MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 11

1 Review from last time

1.1 The plactic monoid

Elements x; € C; and z5 € Cs of normal crystals of the same Cartan type are plactically equivalent if the
full subcrystals they belong to are isomorphic and the unique isomorphism between them maps x1 — x».
In this case we write z1 = x2. If 1 = x5 and y; = y2 then 1 ® y; = T2 R yo.

For a given normal crystal B, the tensor product ® gives the set Plactic(B) of plactic equivalence classes
in the union {§} UBU (B B)U (B® B® B)LU--- a monoid structure.

In type GL(n), plactic equivalence on words wiws - - - w,, € BE™ is the same thing as Knuth equivalence.

Moreover, Plactic(B,,) is isomorphic to the monoid SSYT,, consisting of all semistandard tableaux with
entries in {1,2,...,n}, whose product is U o V' = Prsk(vorw(U)rorw(V)).

1.2 Yamanouchi words
A word w = wyws - - - wy, is a Yamanouchi word if for each i > 0 all of the final segments w1 wg12 - - Wiy
contain at least as many letters equal to ¢ as ¢ + 1. For example : 153423211 but not 253423211.

Last time: a word w € B®™ is a highest weight element if and only if it is a Yamanouchi word.

1.3 Skew tableaux

A skew shape is a pair of partitions \/p with Dy C D, :={(4,j) € ZxZ:1 <j < u;}.
A skew tableau of shape A/p is a map T': Dy, — {1,2,3,...} where Dy, := Dy \ D,.

Such a map is semistandard if its rows are weakly increasing and its columns are strictly increasing. Let
SSYT,,(A/p) denote the set of all semistandard skew tableaux of shape \/u with entries in {1,2,...,n}.

The reading word voro(T') of a skew tableau is defined in the same way as for an ordinary tableau. The

set of words toro(T) € B for T € SSYT,,(A/p) is a subcrystal, so there is a unique GL(n) crystal
structure on SSYT,,(A\/p) such that vot : SSYT,,(A/u) — BE™ is a crystal morphism.

The character of this crystal is the skew Schur polynomial sy, (%1, T2,. .., Tn) = ZTGSSYTTL()\/M) WD),

Let cf;l, be the number of semistandard skew tableau of shape A/u with weight v whose reading words
are Yamanouchi words. If n > 0 then we have SSYT,,(\/u) =], SSYT,, (1)@

It follows that sy/, = >, ), 5,. One can also show that s, sy =, S uSv-

2 Representations of GL(n,C)

This lecture corresponds to Appendix A in Bump and Schilling’s book. The goal is to connect some of
the crystal combinatorics from last time to the representation theory of reductive complex Lie groups.

Let G = GL(n, C) be the general linear group of invertible n x n complex matrices.

If V is any finite-dimensional vector space then let GL(V) denote the group of linear bijections V' — V.
Choosing a basis determines an isomorphism GL(V) =2 GL(dimV, C).

A finite-dimensional representation of G is a pair (m, V') where V is a finite-dimensional complex vector
space and 7 : G — GL(V) is a homomorphism that is regular in the sense that if g = (g;;) € G is a
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matrix and we identify GL(V) = GL(dim V, C) by choosing any basis so that m(g) = (7(g)x) is another
matrix, then the matrix coefficients 7(g)y; can be written as polynomials in the g;; and det(g) ™.

If the matrix coefficients 7(g)x; do not involve det(g)~* then (7, V) is a polynomial representation.

Example 2.1. The pair (det,C) is a finite-dimensional representation, as is (det™", C).
Only the first of these is a polynomial representation.
If (m,V) is a finite-dimensional representation then so is (detN ®m, V) for any integer N.

If N > 0 is sufficiently large then (detN ®@m, V) will be a polynomial representation.

Remark. Let Mat,, (C) be the affine algebraic variety of all n x n complex matrices.
The group GL(n,C) is the open subvariety of Mat,,(C) given by {g € Mat,,(C) : det(g) # 0}.

This means that GL(n,C) is itself an affine variety, and it follows by general considerations that its
coordinate ring is obtained from the coordinate ring of Mat,,(C) by adjoining det ™.

The coordinate ring of Mat,, (C) is the polynomial ring Z[z;; : 1 < 4,j < n| where z;; : g — gi;.

A map ¢ : X — Y between affine algebraic varieties if regular if f o ¢ € O(X) for all f € O(Y), where
O(X) and O(Y) are the coordinate rings. Our requirements for representations 7 : GL(n,C) — GL(m, C)
just mean that 7 is regular as a map between affine varieties GL(n, C) — Mat,, (C).

If (w,V) is a representation then V is a G-module for the action gv := 7(g)v.

The representation (m, V') is irreducible if this G-module is irreducible, that is, if V' is nonzero and has
no proper nonzero subspaces that are G-invariant.

Two representations (7, V) and (7', V') are isomorphic if there is a linear bijection ¢ : V' — V' such that

14 \%4
el
"(9)

v v

7(g)

is a commutative diagram for all g € G = GL(n, C).
Given a finite-dimensional complex vector space V', let V* be the vector space of linear maps A : V — C.

If (m, V) is a finite-dimensional representation then let # € GL(V*) be the map
7(g): A= Xom(g™h).

The pair (#,V*) is then another finite-dimensional representation, called the dual or contragredient
representation. This may not be isomorphic to (m, V'); when it is, we say that (7, V) is self-dual.

3 Lie algebras

The Lie algebra gl(n,C) of GL(n,C) is the set Mat,,(C) with the Lie bracket [X,Y] = XY - Y X.
If (7, V) is a finite-dimensional representation then gl(n,C) = Mat,, (C) acts on V by the formula

Xv:= Lr(eXyw where e~ = E X*/k! € GL(n, C) for a square matrix X.
h=0
k=0

1

A matrix g € GL(n, C) is unitary if its inverse g~ = g is given by its conjugate transpose.
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The unitary group U(n) consists of all unitary matrices in GL(n, C).

This group is a closed and bounded (and therefore compact) subset of Mat,, (C).

In fact, U(n) is the maximal compact subgroup of GL(n,C).

If X € gl(n,C) = Mat,,(C) then X € U(n) if and only if e=* = eyT7 ie,if X = ~X" is skew-hermitian.
Let u(n) C gl(n,C) be the Lie subalgebra of skew-hermitian matrices. This is the Lie algebra of U(n).

4 Weight spaces and roots

Let T = T'(n,C) be the subgroup of diagonal matrices in G = GL(n, C).

A character of T is a homomorphism T'— GL(C) = C*. A polynomial character of T' must be a map of

the form
ty

n
t = — H t;.“ for some nonnegative integers a; € N.
tn =1

n tai

Regular characters of T can also involve det ™" and so are maps of the form ¢ (trtg---t,)~ N [t

where a; € N and N € Z. Thus each regular character of T can be expressed as
n
t th = Htf for a unique vector p = (u1,...,p,) € Z".
i=1
We refer to regular characters of T' as weights. We identify the set of weights with Z".

Note: when discussing characters of crystals, “t*” was just a formal symbol; now this stands for a specific
complex number, given by the value of a weight applied to ¢t € T

Let (m,V) be a finite-dimensional representation of GL(n,C). The weight space of p € Z™ is
Veo={veV :n{t)y=thvforallteT}

The vector 1 is a weight of the representation 7 if V,, # 0. We have V' = Gauez" Vi

The adjoint representation of G = GL(n,C) is (Ad, Mat,,(C)) where Ad(g)X = gXg~ 1.
The roots are the weights of the adjoint representation. The set of roots forms a root system ®.
If X = E;; is the elementary matrix with 1 in position (7, j) then Ad(t)X = t*~% X for all i # j.

It follows that ® = {e; —e; : 1 <4,j < n} as usual, where ey, es,...,e, € Z" is the standard basis.

Define Xe, o, = E;; € Mat,(C) and define o;; = e; — e;41 € ®.

Again (7, V) be a finite-dimensional representation of GL(n,C).

Recall that X € Mat, (C) acts on V by Xv = (¥ )v -
V=

Proposition 4.1. If a € ® then the action of X, maps V, — V4.

Proof. Write gv instead of m(g)v for g € G and v € V. Also let X = X,,.
Then for ¢ € T' and v € V), we have

-1 [e1
tXv = d%ehtXU = ﬁehmt tv = d%eht Xy = thTe Xy
h=0 h=0 h=0

where the last step follows by the chain rule, which is justified since all functions here are analytic. [



MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 11

The root operators E; := X,, and F; := X_,, are the analogues of the raising and lowering operators e;
and f; for GL(n) crystals.

5 Complete reducibility

The understand finite-dimensional representations of GL(n,C) we can just consider irreducible ones.

Proposition 5.1 (Weyl’s unitarian trick). Let (7, V) be a finite-dimensional representation of GL(n, C).
Any U(n)-invariant subspace W C V is also GL(n, C)-invariant. Therefore V is irreducible as a GL(n, C)-
module if and only if V is irreducible as a U(n)-module.

Proof. If W C V is invariant under U(n) then it is invariant under the action of u(n).

But this action (X, v) — Xv = %W(th)v’ is linear in X as well as v, so since gl(n,C) = u(n) @iu(n)

=0
it follows that W is invariant under the action of gl(n, C).

Exponentiating shows that W is therefore GL(n, C)-invariant. O
If (7,V) and (7', V') are representations, then so is the direct sum (7w, V) @ (7', V') :== (n @',V V’).

Proposition 5.2. Each finite-dimensional representation of GL(n,C) is isomorphic to a direct sum of
irreducible representations.

Proof. By the unitarian trick, it suffices to show that each finite-dimensional representation of GL(n, C)
is isomorphic to a direct sum of representations that are irreducible for U(n).

Since U(n) is compact, we can always find a U(n)-invariant inner product on a representation: take any
nondegenerate bilinear form then average over the group by integrating.

Any nonzero invariant subspace of minimal dimension in our representation is irreducible, and its orthog-
onal complement is then U(n)-invariant and decomposes into a direct irreducible subrepresentations by
induction on dimension. O

6 Characters

Suppose (7, V) is a finite-dimensional representation of GL(n, C).

We say that m is homogeneous of degree k if (w, V) is a polynomial representation and the coefficients
7(g)r are homogeneous polynomials of degree k in the matrix entries g;;.

Any irreducible polynomial representation is homogeneous, so we can decompose any polynomial repre-
sentation as a direct sum of homogeneous representations.

The character x, : GL(n,C) — C of 7 is xx(g) = tr(r(g)), which is a polynomial in g;; and det " (g).
The weight multiplicity of € Z™ in V is dim (V},), and we have
X=(t) = Z dim (V,,)t* fort e T.
HEZL™
Let N(T) = {g € GL(n,C) : ¢Tg~! = T} be the normalizer of T'.

This is the subgroup of monomial matrices, i.e., matrices with exactly one nonzero entry in each row and
column. We identify the quotient W := N(T')/T with the symmetric group S,,. This group acts on Z"
by permuting coordinates. One can check that dim (V},) is constant on the orbits of Z™ under this action.
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Recall that a weight A € Z" is dominant if Ay > Ay > -+ > A,
A dominant weight is a partition is A, > 0.

The dominance order = is the partial order on Z™ that has yu < A if
< Aq, 1+ pe <A+ Ao, w1+ o 4 ps <A+ Ao+ As,

If AT is the set of dominant weights then u < X if and only if (A — p,v) >0 for all v € A™T.

If (7, V) is a finite-dimensional representation of GL(n, C) then a mazimal weight for 7 is a weight \ € Z"
that is maximal under the dominance order. This means that A € Z" is a maximal weight for = if and
only if V\ # 0 but V, = 0 whenever A < p.

If (w,V) is irreducible then a maximal weight is called a highest weight. If (w, V) is reducible then a
highest weight is a maximal weight that is the highest weight of an irreducible subrepresentation.

Every finite-dimensional representation has at least one maximal weight.
Lemma 6.1. A maximal weight for a finite-dimensional representation (m, V') is dominant.

Proof. Given a maximal weight A € Z", if A\ is not dominant then A; < A;4; for some index i. Let
= 5;(A). Then dim (V},) = dim (V) # 0 but A < p, contradicting maximality. O

Theorem 6.2 (Weyl character formula). Let (7,V) be an irreducible finite-dimensional representation
of GL(n,C). Then 7 has a unique highest weight A\ € Z™, and dim (V) = 1. Moreover:

(a) Any other irreducible finite-dimensional representation with highest weight \ is isomorphic to (7, V).
(b) Every dominant weight is the highest weight of some irreducible representation.
(¢) If t € T then the value of the character x,(t) has the formula
D wew sgu(w)te o)
> wew sgn(w)twe)

where W =S5, p=(Mn—-1,n—-2,...,0) € Z", and sgn(w) € {£1} is the sign a permutation.

X (t) =

This result is worth remembering but we won’t give a proof, which is out of scope for this lecture.

Let WSL(n) denote an irreducible representation of GL(n,C) with highest weight .

This is a (homogeneous) polynomial representation if and only if A is a partition.

Assume we are in this case. Then the character of m# = ﬂ'SL(n) evaluated at ¢t € T can be written as a
homogeneous polynomial in the diagonal entries t1,%s,...,t,. The Weyl character formula for GL(n,C)
says that this polynomial is precisely the Schur polynomial sy(x1,x2,...,2,). In detail, one can rewrite

the Weyl character formula as a quotient of determinants, and this gives the right hand side of

det [t?ﬁn*l*j} N
sx(tista .. tn) = 1<ij<n

det [t?_l_j}
1<i,j<n

which is another well-known definition of the Schur polynomials.

Observe that the Vandermonde determinant formula is det [t?‘_l_j } rcijen = [Ticicj<nlti —t)).

The previous theorem can be viewed as the (type A) representation analogue of our main theorem about
normal crystals. We conclude today with two other analogies with crystals:
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Proposition 6.3. Let A and p be dominant elements of Z".

Then WSL(n) ® WSL(n) has a unique irreducible subrepresentation isomorphic to W)C\;JI:L")

Proof. If dim »(v) denotes the dimension of the v weight space for the representation WE\;L("), then the

dimension of the v weight space for WSL(") ® 75" must have dimension > vy, A (1) (12).
Since A and p are the unique maximal weights for WSL(") and WSL("), it follows that A 4 p is the unique
maximal weight for WSL(TL) ® WSL("), and that the corresponding weight space has dimension one.
From this observation, the result follows by the Weyl character formula theorem. O

Proposition 6.4. Let A be any dominant weight for GL(n, C) that is a partition of k.

L(n)

Then ﬂ';} is isomorphic to a subrepresentation of the GL(n, C)-module (C™)®*.

Proof. One can show that if A\ = (1¥) then W)(\;L(n) is isomorphic to the k-th exterior power A"(C™) which
is a summand of (C™)®*. Any other dominant weight that is a partition can be expressed as a nonnegative
integer linear combination of the fundamental weights @ = (1) = (1,1,...,1,0,0,...,0) € Z". Using
this fact, the result follows by repeatedly applying the previous proposition. O

L(

We can view SSYT,,(\) as the crystal analogue of the representation 7r§ n), and this proposition corre-

sponds to how SSYT,, () is a full subcrystal of BS!.
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