal crystals with highest weight λ.

Proof. It is enough to consider the case when (Φ,Λ) is an irreducible Cartan type.

The only part of the theorem that has not been shown in earlier lectures is the last claim, that for any
dominant weight λ ∈ Λ+ there exists a connected normal crystal with unique highest weight λ.

If λ = $i is a fundamental weight then the fundamental crystal B$i
is a crystal with the desired property.

Suppose λ ∈ Λ+ is an arbitrary dominant weight and let λ′ =
∑
i∈I ci$i where ci = 〈λ, α∨i 〉.

If u$i is the highest weight element of B$i then
⊗

i∈I u
⊗ci
$i

is a highest weight element in
⊗

i∈I B⊗ci$i
.

This element generates a full subcrystal Bλ′ with unique highest weight λ′.

As a subcrystal of a tensor product of normal crystals, Bλ′ is normal.

We can twist Bλ′ by η = λ− λ′ since η is orthogonal to all simple (co)roots.

The twisted crystal Bλ is then connected and normal with unique highest weight λ, as needed.

As with Stembridge crystals, we can detect a normal crystal from its subcrystals of rank two:

Theorem 3.3. Let B be a finite crystal for a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}.

Suppose that for all distinct indices i, j ∈ I, the branched subcrystal BJ for J = {i, j} is normal as a
crystal for the rank two root system ΦJ generated by αi and αj . Then B is normal.

Proof. Here is a sketch of the proof from Bump and Schilling’s book (Theorem 5.21).

Every normal crystal is seminormal, so our hypotheses imply that B is seminormal.
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Let uλ be a highest weight element of B with weight λ.

Let B′ be a connected normal crystal with highest weight λ. Write u′λ for its highest weight element.

Consider pairs of subsets (Ω,Ω′) with uλ ∈ Ω ⊆ B and u′λ ∈ Ω′ ⊆ B′ equipped with a bijection Ω → Ω′,
written x 7→ x′, such that:

• We always have wt(x) = wt(x′).

• We have uλ 7→ u′λ.

• If x ∈ Ω and ei(x) 6= 0 then ei(x) ∈ Ω and (ei(x))′ = ei(x
′) ∈ Ω′.

There is at least one such pair: take Ω = {uλ} and Ω′ = {u′λ}.

So we can assume that (Ω,Ω′) is chosen such that Ω is as large as possible. We will argue that Ω′ = B′
in order to conclude that the full subcrystal of B containing uλ is isomorphic to B′ and therefore normal.

Suppose Ω′ ( B′ and w′ ∈ B′ \ Ω′ is maximal under the order generated by w′ ≺ ei(w′).

We will show that this contradicts our assumption of maximality.

Since w′ 6= u′λ, there is an index i with ei(w
′) 6= 0, and we must have y′ := ei(w

′) ∈ Ω′.

Let y ∈ Ω be the preimage of y′. It is straightforward to check that εi(y) = εi(y
′), and since our crystals

are seminormal and the bijection Ω→ Ω′ is weight-preserving, it follows that ϕi(y) = ϕi(y
′).

Since fi(y
′) = w′ 6= 0, we have ϕi(y) = ϕi(y

′) > 0, so y = ei(w) for some w ∈ B \ Ω.

The next step in the proof is to show that our construction of w does not depend on the choice of i ∈ I.
This is not hard to show using the assumption that BJ is normal for any subset J = {i, j} ⊂ I.

Since w does not depend on the choice of i ∈ I, it follows that we can extend the map Ω → Ω′ to a
bijection Ωt {w} → Ω′ t {w′} retaining the desired properties. As this contradicts the maximality of Ω,
we must have Ω′ = B′ as claimed.

To state our last general property of normal crystals, we need to clarify our definition of virtual crystals
for reducible Cartan types. Consider the situation in which B is a crystal of simply-laced Cartan type X
and let Y = X ×X. Then Y is also a simply-laced Cartan type.

Let IX be the index set for X. The index set for Y = I1 t I2 is the disjoint union of two copies I1 and
I2 of IX . If i ∈ IX then we denote by i1 and i2 the corresponding elements of I1 and I2.

Define σ : IX → { subsets of IY } by σ(i) = {i1, i2} and set γi = 1 for all i ∈ IX . Finally let B̂ = B ×B;

this is a crystal of type Y . We then consider V = {(u, u) : u ∈ B} to be a virtual crystal inside V̂.

The setup here is identical to what we did for virtual crystals in Lecture 7, except now X is simply-laced.

With these conventions in place, the following is straightforward:

Theorem 3.4. The class of normal crystals is preserved by Levi branching.

4 Similarity of crystals

Fix an arbitrary Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}.

For each λ ∈ Λ+, let Bλ be a connected normal crystal of type (Φ,Λ) with unique highest weight λ.

Proposition 4.1. Suppose λ, µ ∈ Λ+. Then there exists a crystal embedding Bλ+µ ↪→ Bλ ⊗ Bµ.
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Proof. Let uλ and uµ be the highest weight elements in Bλ and Bµ respectively.

Then uλ ⊗ uµ is a highest weight element in Bλ ⊗ Bµ since εi(uλ ⊗ uµ) = 0 for i ∈ I.

The connected component containing this highest weight element is normal.

This full subcrystal is therefore isomorphic to Bλ+µ since λ+ µ = wt(uλ ⊗ uµ).

Fix a positive integer n and a dominant λ ∈ Λ+.

Suppose S : Bλ → Bnλ is a map such that wt(S(v)) = nwt(v) and

ϕi(S(v)) = nϕi(v), εi(S(v)) = nεi(v), S(ei(v)) = eni (S(v)), S(fi(v)) = fni (S(v)) (4.1)

for all v ∈ Bλ and i ∈ I. One calls S a similarity map of degree n.

If a similarity map Bλ → Bnλ exists then it is unique since it must preserve highest weight elements.

The main application of similarity maps is to show that two of the original approaches to crystals from
representation theory coincide. Namely, crystals obtained by the so-called Littelmann path method are
the same as those derived from crystal bases of representations. To reach this conclusion one needs to
show that similarity maps exist for all normal crystals and all Cartan types.

Here are some preliminary results in this direction:

Proposition 4.2. Suppose that Sλ : Bλ → Bnλ and Sµ : Bµ → Bnµ are similarity maps of degree n.

Then there exists a similarity map Bλ+µ → Bn(λ+µ).

Proof. We can identify the crystal Bλ+µ with a full subcrystal of Bλ ⊗ Bµ.

We argue that the desired similarity map S : Bλ+µ → Bn(λ+µ) is defined by

S(u⊗ v) = Sλ(u)⊗ Sµ(v).

It is clear that wt(S(u⊗ v)) = nwt(u) + nwt(v) = nwt(u⊗ v). Next, observe that

ϕi(S(u⊗ v)) = ϕi(Sλ(u)⊗ Sµ(v)) = max {ϕi(Sλ(u)), ϕi(Sλ(u)) + ϕi(Sµ(v))− εi(Sλ(u))}

by the definition of string lengths for tensor products of seminormal crystals.

Substituting the identities in (4.1) shows that ϕi(S(u⊗ v)) = nϕi(u⊗ v) as needed.

It follows similarly that εi(S(u⊗ v)) = nεi(u⊗ v). Finally, we have

fni (Sλ(u)⊗ Sµ(v)) =

{
fni (Sλ(u))⊗ Sµ(v) if ϕi(Sµ(v)) ≤ εi(Sλ(u))

Sλ(u)⊗ fni (Sµ(v)) if ϕi(Sµ(v)) ≥ εi(Sλ(u)) + n.

We cannot have εi(Sλ(u)) < ϕi(Sµ(v)) < εi(Sλ(u)) + n since all string lengths are multiples of n.

Since fni (Sλ(u))⊗ Sµ(v) = S(fi(u)⊗ v) and Sλ(u)⊗ fni (Sµ(v)) = S(u⊗ fi(v)), it follows that

S(fi(u⊗ v)) = fni (S(u⊗ v))

as needed. The required identity for ei follows similarly.

Proposition 4.3. If (Φ,Λ) is of type An, then any Bλ has a similarity map for any degree m > 0.

Proof. Write B = Bn+1 for the standard crystal of type An (i.e., GL(n+ 1)).

Then Bλ is isomorphic to a full subcrystal of B⊗k for some k.

By the previous result, it is enough to show that B = B$1
has a similarity map to Bm$1

.

It is easy and instructive to check that the map i 7→ i i · · · i ∈ SSYTn+1((m)) is such a map.
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