
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 10

1 Review from last time

1.1 Normal crystals for general Cartan types

Twisting a crystal means shifting the values of the weight map by a fixed weight orthogonal to all roots.

In simply-laced types (A, D, E) we have a class of Stembridge crystals, which is preserved by twisting.

In non-simply laced types (B, C, F, G) we define a virtualizable crystal to be a twist of a virtual crystal.

A Cartan type (Φ,Λ) is irreducible if the root system Φ is irreducible.

Definition 1.1. A crystal for an irreducible Cartan type if normal if it is either a Stembridge crystal or
a virtualizable crystal. A crystal for a reducible Cartan type is normal if it is a direct product of normal
crystals for irreducible Cartan types.

Normal crystals are isomorphic to the “crystal bases” of representations of quantized enveloping algebras.

Here is a summary of the main algebraic properties of normal crystals for a given Cartan type:

• Tensor products and twists of normal crystals are also normal.

• Every normal crystal is seminormal. Every full subcrystal of a normal crystal is normal.

• Every connected normal crystal has a unique highest weight element.

• Suppose B and C are two connected normal crystals with the same highest weight.

Then B ∼= C. More strongly, there is a unique crystal isomorphism B ∼−→ C.

• There exists a connected normal crystal with any given dominant weight as its highest weight.

• Any Levi branched subcrystal of a normal crystal is normal.

• Finally, if B is finite and the subcrystal BJ is normal for all pairs J = {i, j} then B is normal.

1.2 Similarity of crystals

Fix a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}. Let n be a positive integer.

Fix λ ∈ Λ+. Let Bλ be a connected normal crystal of type (Φ,Λ) with unique highest weight λ.

A map S : Bλ → Bnλ is called a degree n similarity if wt(S(v)) = nwt(v) and

ϕi(S(v)) = nϕi(v), εi(S(v)) = nεi(v), S(ei(v)) = eni (S(v)), S(fi(v)) = fni (S(v)) (1.1)

for all v ∈ Bλ and i ∈ I. Some facts from last time:

• If a similarity map Bλ → Bnλ exists then it is unique.

• If there are similarity maps Bλ → Bnλ and Bµ → Bnµ then there is a similarity map Bλ+µ →
Bn(λ+µ).

• If (Φ,Λ) is of type A, then each Bλ has a similarity map for any degree n > 0.

2 The plactic monoid

Today’s lecture, combined with Homework 1, will cover most of Chapter 8 in Bump and Schilling’s book.

The plactic monoid is a multiplicative structure on semistandard tableaux first studied by Lascoux and
Schützenberger in the 1980s. One encounters this object in a natural way through GL(n) crystals.
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We start with a definition of plactic equivalence that applies to any Cartan type.

Let C1 and C2 be normal crystals of the same Cartan type.

Suppose xi ∈ Ci and C′i ⊆ Ci is the connected component containing xi for each i = 1, 2.

Definition 2.1. If C′1 is isomorphic to C′2, and if the unique isomorphism C′1
∼−→ C′2 maps x1 7→ x2, then

we write x1 ≡ x2 and say that the two elements are plactically equivalent.

It is easy to check that this definition of ≡ gives an equivalence relation.

Observation 2.2. If x1, y1 ∈ C1 and x2, y2 ∈ C2 are such that x1 ≡ x2 and y1 ≡ y2, then x1⊗y1 ≡ x2⊗y2.

Proof. This is clear from the definition of ≡ on noting that if f and g are crystal isomorphisms then the
map x⊗ y 7→ f(x)⊗ g(y) is an isomorphism between the corresponding tensor products.

Now suppose B is a fixed normal crystal.

Define Plactic(B) to be the set of equivalence classes in

{∅} t B t (B ⊗ B) t (B ⊗ B ⊗ B) t · · ·

under ≡, where ∅ denotes a distinguished “empty tensor” that is equivalent only to itself.

Observation 2.3. The tensor product ⊗ induces a monoid structure on the (infinite) set Plactic(B).

Explicitly, if we write [w] for the equivalence class of w, then the monoid structure on Plactic(B) has

[a1 ⊗ a2 ⊗ · · · ⊗ ap][b1 ⊗ b2 ⊗ · · · ⊗ bq] = [a1 ⊗ a2 ⊗ · · · ⊗ ap ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bq].

The identity element is [∅] where we define ∅ ⊗ b = b⊗ ∅ = b.

For the rest of this section we fix a positive integer n and specialize to Cartan type GL(n).

Let B = Bn denote the standard GL(n) crystal. The (type A) plactic monoid is Plactic(B).

As usual we write tensors w1⊗w2⊗· · ·⊗wm ∈ B⊗m where each wi ∈ {1, 2, . . . , n} as words w1w2 · · ·wm.

Using Homework 1, we can give a more explicit description of plactic equivalence for Plactic(B).

Suppose v = v1v2 · · · vm and w = w1w2 · · ·wm are words in B⊗m of the same length.

Recall from Homework 1 that we say v and w are connected by a Knuth move if w is obtained from v by
applying one of the following transformations to three consecutive letters, assuming a < b < c:

cab↔ acb, bac↔ bca, aba↔ baa, bba↔ bab

This happens, for example, if v = 433574 and w = 343574 or w = 433547.

Knuth equivalence is the equivalence relation on words that has v
K∼ w if and only if v and w are connected

by a sequence of Knuth moves. For example, 43534
K∼ 43354

K∼ 34354
K∼ 34534.

Recall the definition of the RSK correspondence w 7→ (PRSK(w), QRSK(w)) from Lecture 3.

On Homework 1, you proved the following for any words v and w:

Theorem 2.4. One always has w
K∼ row(PRSK(w)), and PRSK(v) = PRSK(w) holds if and only if v

K∼ w.
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Example 2.5. For example, we have

4 ;
3

4
;

3 5

4
;

3 3

4 5
;

3 3 4

4 5
= PRSK(43534)

3 ; 3 4 ; 3 4 5 ;
3 3 5

4
;

3 3 4

4 5
= PRSK(34534).

On the other hand, combining results from Lecture 3 and Homework 1 gives the following theorem:

Theorem 2.6. Let m be a positive integer. Then B⊗m is a disjoint union of full subcrystals isomorphic
to crystals of semistandard tableaux SSYTn(λ) for partitions λ of m with at most n parts.

More concretely, the full subcrystal containing w ∈ B⊗m is isomorphic to SSYTn(λ) where λ is the shape
of PRSK(w), and the map x 7→ PRSK(x) is the unique isomorphism from this subcrystal to SSYTn(λ).

Also, two words v, w ∈ B⊗m belong to the same full subcrystal if and only if QRSK(v) = QRSK(w).

Corollary 2.7. Plactic equivalence ≡ for Plactic(B) is the same thing as Knuth equivalence
K∼.

Proof. The theorem shows that w ∈ B⊗m is plactically equivalent to PRSK(w) ∈ SSYTn(λ) where λ is

the shape of PRSK(w). It follows that if v, w ∈ B⊗m and v
K∼ w then v ≡ PRSK(v) = PRSK(w) ≡ w.

Conversely if v ≡ w then PRSK(v) ≡ PRSK(w) so PRSK(v) and PRSK(w) must have the same shape λ. Since
the identity map is the unique automorphism of the connected normal crystal SSYTn(λ), we conclude

that if v ≡ w then PRSK(v) = PRSK(w) and v
K∼ w.

Thus, the elements of Plactic(B) are Knuth equivalence classes, which are evidently in bijection with
semistandard tableaux. This allows us to transfer the monoid structure on Plactic(B) to tableaux:

Corollary 2.8. The set of SSYTn all semistandard tableaux with entries in {1, 2, . . . , n} has a unique
monoid structure in which U ◦V = PRSK(row(U)row(V )). Here, the identity is the unique empty tableau.

The monoid algebra Z[SSYTn] associated to (SSYTn, ◦) is sometimes called the Poirier-Reutenaurer
algebra. It has a natural Hopf algebra structure.

The unique highest weight element in SSYTn(λ) is the tableau whose entries in row i are all i.

Thus the highest weight elements in B⊗m are the words w for which PRSK(w) is a tableau of this form.

One can characterize such words more directly.

Definition 2.9. A word w = w1w2 · · ·wm is a Yamanouchi word (or a reverse lattice word) if for each
positive integer i all of the final segments wk+1wk+2 · · ·wm contain at least as many letters equal to i as
i+ 1.

Note that this condition means that a Yamanouchi word must end in the letter 1.

Proposition 2.10. A word w ∈ B⊗m is a highest weight element if and only if it is a Yamanouchi word.

Proof. The general formula for the string length εi of a tensor product of m finite type crystals is

εi(xm ⊗ · · · ⊗ x2 ⊗ x1) =
m

max
j=1

(
j∑

h=1

εi(xh)−
j−1∑
h=1

ϕi(xh)

)
.
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Derive this by induction or see Section 2.3 of Bump and Schilling’s book.

Applying this formula with xj = wm+1−j gives

εi(w) =
m

max
j=1

 m∑
h=j

εi(wh)−
m∑

h=j+1

ϕi(wh)

 .

If the maximum is not zero then it is attained where wj = i + 1, in which case ϕi(wj) = 0, so the
formula is unchanged if we add this term to the second sum. But then the difference in the summations
is counting exactly the difference between the number of i+ 1’s and i’s in each final segment of w, so the
condition that εi(w) = 0 for all i is equivalent to requiring that w be a Yamanouchi word.

3 Crystals of skew tableaux

A skew shape is an ordered pair of partitions (λ, µ) with Dλ ⊆ Dµ, where as usual

Dλ = {(i, j) ∈ Z× Z : 1 ≤ j ≤ λi}.

We write λ/µ in place of (λ, µ) and define Dλ/µ = Dλ \ Dµ.

A skew tableau of shape λ/µ is a map T : Dλ/µ → {1, 2, 3, . . . }. Such a map is semistandard if its rows
are weakly increasing and its columns are strictly increasing. For example:

T =

1 2 2

1 2 4

1 2 3 5

2 4 4

is semistandard with shape λ/µ = (5, 4, 4, 3)/(2, 1).

The reading word row(T ) of a skew tableau is defined in the same way as for an ordinary tableau, by
concatenating the rows starting with the last row. In our example, row(T ) = 2441235124122.

Skew shapes and skew tableaux reduce to ordinary partitions and tableau on setting µ = ∅.

Let SSYTn(λ/µ) denote the set of all semistandard skew tableaux of shape λ/µ with entries in {1, 2, . . . , n}.

Theorem 3.1. Suppose λ/µ is a skew shape with m = |λ| − |µ|.

The set of words row(T ) ∈ B⊗m for T ∈ SSYTn(λ/µ) is then a (not necessarily full) subcrystal of B⊗m.

Consequently, there is a unique GL(n) crystal structure on SSYTn(λ/µ) such that we have a morphism

row : SSYTn(λ/µ)→ B⊗m.

Proof. The result follows by essentially the same argument as in the µ = ∅ case given in Lecture 2.

The skew Schur polynomial of shape λ/µ is sλ/µ(x1, x2, . . . , xn) =
∑
T∈SSYTn(λ/µ)

xwt(T ).

Corollary 3.2. The skew Schur polynomial sλ/µ(x1, x2, . . . , xn) = ch(SSYTn(λ/µ)) is symmetric.

Since SSYTn(λ/µ) is a normal GL(n) crystal, it is isomorphic to a direct sum of GL(n) crystals of the
form SSYTn(ν) where ν is a partition of m. Ignoring trailing zeros, the relevant partitions ν are the
weights of the highest weight elements in SSYTn(λ/µ). To count these partitions, let cλµν be the number
of semistandard skew tableau of shape λ/µ with weight ν whose reading words are Yamanouchi words.
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Proposition 3.3. If n is sufficiently large then SSYTn(λ/µ) ∼=
⊔
ν SSYTn(ν)⊗c

λ
µν .

Proof. The tableaux counted by cλµν are exactly the highest weight elements of weight ν.

Note that if row(T ) is Yamanouchi then T can only involve entries in {1, 2, . . . , k} where k is the number
of rows of T . If n is at least the number of rows of Dλ/µ then the given isomorphism holds; otherwise
some of the sets involved could be empty.

Let sλ/µ = limn→∞ sλ/µ(x1, x2, . . . , xn), where the limit is in the sense of the formal power series (i.e.,
the limit exists if the coefficient of any fixed monomial is eventually constant.)

The symmetric power series sλ/µ is the skew Schur function of shape λ/µ.

Corollary 3.4. It holds that sλ/µ =
∑
ν c

λ
µνsν .

It turns out that the numbers cλµν are the same as we what called Littlewood-Richardson coefficients in
Lectures 3 and 4, but proving this is slightly outside the scope of what we will accomplish today.

Example 3.5. Suppose λ/µ = (2, 2)/(1).

There is just one Yamanouchi word 121 that is the reading word of a semistandard tableau of this shape:

1

1 2
.

Thus SSYTn((2, 2)/(1)) ∼= SSYTn((2, 1)) when n ≥ 2 and s(2,2)/(1) = s(2,1).

Example 3.6. Next suppose λ/µ = (3, 2)/(1).

There are then two semistandard tableau of shape λ/µ with Yamanouchi reading words:

1 1

1 2
and

1 1

2 2
.

Thus SSYTn((3, 2)/(1)) ∼= SSYTn((3, 1)) t SSYTn((2, 2)) when n ≥ 2 and s(3,2)/(1) = s(3,1) + s(2,2).

Skew tableaux arise when we consider branchings of SSYTn(λ) from type GL(n) to GL(r)×GL(n− r).

The weight lattice for type GL(n) is Zn and the simple roots are αi = ei − ei+1 for i ∈ [n− 1].

The weight lattice for type GL(r)×GL(n−r) is also Zn but the simple roots are now αi for i ∈ [n−1]\{r}.

We defined the direct product B × C of crystals for distinct Cartan types in Lecture 6.

Lemma 3.7. A connected Stembridge GL(r)×GL(n− r) crystal is isomorphic to a direct product B×C
where B is a Stembridge GL(r) crystal and C is a Stembridge GL(n− r) crystal.

Proof. If our connected Stembridge GL(r)×GL(n−r) crystal has highest weight µ = (µ1, µ2, . . . , µn) ∈ Zn
then it must be isomorphic to SSYTr(µ

′)× SSYTn−r(µ
′′) for µ′ = (µ1, . . . , µr) and µ′′ = (µr+1, . . . , µn),

as this product is another connected Stembridge GL(r)×GL(n− r) crystal with highest weight µ.

Theorem 3.8. Let λ be a partition of m with `(λ) ≤ n, that is, with at most n parts.

The crystal obtained by branching SSYTn(λ) to type GL(r)×GL(n− r) is isomorphic to⊔
µ

Dµ⊆Dλ

SSYTr(µ)× SSYTn−r(λ/µ) ∼=
⊔
µ,ν

|µ|+|ν|=m
`(µ)≤n
`(ν)≤n−r

(SSYTr(µ)× SSYTn−r(ν))
⊗cλµν .
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Proof. Given T ∈ SSYTn(λ), let µ be the partition whose Young diagram Dµ contains precisely the
positions (i, j) with Tij ≤ r, so that (i, j) ∈ Dλ/µ if and only if Tij > r. Decomposing T as the union
of a semistandard tableau U of shape µ and a semistandard skew tableau V of shape λ/µ (and then
subtracting r from each entry of V ) gives a bijection

SSYTn(λ)→
⊔

Dµ⊆Dλ

SSYTr(µ)× SSYTn−r(λ/µ)

which one can check is actually a morphism of GL(r)×GL(n− r) crystals.

The right hand expansion is the result of applying Proposition 3.3.
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