
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 11

1 Review from last time

1.1 The plactic monoid

Elements x1 ∈ C1 and x2 ∈ C2 of normal crystals of the same Cartan type are plactically equivalent if the
full subcrystals they belong to are isomorphic and the unique isomorphism between them maps x1 7→ x2.

In this case we write x1 ≡ x2. If x1 ≡ x2 and y1 ≡ y2 then x1 ⊗ y1 ≡ x2 ⊗ y2.

For a given normal crystal B, the tensor product ⊗ gives the set Plactic(B) of plactic equivalence classes
in the union {∅} t B t (B ⊗ B) t (B ⊗ B ⊗ B) t · · · a monoid structure.

In type GL(n), plactic equivalence on words w1w2 · · ·wm ∈ B⊗mn is the same thing as Knuth equivalence.

Moreover, Plactic(Bn) is isomorphic to the monoid SSYTn consisting of all semistandard tableaux with
entries in {1, 2, . . . , n}, whose product is U ◦ V = PRSK(row(U)row(V )).

1.2 Yamanouchi words

A word w = w1w2 · · ·wm is a Yamanouchi word if for each i > 0 all of the final segments wk+1wk+2 · · ·wm
contain at least as many letters equal to i as i+ 1. For example : 153423211 but not 253423211.

Last time: a word w ∈ B⊗mn is a highest weight element if and only if it is a Yamanouchi word.

1.3 Skew tableaux

A skew shape is a pair of partitions λ/µ with Dλ ⊆ Dµ := {(i, j) ∈ Z× Z : 1 ≤ j ≤ µi}.

A skew tableau of shape λ/µ is a map T : Dλ/µ → {1, 2, 3, . . . } where Dλ/µ := Dλ \ Dµ.

Such a map is semistandard if its rows are weakly increasing and its columns are strictly increasing. Let
SSYTn(λ/µ) denote the set of all semistandard skew tableaux of shape λ/µ with entries in {1, 2, . . . , n}.

The reading word row(T ) of a skew tableau is defined in the same way as for an ordinary tableau. The

set of words row(T ) ∈ B⊗|λ|−|µ|n for T ∈ SSYTn(λ/µ) is a subcrystal, so there is a unique GL(n) crystal
structure on SSYTn(λ/µ) such that row : SSYTn(λ/µ)→ B⊗mn is a crystal morphism.

The character of this crystal is the skew Schur polynomial sλ/µ(x1, x2, . . . , xn) :=
∑
T∈SSYTn(λ/µ)

xwt(T ).

Let cλµν be the number of semistandard skew tableau of shape λ/µ with weight ν whose reading words

are Yamanouchi words. If n� 0 then we have SSYTn(λ/µ) ∼=
⊔
ν SSYTn(ν)⊗c

λ
µν .

It follows that sλ/µ =
∑
ν c

λ
µνsν . One can also show that sµsλ =

∑
ν c

ν
λµsν .

2 Representations of GL(n,C)

This lecture corresponds to Appendix A in Bump and Schilling’s book. The goal is to connect some of
the crystal combinatorics from last time to the representation theory of reductive complex Lie groups.

Let G = GL(n,C) be the general linear group of invertible n× n complex matrices.

If V is any finite-dimensional vector space then let GL(V ) denote the group of linear bijections V → V .
Choosing a basis determines an isomorphism GL(V ) ∼= GL(dimV,C).

A finite-dimensional representation of G is a pair (π, V ) where V is a finite-dimensional complex vector
space and π : G → GL(V ) is a homomorphism that is regular in the sense that if g = (gij) ∈ G is a
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matrix and we identify GL(V ) = GL(dimV,C) by choosing any basis so that π(g) = (π(g)kl) is another
matrix, then the matrix coefficients π(g)kl can be written as polynomials in the gij and det(g)−1.

If the matrix coefficients π(g)kl do not involve det(g)−1 then (π, V ) is a polynomial representation.

Example 2.1. The pair (det,C) is a finite-dimensional representation, as is (det−1,C).

Only the first of these is a polynomial representation.

If (π, V ) is a finite-dimensional representation then so is (detN ⊗π, V ) for any integer N .

If N � 0 is sufficiently large then (detN ⊗π, V ) will be a polynomial representation.

Remark. Let Matn(C) be the affine algebraic variety of all n× n complex matrices.

The group GL(n,C) is the open subvariety of Matn(C) given by {g ∈ Matn(C) : det(g) 6= 0}.

This means that GL(n,C) is itself an affine variety, and it follows by general considerations that its
coordinate ring is obtained from the coordinate ring of Matn(C) by adjoining det−1.

The coordinate ring of Matn(C) is the polynomial ring Z[xij : 1 ≤ i, j ≤ n] where xij : g 7→ gij .

A map φ : X → Y between affine algebraic varieties if regular if f ◦ φ ∈ O(X) for all f ∈ O(Y ), where
O(X) and O(Y ) are the coordinate rings. Our requirements for representations π : GL(n,C)→ GL(m,C)
just mean that π is regular as a map between affine varieties GL(n,C)→ Matm(C).

If (π, V ) is a representation then V is a G-module for the action gv := π(g)v.

The representation (π, V ) is irreducible if this G-module is irreducible, that is, if V is nonzero and has
no proper nonzero subspaces that are G-invariant.

Two representations (π, V ) and (π′, V ′) are isomorphic if there is a linear bijection φ : V → V ′ such that

V V

V ′ V ′

φ

π(g)

φ

π′(g)

is a commutative diagram for all g ∈ G = GL(n,C).

Given a finite-dimensional complex vector space V , let V ∗ be the vector space of linear maps λ : V → C.

If (π, V ) is a finite-dimensional representation then let π̂ ∈ GL(V ∗) be the map

π̂(g) : λ 7→ λ ◦ π(g−1).

The pair (π̂, V ∗) is then another finite-dimensional representation, called the dual or contragredient
representation. This may not be isomorphic to (π, V ); when it is, we say that (π, V ) is self-dual.

3 Lie algebras

The Lie algebra gl(n,C) of GL(n,C) is the set Matn(C) with the Lie bracket [X,Y ] = XY − Y X.

If (π, V ) is a finite-dimensional representation then gl(n,C) = Matn(C) acts on V by the formula

Xv := d
dhπ(ehX)v

∣∣∣
h=0

where eX :=

∞∑
k=0

Xk/k! ∈ GL(n,C) for a square matrix X.

A matrix g ∈ GL(n,C) is unitary if its inverse g−1 = gT is given by its conjugate transpose.
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The unitary group U(n) consists of all unitary matrices in GL(n,C).

This group is a closed and bounded (and therefore compact) subset of Matn(C).

In fact, U(n) is the maximal compact subgroup of GL(n,C).

If X ∈ gl(n,C) = Matn(C) then eX ∈ U(n) if and only if e−X = eX
T

, i.e., if X = −XT
is skew-hermitian.

Let u(n) ⊂ gl(n,C) be the Lie subalgebra of skew-hermitian matrices. This is the Lie algebra of U(n).

4 Weight spaces and roots

Let T = T (n,C) be the subgroup of diagonal matrices in G = GL(n,C).

A character of T is a homomorphism T → GL(C) = C×. A polynomial character of T must be a map of
the form

t =

 t1
. . .

tn

 7→ n∏
i=1

taii for some nonnegative integers ai ∈ N.

Regular characters of T can also involve det−N and so are maps of the form t 7→ (t1t2 · · · tn)−N
∏n
i=1 t

ai
i

where ai ∈ N and N ∈ Z. Thus each regular character of T can be expressed as

t 7→ tµ :=

n∏
i=1

tµii for a unique vector µ = (µ1, . . . , µn) ∈ Zn.

We refer to regular characters of T as weights. We identify the set of weights with Zn.

Note: when discussing characters of crystals, “tµ” was just a formal symbol; now this stands for a specific
complex number, given by the value of a weight applied to t ∈ T .

Let (π, V ) be a finite-dimensional representation of GL(n,C). The weight space of µ ∈ Zn is

Vµ := {v ∈ V : π(t)v = tµv for all t ∈ T}.

The vector µ is a weight of the representation π if Vµ 6= 0. We have V =
⊕

µ∈Zn Vµ.

The adjoint representation of G = GL(n,C) is (Ad,Matn(C)) where Ad(g)X = gXg−1.

The roots are the weights of the adjoint representation. The set of roots forms a root system Φ.

If X = Eij is the elementary matrix with 1 in position (i, j) then Ad(t)X = tei−ejX for all i 6= j.

It follows that Φ = {ei − ej : 1 ≤ i, j ≤ n} as usual, where e1, e2, . . . , en ∈ Zn is the standard basis.

Define Xei−ej = Eij ∈ Matn(C) and define αi = ei − ei+1 ∈ Φ.

Again (π, V ) be a finite-dimensional representation of GL(n,C).

Recall that X ∈ Matn(C) acts on V by Xv = d
dhπ(ehX)v

∣∣∣
h=0

.

Proposition 4.1. If α ∈ Φ then the action of Xα maps Vµ 7→ Vµ+α.

Proof. Write gv instead of π(g)v for g ∈ G and v ∈ V . Also let X = Xα.

Then for t ∈ T and v ∈ Vµ we have

tXv = d
dhe

htXv
∣∣∣
h=0

= d
dhe

htXt−1

tv
∣∣∣
h=0

= d
dhe

htαXtµv
∣∣∣
h=0

= tµ+αXv

where the last step follows by the chain rule, which is justified since all functions here are analytic.

3



MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 11

The root operators Ei := Xαi and Fi := X−αi are the analogues of the raising and lowering operators ei
and fi for GL(n) crystals.

5 Complete reducibility

The understand finite-dimensional representations of GL(n,C) we can just consider irreducible ones.

Proposition 5.1 (Weyl’s unitarian trick). Let (π, V ) be a finite-dimensional representation of GL(n,C).
Any U(n)-invariant subspace W ⊆ V is also GL(n,C)-invariant. Therefore V is irreducible as a GL(n,C)-
module if and only if V is irreducible as a U(n)-module.

Proof. If W ⊆ V is invariant under U(n) then it is invariant under the action of u(n).

But this action (X, v) 7→ Xv = d
dhπ(ehX)v

∣∣∣
h=0

is linear in X as well as v, so since gl(n,C) = u(n)⊕ iu(n)

it follows that W is invariant under the action of gl(n,C).

Exponentiating shows that W is therefore GL(n,C)-invariant.

If (π, V ) and (π′, V ′) are representations, then so is the direct sum (π, V )⊕ (π′, V ′) := (π ⊕ π′, V ⊕ V ′).

Proposition 5.2. Each finite-dimensional representation of GL(n,C) is isomorphic to a direct sum of
irreducible representations.

Proof. By the unitarian trick, it suffices to show that each finite-dimensional representation of GL(n,C)
is isomorphic to a direct sum of representations that are irreducible for U(n).

Since U(n) is compact, we can always find a U(n)-invariant inner product on a representation: take any
nondegenerate bilinear form then average over the group by integrating.

Any nonzero invariant subspace of minimal dimension in our representation is irreducible, and its orthog-
onal complement is then U(n)-invariant and decomposes into a direct irreducible subrepresentations by
induction on dimension.

6 Characters

Suppose (π, V ) is a finite-dimensional representation of GL(n,C).

We say that π is homogeneous of degree k if (π, V ) is a polynomial representation and the coefficients
π(g)kl are homogeneous polynomials of degree k in the matrix entries gij .

Any irreducible polynomial representation is homogeneous, so we can decompose any polynomial repre-
sentation as a direct sum of homogeneous representations.

The character χπ : GL(n,C)→ C of π is χπ(g) = tr(π(g)), which is a polynomial in gij and det−1(g).

The weight multiplicity of µ ∈ Zn in V is dim (Vµ), and we have

χπ(t) =
∑
µ∈Zn

dim (Vµ)tµ for t ∈ T.

Let N(T ) = {g ∈ GL(n,C) : gTg−1 = T} be the normalizer of T .

This is the subgroup of monomial matrices, i.e., matrices with exactly one nonzero entry in each row and
column. We identify the quotient W := N(T )/T with the symmetric group Sn. This group acts on Zn
by permuting coordinates. One can check that dim (Vµ) is constant on the orbits of Zn under this action.
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Recall that a weight λ ∈ Zn is dominant if λ1 ≥ λ2 ≥ · · · ≥ λn.

A dominant weight is a partition is λn ≥ 0.

The dominance order � is the partial order on Zn that has µ � λ if

µ1 ≤ λ1, µ1 + µ2 ≤ λ1 + λ2, µ1 + µ2 + µ3 ≤ λ1 + λ2 + λ3, . . .

If Λ+ is the set of dominant weights then µ � λ if and only if 〈λ− µ, ν〉 ≥ 0 for all ν ∈ Λ+.

If (π, V ) is a finite-dimensional representation of GL(n,C) then a maximal weight for π is a weight λ ∈ Zn
that is maximal under the dominance order. This means that λ ∈ Zn is a maximal weight for π if and
only if Vλ 6= 0 but Vµ = 0 whenever λ ≺ µ.

If (π, V ) is irreducible then a maximal weight is called a highest weight. If (π, V ) is reducible then a
highest weight is a maximal weight that is the highest weight of an irreducible subrepresentation.

Every finite-dimensional representation has at least one maximal weight.

Lemma 6.1. A maximal weight for a finite-dimensional representation (π, V ) is dominant.

Proof. Given a maximal weight λ ∈ Zn, if λ is not dominant then λi < λi+1 for some index i. Let
µ = si(λ). Then dim (Vµ) = dim (Vλ) 6= 0 but λ ≺ µ, contradicting maximality.

Theorem 6.2 (Weyl character formula). Let (π, V ) be an irreducible finite-dimensional representation
of GL(n,C). Then π has a unique highest weight λ ∈ Zn, and dim (Vλ) = 1. Moreover:

(a) Any other irreducible finite-dimensional representation with highest weight λ is isomorphic to (π, V ).

(b) Every dominant weight is the highest weight of some irreducible representation.

(c) If t ∈ T then the value of the character χπ(t) has the formula

χπ(t) =

∑
w∈W sgn(w)tw(λ+ρ)∑
w∈W sgn(w)tw(ρ)

where W = Sn, ρ = (n− 1, n− 2, . . . , 0) ∈ Zn, and sgn(w) ∈ {±1} is the sign a permutation.

This result is worth remembering but we won’t give a proof, which is out of scope for this lecture.

Let π
GL(n)
λ denote an irreducible representation of GL(n,C) with highest weight λ.

This is a (homogeneous) polynomial representation if and only if λ is a partition.

Assume we are in this case. Then the character of π = π
GL(n)
λ evaluated at t ∈ T can be written as a

homogeneous polynomial in the diagonal entries t1, t2, . . . , tn. The Weyl character formula for GL(n,C)
says that this polynomial is precisely the Schur polynomial sλ(x1, x2, . . . , xn). In detail, one can rewrite
the Weyl character formula as a quotient of determinants, and this gives the right hand side of

sλ(t1, t2, . . . , tn) =
det
[
t
λj+n−1−j
i

]
1≤i,j≤n

det
[
tn−1−ji

]
1≤i,j≤n

which is another well-known definition of the Schur polynomials.

Observe that the Vandermonde determinant formula is det
[
tn−1−ji

]
1≤i,j≤n

=
∏

1≤i<j≤n(ti − tj).

The previous theorem can be viewed as the (type A) representation analogue of our main theorem about
normal crystals. We conclude today with two other analogies with crystals:
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Proposition 6.3. Let λ and µ be dominant elements of Zn.

Then π
GL(n)
λ ⊗ πGL(n)

µ has a unique irreducible subrepresentation isomorphic to π
GL(n)
λ+µ .

Proof. If dim λ(ν) denotes the dimension of the ν weight space for the representation π
GL(n)
λ , then the

dimension of the ν weight space for π
GL(n)
λ ⊗ πGL(n)

µ must have dimension
∑
ν=ν1+ν2

dλ(ν1)dµ(ν2).

Since λ and µ are the unique maximal weights for π
GL(n)
λ and π

GL(n)
µ , it follows that λ+ µ is the unique

maximal weight for π
GL(n)
λ ⊗ πGL(n)

µ , and that the corresponding weight space has dimension one.

From this observation, the result follows by the Weyl character formula theorem.

Proposition 6.4. Let λ be any dominant weight for GL(n,C) that is a partition of k.

Then π
GL(n)
λ is isomorphic to a subrepresentation of the GL(n,C)-module (Cn)⊗k.

Proof. One can show that if λ = (1k) then π
GL(n)
λ is isomorphic to the k-th exterior power

∧k
(Cn) which

is a summand of (Cn)⊗k. Any other dominant weight that is a partition can be expressed as a nonnegative
integer linear combination of the fundamental weights $k = (1k) = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Zn. Using
this fact, the result follows by repeatedly applying the previous proposition.

We can view SSYTn(λ) as the crystal analogue of the representation π
GL(n)
λ , and this proposition corre-

sponds to how SSYTn(λ) is a full subcrystal of B⊗|λ|n .
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