MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 12

1 Review from last time: representations of GL(n,C)

Everywhere in this lecture, n is a fixed positive integer and C is the field of complex numbers.

A finite-dimensional representation of GL(n,C) is a pair (m, V) where V is a finite-dimensional complex
vector space and 7 : GL(n,C) — GL(V) is a homomorphism that is reqular as a map of affine varieties.
Concretely, this means that if g = (¢;5) € GL(n,C) is a matrix and we identify GL(V) = GL(dim V, C) so
that 7(g) = (7(g9)r) is another matrix, then the coefficients m(g)y; are polynomials in g;; and det(g) .

If the matrix coefficients 7(g)x; do not involve det(g)~! then (7, V) is a polynomial representation.

Each finite-dimensional representation is isomorphic to a direct sum of irreducible representations.

Let (m,V) be a finite-dimensional representation of GL(n, C).
Let T be the subgroup of matrices ¢ = diag(t1,t2,...,t,) € GL(n,C) and set t* =[], ¢/ for p € Z".

The weight space of p € Z™ in (7, V) is V, :={v € V : w(t)v = thv for all t € T'}.
The vector € Z™ is a weight of the representation 7 if V,, # 0. We have V = @yezn Vi

A weight \ € Z" for 7 is maximal if it is dominant and maximal under the dominance order.

Dominant means Ay > Ay > --- > A,. The character x. : GL(n,C) — C of 7 is x»(g) = tr(7(g)).

)
Weyl character formula: Assume (7, V) is an irreducible finite-dimensional representation of GL(n, C).
e Then (m,V) has a unique maximal weight A € Z™ (called the highest weight), and dim (Vy) =1
e Any other irreducible finite-dimensional representation with highest weight X is isomorphic to (7, V).

e Every dominant weight is the highest weight of some irreducible representation.

EwGSn sgn(w)tw(’\+p)
Ywes, sgn(w)r®

e If t € T then x,(t) = where p=(n—1,...,2,1,0) .
Caution: if ¢ has repeated eigenvalues (e.g., if ¢ = 1) then this formula becomes x(t) = 3, but we
can extract the correct character value by interpreting the ratio as a limit.

(

For each dominant A € Z", write WSL ™ for the irreducible representation with highest weight .

Weyl character formula = if A, > 0 then x.(¢) = sa(t1,...,t,) for 7 = WSL(H)

Analogous to crystals, if A € Z" is a partition then WSL(")

and t = diag(t1,...,tn).

is isomorphic to a subrepresentation of (C™)®IA!.

2 Commuting endomorphism rings

The irreducible polynomial representations of GL(n,C) are indexed by partitions A with £(\) < n.
On the other hand, the irreducible representations of Sy are also indexed by partitions A with || = k.

This is not a coincidence, and there is a canonical correspondence between the two families of represen-
tations that explains how both should by labeled by partitions in a consistent way. This correspondence
is called Schur-Weyl duality or sometimes Frobenius-Schur duality or Schur duality.

Fix positive integers k and n. Write e, es, ..., e, for the standard basis of C".
The standard module of GL(n,C) is C™ with the action g : v — gv multiplying a matrix and a vector.

The tensor power (C™)®¥ is the n*-dimensional vector space with basis elements e;, ® e;, ® - ® e, .
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The elements of (C™)®* are linear combinations of tensors v; ® vy ® - - - ® v, with v; € C", where

U1®"'®(avi+bwi)®"'®vk:@(Ul®"'®Uz‘®"'®vk)+b<vl®"'®wi®"'®vk)
vl®...®avi®vi+1®...®f0k_:Ul®...®vi®avi+1®...®vk

for any scalars a,b € C and indices i. These relations generate the kernel of the map (C")**¥ — (C")®*

The group GL(n,C) acts linearly on (C™)®* on the left by the formula
g @V Q) =gn@gu®---® gy, for g € GL(n,C).
The symmetric group Sy, acts linearly on (C")®* on the right by the formula
(VM1 ®V2® - ®UR)W = Vyy(1) ® Viy(2) @+ + @ V(1) for w € Sg.
These action makes (C")®* into a left GL(n, C)-module and a right Si-module. Since we have
(g1 ®v2® -+ @ug))w = g((11 V2 @+ B V)W) = GUu(1) ® GUw(2) @ *** @ GUu (k)

these module structures are compatible and so (C")®* is a GL(n, C) x Sg-module.

Suppose €2 is a vector space.
Let End(€2) denote the ring of all linear maps Q — Q and suppose A C End(Q) is a subring.

The commuting ring of A is the ring of linear maps 2 — €2 that commute with all elements of A.

Theorem 2.1. Let A and B be the subrings of End ((C™)®*) generated as
A= ()\;:9€GL(n,QC)) and B = (py:w € Sk)
where )\, and p,, are the linear maps (C")®* — (C")®* defined by
Ag(1 @ ®ug) =gu1 @ ®@gug  and  pu(v1 @+ ® V) = Vy(1) @+ @ V(i)

Then B is the commuting ring of A and A is the commuting ring of B.

Proof. Let V = C" and Q = V&, We first show that A is the commuting ring of B.

We have already observed that the elements of A and B commute with each other. Define a linear map
B:End(V) x -+ x End(V) — End(Q)

by letting 3(f1,..., fx) be the linear map sending v1 ® - - @ v = f1(v1) ® - - @ fr(vg).

A basis for End(V) is given by the linear maps indexed by pairs (4, j) that send e; — e; and e — 0 for
k #i. By taking f1,..., fx to be maps of this form one sees that End(f2) is spanned by the image of 3.

Next, we observe that Pw © 6(f1a .- '»fk) O Pyw—1 = B(fw(l)v .- ~vfw(k))'

It follows that the commuting ring of B is the span of the elements

Blfiseeosfi) = S B uis- s Fui)

wWESk

since if ¢ € End(Q2) commutes with every p,, then ¢ = % Zwesk P O DO Pyt
The next step to check is that if fi, fa,..., fr € End(V) are fixed and f; := ), ; fi for I C [k], then

B(ftha"'vfk ' Z k |I|ﬂ f] fla"'af])~

IC[K]
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This is a straightforward exercise using the inclusion-exclusion principle; we will skip the details.

We conclude that the commuting ring of B is spanned by the maps 8(f, f,..., f) where f € End(V).

This is a promising observation because if f € GL(V) C End(V) then 8(f, f,..., f) = Ay € A.

Suppose f € End(V) is not invertible. We claim that we still have 8(f, f,..., f) € A since this endomor-
phism is generated by elements of the form A\, € A for g € GL(V'). One argument goes as follows.

Since det(f) = 0 and the determinant is a nonzero polynomial function, if we choose € > 0 to be any
sufficiently small real number, then det(f — eI) # 0 and we have

g=f—eleGL(V) and h:=el € GL(V) and f=g+h.

Let ¢ € C be a primitive kth root of unity and define Q(¢) = 8(¢, @, ..., ¢) for ¢ € End(V).

Note again that Q(¢) = Ay € A if ¢ is invertible.

If € is small enough then we can further assume that g + (°h € GL(V) for all e € {1,2,...,k — 1}.
It is now enough to show that Zé;é Qg +¢°h) = kQ(g) + kQ(h), since this implies that

k—1 k—1
Q(f) = Qg+ h) = kQ(g) + kQ(h) = > Qg+ (°h) = kAg + kXp — Y Agicen € A.
e=1 e=1
The k = 2 case of this identity is instructive. Then we have (s = —1 and

Qlg+h) +Q(g—h)=(g+h)@(g+h)+(g—h)@(g—h)
=(9Rg+9g@h+h@g+h@h)+(g®g—9g@h—-—h®@g+h®h)
=2(g®g+h®h).

Here we are writing “¢ ® ¢” to mean the map in End((C")?) with v; ® va — ¢(v1) ® ¥(v2).

For k > 2 a similar cancelation occurs because 1 + ¢ + (2 +--- +¢F~1 = 0.

Specifically, consider a term in the expansion of Q(g 4+ (°h) = (9 + (°h) ® (g + (°h) ® --- ® (g + C°h).
If this term corresponds to choosing g instead of (¢h in exactly m factors, then the coefficient is ¢¢*=™).

We have le;é ¢e=m) = 0if m ¢ {0,k}. If m € {0, k} then this sum is k and the term is Q(g) or Q(h).
We conclude that Z:;& Qg+ ¢°h) = kQ(g) + kQ(h) as needed.

Thus A = (A, : g € GL(n,C)) is the commuting ring of B = (p,, : w € Sk).

It remains to show the other statement in theorem, that B is likewise the commuting ring of A. The
standard approach to this is not particularly constructive or self-contained.

The argument in Bump and Schilling’s Appendix A.2 is to appeal to the fact that the ring B is semisimple,
which lets us use the Jacobson Density Theorem to deduce that B is automatically the commuting ring
of A since A is the commuting ring of B. A lot of prerequisites go into unpacking these claims.

For good discussions of more constructive proofs, check out these mathoverflow posts:
e Direct proof that the centralizer of GL(V') acting on V®" is spanned by S,

e How to constructively /combinatorially prove Schur-Weyl duality?


https://mathoverflow.net/questions/90094/direct-proof-that-the-centralizer-of-glv-acting-on-v-otimes-n-is-spanne
https://mathoverflow.net/questions/255492/how-to-constructively-combinatorially-prove-schur-weyl-duality
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3 Schur-Weyl duality

To summarize: we have a left diagonal action of GL(n,C) on (C")®* which generates a ring of endomor-
phisms, and a right permutation action of Sj, on (C™)®* which generates another ring of endomorphisms,
and each of these rings consists of precisely the endomorphisms of (C™)®* that commute with all elements
of the other ring. This fact leads to a consistent labeling of the irreducible (polynomial) representations
of GL(n,C) and S via the following general proposition:

Proposition 3.1. Let © be a finite-dimensional vector space and let A and B be subalgebras of End(€2).
Assume that A is the commuting ring of B and B is the commuting ring of A, so that the action

(o, B) - w = a(B(w)) = Bla(w)) for (o, ) € Ax B and w € Q

makes €2 into an A x B-module. Suppose this module decomposes as = @, U; ® W; where the U; are
A-modules and the W; and B-modules. If ¢ # j, then U; 22 U; as A-modules and W; 2 W; as B-modules.

Proof. Arguing by contradiction, suppose U; = U; as A-modules for ¢ # j and let ¢ : U; — U; be an
A-module isomorphism. Let ¢ : W; — W; be any nonzero linear map and define f :  — € to be the
linear map that restricts to ¢ ® ¥ on U; ® W, and is zero on the other summands.

Then f commutes with all elements of A, so f € B. But this is impossible since f does not map the
B-module U; ® W; to itself. Thus no such isomorphism U; = U; can exist.

The argument that W; 2 W for ¢ # j is similar. O

Theorem 3.2. The GL(n,C) x Sp-module (C")®*¥ decomposes as

((Cn)®k _ @ V)\GL(") ® VASk
A

where A runs through all partitions of k£ with at most n parts, and:

° V)\GL(H) is an irreducible GL(n, C)-module isomorphic to the representation WSL(").

) V)\S"' is a certain irreducible Si-module that depends only on A up to isomorphism.

Moreover, if n > k then the modules V/\S" are a complete set of non-isomorphic irreducible Si-modules.

Remark. It therefore makes sense to label the Sk-representation corresponding to VAS’“ by wfk.

One can check that this makes wfk’“) and wg’”‘k) the trivial and sign representations of Sj using the fact

that V(%L (™) is the kth symmetric power of C" while V(Cl;,:“)(") is the kth exterior power of C”.

Proof. Each diagonal matrix ¢t = diag(ty, to, ..., ;) multiplies the vector e;, ®e;, ®- - -®e;, by t;, ti, -t ,
so the weights of (C™)®* must all be homogenous monomials of degree k.

This means that the irreducible GL(n, C)-representations V/\GL(n) that appear in our decomposition must
be indexed by some subset of partitions of k£ with at most n parts.

It follows from the preceding proposition with V' = C" and Q = V®F that there are no repetitions

among (the isomorphism classes of) the modules V)\GL(") or V/\S’“. The fact that V)\GL(n) appears for every
partition A of k with at most n parts holds since we know that W)(\;L(n) is a constituent of (C™)®k.

If n > k, then the number of such partitions is the same as the total number of partitions of &, which is the
number of isomorphism classes of irreducible Sy-representations. One concludes that the non-isomorphic
Sk-modules VAS * must therefore represent all isomorphism classes of irreducible Si-modules. O
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Suppose G; and G4 are groups and {2 is representation for the direct product G; x Gs.

We say that € is a correspondence if there is a decomposition into irreducible G; x Ga-subrepresentations
Q= @ 71'1»G '® 71'1»G 2
i

such that 7T2-Gl 2 7'('](-;1 as G1-representations if ¢ # j and 7riG2 2 ﬂ'JGQ as Go-representations if ¢ # j.

In this case, (2 determines a bijection between the set of G:-representations {7rZG 1} and the set of Go-
representations {7rZG 2}. We indicate this situation by writing

Q
7G2Gz,

(3 7

, . cm)er
For example, Schur-Weyl duality refers to the correspondence written as WE\}L(") # ﬁf’“.

4 Symmetric functions

We have briefly encountered the Schur functions sx := 3 rcgsyr(y) W) which are the formal power
series analogues of the Schur polynomials sy(z1,22,...,2Z,) € Sym,, C Z[z1, T2, ..., Tp].

Let Sym be the abelian group of formal power series spanned by the linearly independent set of Schur
functions sy as A varies over all partitions. The results summarized at the start of Lecture 4 show that
this abelian group is actually a graded ring. (For the grading, each sy is homogeneous of degree |\|.)

The ring Sym can also be identified as the inverse limit of the system Sym, «— Sym; « Sym, « --- where
the projection Sym,, « Sym, ,; is the map setting x,411 = 0.

Let ef, := s(1x) = g Tiy Ty - Xy, and hy = sy = g iy Tiy -+ - T, for k> 1.
1<) <ig < <iy 1< <in <<

These are the elementary symmetric functions and the complete homogeneous symmetric functions.

Theorem 4.1. It holds that Sym = Z[eq, ea, €3, .. .| and also Sym = Z[hq, ha, hs,...].

Consequently, there is a unique ring homomorphism w : Sym — Sym with w(ex) = hy, for all k.

This homomorphism also has w(hy) = ey for all k, so is a self-inverse bijection.

Proof. To show the first claim, it is enough to check that Sym,, = Z[ej, e, ..., e,] where we truncate to
n variables. This is well-known and not too hard to show directly; we will skip the details here.

The main thing left to prove is that w(hi) = ex. This can be shown using generating functions.

Define H(t) = Y, 5o hit® and E(t) = 5,5, ext”.

Argue that H(t) = [[,5,(1 — zxt)"" and E(t) = [[;5,(1 + axt), so H(t)E(—t) = 1.

Extracting coefficients gives some relations that express the hx’s in terms of the e;’s. But you can observe
that these same relations also express the ex’s in terms of the h’s, so the ring homomorphism w : e +— hy,
must be an involution, as we wanted to show. O
Let Ry be free abelian group that is spanned by the symbols [Wf’“] as A ranges over all partitions of k.

This means that the elements of Ry are formal Z-linear combinations of these symbols.

Given any representation 7 of S, define [1] = 3, cx[73*] where 7 22 3, (mF)®er,
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We view the direct sum R = @kzo Ry as a graded ring by setting

Sk
[0][¥] := |Indg s, (¢ @ 9)
for representations ¢ of Sy and ¥ of S;. The induced representation is computed by viewing S x .S; as the
subgroup of Si; in which the first factor permutes 1,2, ..., k and the second permutes k+1, k+2, ..., k+l.
The Frobenius characteristic ch : R — Sym is the Z-linear map with ch([wfk]) = S).
If 1, and sgng, are the trivial and sign representations of Sk, then ch([1s,]) = hs and ch([sgng, ]) = ex.

Clearly ch is a graded, linear bijection. Our last objective is to show that ch is also a ring isomorphism.

5 See-saws

For this, we talk briefly about see-saws. Suppose GG; and G5 are groups with subgroups H; C G;.

Let Q be a vector space that is both a Gi-module and a Go-module. Rather than assuming the actions
of G1 and G5 commute, we instead assume that the action of G; commutes with the action of Hy and
that the action of G5 commutes with the action of Hj.

This means that we can view 2 as either a (G; x Hz)-module or a (G2 x Hy)-module.

We say that €2 is a see-saw if we have correspondences for both of these actions:

Q Q
7 = gl and 7r]G2 — O']HI. (5.1)

We indicate this situation with the diagram
Gy G
] > 62
H,y Hy

Example 5.1. An example of a see-saw is given by

Skt GL(n,C) x GL(n,C)
] > ]
Sk x5 GL(n,C)

for the vector space Q = (C™)®(+D Here the S, -action is the same right action as before.

We view Si X S; as a subgroup of Sy, as discussed earlier. The GL(n,C) x GL(n, C)-action on {2 is
(Gh) (V@ QU QU1 ® - D Vpy) = gU1 @ -+ ® Uk @ g1 ® - -+ @ hvgyy.
Finally, we embed GL(n,C) as the subgroup {(g,g) : g € GL(n,C)} C GL(n,C) x GL(n,C).

Lemma 5.2. Assume we are in the situation of (5.2)) with correspondences (5.1]). Then the multiplicity
of O'JHl in the restriction of 7riG1 to H; is also the multiplicity of O’ZHQ in the restriction of 7TJG"‘ to Hs.

Proof. Argue that both multiplicities are the dimension of Homgz, « m, (of '® O'1H279) since

Hompy, « o, (ajHl ®Uf{2,ﬂ) =~ Hompy, (U;LII,HomH2 <0H2,§2>) =~ Hompy, (ng 7r.Gl>

% g "
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and also

Homp, i1, (afl ®01H27Q> = Hompy, (U-Hz,HomH1 (O’JHl,Q)) = Hompy, (O'H2 WGQ) .

i i 2y

For more details, see the Appendix A.4 in Bump and Schilling’s book. O

Theorem 5.3. The Frobenius characteristic map ch : R — Sym is a ring isomorphism.

Proof. Tt only remains to show that ch is a multiplicative map.

Let X and p be partitions of k£ and {. Writing sxs, =), CXpuSvs 1t suffices to show that the multiplicity

Skt - . . R
of """ in ﬂ'fk ® ﬂil induced to Sk, is also the nonnegative integer 5 ,.

By Frobenius reciprocity, the multiplicity we want to calculate is also the multiplicity of Wfk ® Wﬁl in

the representation obtained by restricting 7r;g ¥ to Sy x ;. By the previous proposition applied to the
see-saw in Example this multiplicity is equal, in turn, to the multiplicity of wSL(") in the restriction

of WSL(n) ® WSL(") to the subgroup {(g,9) : g € GL(n,C)} = GL(n,C).

This multiplicity is exactly cf,, as we need to show, because the relevant characters are the Schur
polynomials s, (t1,t2,...,t,) and sx(t1,t2,...,tn)su(t1,t2, ..., t,) by the Weyl character formula. O
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