## 1 Review from last time: representations of $\mathrm{GL}(n, \mathbb{C})$

Everywhere in this lecture, $n$ is a fixed positive integer and $\mathbb{C}$ is the field of complex numbers.
A finite-dimensional representation of $\operatorname{GL}(n, \mathbb{C})$ is a pair $(\pi, V)$ where $V$ is a finite-dimensional complex vector space and $\pi: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{GL}(V)$ is a homomorphism that is regular as a map of affine varieties. Concretely, this means that if $g=\left(g_{i j}\right) \in \operatorname{GL}(n, \mathbb{C})$ is a matrix and we identify $\mathrm{GL}(V)=\mathrm{GL}(\operatorname{dim} V, \mathbb{C})$ so that $\pi(g)=\left(\pi(g)_{k l}\right)$ is another matrix, then the coefficients $\pi(g)_{k l}$ are polynomials in $g_{i j}$ and $\operatorname{det}(g)^{-1}$.
If the matrix coefficients $\pi(g)_{k l}$ do not involve $\operatorname{det}(g)^{-1}$ then $(\pi, V)$ is a polynomial representation.
Each finite-dimensional representation is isomorphic to a direct sum of irreducible representations.

Let $(\pi, V)$ be a finite-dimensional representation of $\mathrm{GL}(n, \mathbb{C})$.
Let $T$ be the subgroup of matrices $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \operatorname{GL}(n, \mathbb{C})$ and set $t^{\mu}=\prod_{i=1}^{n} t_{i}^{\mu_{i}}$ for $\mu \in \mathbb{Z}^{n}$.
The weight space of $\mu \in \mathbb{Z}^{n}$ in $(\pi, V)$ is $V_{\mu}:=\left\{v \in V: \pi(t) v=t^{\mu} v\right.$ for all $\left.t \in T\right\}$.
The vector $\mu \in \mathbb{Z}^{n}$ is a weight of the representation $\pi$ if $V_{\mu} \neq 0$. We have $V=\bigoplus_{\mu \in \mathbb{Z}^{n}} V_{\mu}$.

A weight $\lambda \in \mathbb{Z}^{n}$ for $\pi$ is maximal if it is dominant and maximal under the dominance order.
Dominant means $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The character $\chi_{\pi}: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathbb{C}$ of $\pi$ is $\chi_{\pi}(g)=\operatorname{tr}(\pi(g))$.
Weyl character formula: Assume $(\pi, V)$ is an irreducible finite-dimensional representation of GL $(n, \mathbb{C})$.

- Then $(\pi, V)$ has a unique maximal weight $\lambda \in \mathbb{Z}^{n}$ (called the highest weight), and $\operatorname{dim}\left(V_{\lambda}\right)=1$.
- Any other irreducible finite-dimensional representation with highest weight $\lambda$ is isomorphic to $(\pi, V)$.
- Every dominant weight is the highest weight of some irreducible representation.
- If $t \in T$ then $\chi_{\pi}(t)=\frac{\sum_{w \in S_{n}} \operatorname{sgn}(w) t^{w(\lambda+\rho)}}{\sum_{w \in S_{n}} \operatorname{sgn}(w) t^{w(\rho)}}$ where $\rho=(n-1, \ldots, 2,1,0)$.

Caution: if $t$ has repeated eigenvalues (e.g., if $t=1$ ) then this formula becomes $\chi_{\pi}(t)=\frac{0}{0}$, but we can extract the correct character value by interpreting the ratio as a limit.

For each dominant $\lambda \in \mathbb{Z}^{n}$, write $\pi_{\lambda}^{\mathrm{GL}(n)}$ for the irreducible representation with highest weight $\lambda$.
Weyl character formula $\Rightarrow$ if $\lambda_{n} \geq 0$ then $\chi_{\pi}(t)=s_{\lambda}\left(t_{1}, \ldots, t_{n}\right)$ for $\pi=\pi_{\lambda}^{\mathrm{GL}(n)}$ and $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$. Analogous to crystals, if $\lambda \in \mathbb{Z}^{n}$ is a partition then $\pi_{\lambda}^{\mathrm{GL}(n)}$ is isomorphic to a subrepresentation of $\left(\mathbb{C}^{n}\right)^{\otimes|\lambda|}$.

## 2 Commuting endomorphism rings

The irreducible polynomial representations of $\operatorname{GL}(n, \mathbb{C})$ are indexed by partitions $\lambda$ with $\ell(\lambda) \leq n$.
On the other hand, the irreducible representations of $S_{k}$ are also indexed by partitions $\lambda$ with $|\lambda|=k$.
This is not a coincidence, and there is a canonical correspondence between the two families of representations that explains how both should by labeled by partitions in a consistent way. This correspondence is called Schur-Weyl duality or sometimes Frobenius-Schur duality or Schur duality.

Fix positive integers $k$ and $n$. Write $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ for the standard basis of $\mathbb{C}^{n}$.
The standard module of $\operatorname{GL}(n, \mathbb{C})$ is $\mathbb{C}^{n}$ with the action $g: v \mapsto g v$ multiplying a matrix and a vector.
The tensor power $\left(\mathbb{C}^{n}\right)^{\otimes k}$ is the $n^{k}$-dimensional vector space with basis elements $\mathbf{e}_{i_{1}} \otimes \mathbf{e}_{i_{2}} \otimes \cdots \otimes \mathbf{e}_{i_{k}}$.

The elements of $\left(\mathbb{C}^{n}\right)^{\otimes k}$ are linear combinations of tensors $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}$ with $v_{i} \in \mathbb{C}^{n}$, where

$$
\begin{aligned}
v_{1} \otimes \cdots \otimes\left(a v_{i}+b w_{i}\right) \otimes \cdots \otimes v_{k} & =a\left(v_{1} \otimes \cdots \otimes v_{i} \otimes \cdots \otimes v_{k}\right)+b\left(v_{1} \otimes \cdots \otimes w_{i} \otimes \cdots \otimes v_{k}\right) \\
v_{1} \otimes \cdots \otimes a v_{i} \otimes v_{i+1} \otimes \cdots \otimes v_{k} & =v_{1} \otimes \cdots \otimes v_{i} \otimes a v_{i+1} \otimes \cdots \otimes v_{k}
\end{aligned}
$$

for any scalars $a, b \in \mathbb{C}$ and indices $i$. These relations generate the kernel of the map $\left(\mathbb{C}^{n}\right)^{\times k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes k}$.

The group $\mathrm{GL}(n, \mathbb{C})$ acts linearly on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ on the left by the formula

$$
g\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} \quad \text { for } g \in \operatorname{GL}(n, \mathbb{C})
$$

The symmetric group $S_{k}$ acts linearly on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ on the right by the formula

$$
\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right) w=v_{w(1)} \otimes v_{w(2)} \otimes \cdots \otimes v_{w(k)} \quad \text { for } w \in S_{k}
$$

These action makes $\left(\mathbb{C}^{n}\right)^{\otimes k}$ into a left GL $(n, \mathbb{C})$-module and a right $S_{k}$-module. Since we have

$$
\left(g\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)\right) w=g\left(\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right) w\right)=g v_{w(1)} \otimes g v_{w(2)} \otimes \cdots \otimes g v_{w(k)}
$$

these module structures are compatible and so $\left(\mathbb{C}^{n}\right)^{\otimes k}$ is a $\operatorname{GL}(n, \mathbb{C}) \times S_{k}$-module.

Suppose $\Omega$ is a vector space.
Let $\operatorname{End}(\Omega)$ denote the ring of all linear maps $\Omega \rightarrow \Omega$ and suppose $A \subseteq \operatorname{End}(\Omega)$ is a subring.
The commuting ring of $A$ is the ring of linear maps $\Omega \rightarrow \Omega$ that commute with all elements of $A$.
Theorem 2.1. Let $A$ and $B$ be the subrings of End $\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)$ generated as

$$
A=\left\langle\lambda_{g}: g \in \mathrm{GL}(n, \mathbb{C})\right\rangle \quad \text { and } \quad B=\left\langle\rho_{w}: w \in S_{k}\right\rangle
$$

where $\lambda_{g}$ and $\rho_{w}$ are the linear maps $\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes k}$ defined by

$$
\lambda_{g}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes \cdots \otimes g v_{k} \quad \text { and } \quad \rho_{w}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=v_{w(1)} \otimes \cdots \otimes v_{w(k)}
$$

Then $B$ is the commuting ring of $A$ and $A$ is the commuting ring of $B$.
Proof. Let $V=\mathbb{C}^{n}$ and $\Omega=V^{\otimes k}$. We first show that $A$ is the commuting ring of $B$.
We have already observed that the elements of $A$ and $B$ commute with each other. Define a linear map

$$
\beta: \operatorname{End}(V) \times \cdots \times \operatorname{End}(V) \rightarrow \operatorname{End}(\Omega)
$$

by letting $\beta\left(f_{1}, \ldots, f_{k}\right)$ be the linear map sending $v_{1} \otimes \cdots \otimes v_{k} \mapsto f_{1}\left(v_{1}\right) \otimes \cdots \otimes f_{k}\left(v_{k}\right)$.
A basis for $\operatorname{End}(V)$ is given by the linear maps indexed by pairs $(i, j)$ that send $\mathbf{e}_{i} \mapsto \mathbf{e}_{j}$ and $\mathbf{e}_{k} \mapsto 0$ for $k \neq i$. By taking $f_{1}, \ldots, f_{k}$ to be maps of this form one sees that $\operatorname{End}(\Omega)$ is spanned by the image of $\beta$.
Next, we observe that $\rho_{w} \circ \beta\left(f_{1}, \ldots, f_{k}\right) \circ \rho_{w^{-1}}=\beta\left(f_{w(1)}, \ldots, f_{w(k)}\right)$.
It follows that the commuting ring of $B$ is the span of the elements

$$
\tilde{\beta}\left(f_{1}, \ldots, f_{k}\right):=\frac{1}{k!} \sum_{w \in S_{k}} \beta\left(f_{w(1)}, \ldots, f_{w(k)}\right)
$$

since if $\phi \in \operatorname{End}(\Omega)$ commutes with every $\rho_{w}$ then $\phi=\frac{1}{k!} \sum_{w \in S_{k}} \rho_{w} \circ \phi \circ \rho_{w^{-1}}$.
The next step to check is that if $f_{1}, f_{2}, \ldots, f_{k} \in \operatorname{End}(V)$ are fixed and $f_{I}:=\sum_{i \in I} f_{i}$ for $I \subseteq[k]$, then

$$
\tilde{\beta}\left(f_{1}, f_{2}, \ldots, f_{k}\right)=\frac{1}{k!} \sum_{I \subseteq[k]}(-1)^{k-|I|} \beta\left(f_{I}, f_{I}, \ldots, f_{I}\right)
$$

This is a straightforward exercise using the inclusion-exclusion principle; we will skip the details.
We conclude that the commuting ring of $B$ is spanned by the maps $\beta(f, f, \ldots, f)$ where $f \in \operatorname{End}(V)$.

This is a promising observation because if $f \in \mathrm{GL}(V) \subset \operatorname{End}(V)$ then $\beta(f, f, \ldots, f)=\lambda_{f} \in A$.
Suppose $f \in \operatorname{End}(V)$ is not invertible. We claim that we still have $\beta(f, f, \ldots, f) \in A$ since this endomorphism is generated by elements of the form $\lambda_{g} \in A$ for $g \in \mathrm{GL}(V)$. One argument goes as follows.

Since $\operatorname{det}(f)=0$ and the determinant is a nonzero polynomial function, if we choose $\epsilon>0$ to be any sufficiently small real number, then $\operatorname{det}(f-\epsilon I) \neq 0$ and we have

$$
g:=f-\epsilon I \in \operatorname{GL}(V) \quad \text { and } \quad h:=\epsilon I \in \operatorname{GL}(V) \quad \text { and } \quad f=g+h .
$$

Let $\zeta \in \mathbb{C}$ be a primitive $k$ th root of unity and define $Q(\phi)=\beta(\phi, \phi, \ldots, \phi)$ for $\phi \in \operatorname{End}(V)$.
Note again that $Q(\phi)=\lambda_{\phi} \in A$ if $\phi$ is invertible.
If $\epsilon$ is small enough then we can further assume that $g+\zeta^{e} h \in \mathrm{GL}(V)$ for all $e \in\{1,2, \ldots, k-1\}$.
It is now enough to show that $\sum_{e=0}^{k-1} Q\left(g+\zeta^{e} h\right)=k Q(g)+k Q(h)$, since this implies that

$$
Q(f)=Q(g+h)=k Q(g)+k Q(h)-\sum_{e=1}^{k-1} Q\left(g+\zeta^{e} h\right)=k \lambda_{g}+k \lambda_{h}-\sum_{e=1}^{k-1} \lambda_{g+\zeta^{e} h} \in A
$$

The $k=2$ case of this identity is instructive. Then we have $\zeta_{2}=-1$ and

$$
\begin{aligned}
Q(g+h)+Q(g-h) & =(g+h) \otimes(g+h)+(g-h) \otimes(g-h) \\
& =(g \otimes g+g \otimes h+h \otimes g+h \otimes h)+(g \otimes g-g \otimes h-h \otimes g+h \otimes h) \\
& =2(g \otimes g+h \otimes h) .
\end{aligned}
$$

Here we are writing " $\phi \otimes \psi$ " to mean the map in $\operatorname{End}\left(\left(\mathbb{C}^{n}\right)^{2}\right)$ with $v_{1} \otimes v_{2} \mapsto \phi\left(v_{1}\right) \otimes \psi\left(v_{2}\right)$.
For $k>2$ a similar cancelation occurs because $1+\zeta+\zeta^{2}+\cdots+\zeta^{k-1}=0$.
Specifically, consider a term in the expansion of $Q\left(g+\zeta^{e} h\right)=\left(g+\zeta^{e} h\right) \otimes\left(g+\zeta^{e} h\right) \otimes \cdots \otimes\left(g+\zeta^{e} h\right)$.
If this term corresponds to choosing $g$ instead of $\zeta^{e} h$ in exactly $m$ factors, then the coefficient is $\zeta^{e(k-m)}$. We have $\sum_{e=0}^{k-1} \zeta^{e(k-m)}=0$ if $m \notin\{0, k\}$. If $m \in\{0, k\}$ then this sum is $k$ and the term is $Q(g)$ or $Q(h)$.
We conclude that $\sum_{e=0}^{k-1} Q\left(g+\zeta^{e} h\right)=k Q(g)+k Q(h)$ as needed.

Thus $A=\left\langle\lambda_{g}: g \in \operatorname{GL}(n, \mathbb{C})\right\rangle$ is the commuting ring of $B=\left\langle\rho_{w}: w \in S_{k}\right\rangle$.
It remains to show the other statement in theorem, that $B$ is likewise the commuting ring of $A$. The standard approach to this is not particularly constructive or self-contained.

The argument in Bump and Schilling's Appendix A. 2 is to appeal to the fact that the ring $B$ is semisimple, which lets us use the Jacobson Density Theorem to deduce that $B$ is automatically the commuting ring of $A$ since $A$ is the commuting ring of $B$. A lot of prerequisites go into unpacking these claims.

For good discussions of more constructive proofs, check out these mathoverflow posts:

- Direct proof that the centralizer of GL $(V)$ acting on $V^{\otimes n}$ is spanned by $S_{n}$
- How to constructively/combinatorially prove Schur-Weyl duality?


## 3 Schur-Weyl duality

To summarize: we have a left diagonal action of $\operatorname{GL}(n, \mathbb{C})$ on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ which generates a ring of endomorphisms, and a right permutation action of $S_{k}$ on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ which generates another ring of endomorphisms, and each of these rings consists of precisely the endomorphisms of $\left(\mathbb{C}^{n}\right)^{\otimes k}$ that commute with all elements of the other ring. This fact leads to a consistent labeling of the irreducible (polynomial) representations of $\mathrm{GL}(n, \mathbb{C})$ and $S_{k}$ via the following general proposition:

Proposition 3.1. Let $\Omega$ be a finite-dimensional vector space and let $A$ and $B$ be subalgebras of $\operatorname{End}(\Omega)$. Assume that $A$ is the commuting ring of $B$ and $B$ is the commuting ring of $A$, so that the action

$$
(\alpha, \beta) \cdot \omega:=\alpha(\beta(\omega))=\beta(\alpha(\omega)) \quad \text { for }(\alpha, \beta) \in A \times B \text { and } \omega \in \Omega
$$

makes $\Omega$ into an $A \times B$-module. Suppose this module decomposes as $\Omega \cong \bigoplus_{i} U_{i} \otimes W_{i}$ where the $U_{i}$ are $A$-modules and the $W_{i}$ and $B$-modules. If $i \neq j$, then $U_{i} \neq U_{j}$ as $A$-modules and $W_{i} \neq W_{j}$ as $B$-modules.

Proof. Arguing by contradiction, suppose $U_{i} \cong U_{j}$ as $A$-modules for $i \neq j$ and let $\phi: U_{i} \rightarrow U_{j}$ be an $A$-module isomorphism. Let $\psi: W_{i} \rightarrow W_{j}$ be any nonzero linear map and define $f: \Omega \rightarrow \Omega$ to be the linear map that restricts to $\phi \otimes \psi$ on $U_{i} \otimes W_{i}$ and is zero on the other summands.

Then $f$ commutes with all elements of $A$, so $f \in B$. But this is impossible since $f$ does not map the $B$-module $U_{i} \otimes W_{i}$ to itself. Thus no such isomorphism $U_{i} \cong U_{j}$ can exist.

The argument that $W_{i} \neq W_{j}$ for $i \neq j$ is similar.

Theorem 3.2. The GL $(n, \mathbb{C}) \times S_{k}$-module $\left(\mathbb{C}^{n}\right)^{\otimes k}$ decomposes as

$$
\left(\mathbb{C}^{n}\right)^{\otimes k}=\bigoplus_{\lambda} V_{\lambda}^{\mathrm{GL}(n)} \otimes V_{\lambda}^{S_{k}}
$$

where $\lambda$ runs through all partitions of $k$ with at most $n$ parts, and:

- $V_{\lambda}^{\mathrm{GL}(n)}$ is an irreducible $\mathrm{GL}(n, \mathbb{C})$-module isomorphic to the representation $\pi_{\lambda}^{\mathrm{GL}(n)}$.
- $V_{\lambda}^{S_{k}}$ is a certain irreducible $S_{k}$-module that depends only on $\lambda$ up to isomorphism.

Moreover, if $n \geq k$ then the modules $V_{\lambda}^{S_{k}}$ are a complete set of non-isomorphic irreducible $S_{k}$-modules.
Remark. It therefore makes sense to label the $S_{k}$-representation corresponding to $V_{\lambda}^{S_{k}}$ by $\pi_{\lambda}^{S_{k}}$.
One can check that this makes $\pi_{(k)}^{S_{k}}$ and $\pi_{\left(1^{k}\right)}^{S_{k}}$ the trivial and sign representations of $S_{k}$ using the fact that $V_{(k)}^{\mathrm{GL}(n)}$ is the $k$ th symmetric power of $\mathbb{C}^{n}$ while $V_{\left(1^{k}\right)}^{\mathrm{GL}(n)}$ is the $k$ th exterior power of $\mathbb{C}^{n}$.

Proof. Each diagonal matrix $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ multiplies the vector $\mathbf{e}_{i_{1}} \otimes \mathbf{e}_{i_{2}} \otimes \cdots \otimes \mathbf{e}_{i_{k}}$ by $t_{i_{1}} t_{i_{2}} \cdots t_{i_{k}}$, so the weights of $\left(\mathbb{C}^{n}\right)^{\otimes k}$ must all be homogenous monomials of degree $k$.

This means that the irreducible $\mathrm{GL}(n, \mathbb{C})$-representations $V_{\lambda}^{\mathrm{GL}(n)}$ that appear in our decomposition must be indexed by some subset of partitions of $k$ with at most $n$ parts.
It follows from the preceding proposition with $V=\mathbb{C}^{n}$ and $\Omega=V^{\otimes k}$ that there are no repetitions among (the isomorphism classes of) the modules $V_{\lambda}^{\mathrm{GL}(n)}$ or $V_{\lambda}^{S_{k}}$. The fact that $V_{\lambda}^{\mathrm{GL}(n)}$ appears for every partition $\lambda$ of $k$ with at most $n$ parts holds since we know that $\pi_{\lambda}^{\mathrm{GL}(n)}$ is a constituent of $\left(\mathbb{C}^{n}\right)^{\otimes k}$.

If $n \geq k$, then the number of such partitions is the same as the total number of partitions of $k$, which is the number of isomorphism classes of irreducible $S_{k}$-representations. One concludes that the non-isomorphic $S_{k}$-modules $V_{\lambda}^{S_{k}}$ must therefore represent all isomorphism classes of irreducible $S_{k}$-modules.

Suppose $G_{1}$ and $G_{2}$ are groups and $\Omega$ is representation for the direct product $G_{1} \times G_{2}$.
We say that $\Omega$ is a correspondence if there is a decomposition into irreducible $G_{1} \times G_{2}$-subrepresentations

$$
\Omega=\bigoplus_{i} \pi_{i}^{G_{1}} \otimes \pi_{i}^{G_{2}}
$$

such that $\pi_{i}^{G_{1}} \not \neq \pi_{j}^{G_{1}}$ as $G_{1}$-representations if $i \neq j$ and $\pi_{i}^{G_{2}} \not \neq \pi_{j}^{G_{2}}$ as $G_{2}$-representations if $i \neq j$.
In this case, $\Omega$ determines a bijection between the set of $G_{1}$-representations $\left\{\pi_{i}^{G_{1}}\right\}$ and the set of $G_{2}$ representations $\left\{\pi_{i}^{G_{2}}\right\}$. We indicate this situation by writing

$$
\pi_{i}^{G_{1}} \stackrel{\Omega}{\longleftrightarrow} \pi_{i}^{G_{2}} .
$$

For example, Schur-Weyl duality refers to the correspondence written as $\pi_{\lambda}^{\mathrm{GL}(n)} \stackrel{\left(\mathbb{C}^{n}\right)^{\otimes k}}{\longleftrightarrow} \pi_{\lambda}^{S_{k}}$.

## 4 Symmetric functions

We have briefly encountered the Schur functions $s_{\lambda}:=\sum_{T \in \operatorname{SSYT}(\lambda)} x^{\mathbf{w t}(T)}$ which are the formal power series analogues of the Schur polynomials $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \operatorname{Sym}_{n} \subset \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let Sym be the abelian group of formal power series spanned by the linearly independent set of Schur functions $s_{\lambda}$ as $\lambda$ varies over all partitions. The results summarized at the start of Lecture 4 show that this abelian group is actually a graded ring. (For the grading, each $s_{\lambda}$ is homogeneous of degree $|\lambda|$.)

The ring Sym can also be identified as the inverse limit of the system $\mathrm{Sym}_{0} \nleftarrow \mathrm{Sym}_{1} \nleftarrow \mathrm{Sym}_{2} \longleftarrow \cdots$ where the projection $\operatorname{Sym}_{n} \longleftrightarrow \operatorname{Sym}_{n+1}$ is the map setting $x_{n+1}=0$.

Let $e_{k}:=s_{\left(1^{k}\right)}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ and $h_{k}:=s_{(k)}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ for $k \geq 1$.
These are the elementary symmetric functions and the complete homogeneous symmetric functions.
Theorem 4.1. It holds that $\operatorname{Sym}=\mathbb{Z}\left[e_{1}, e_{2}, e_{3}, \ldots\right]$ and also Sym $=\mathbb{Z}\left[h_{1}, h_{2}, h_{3}, \ldots\right]$.
Consequently, there is a unique ring homomorphism $\omega$ : Sym $\rightarrow$ Sym with $\omega\left(e_{k}\right)=h_{k}$ for all $k$.
This homomorphism also has $\omega\left(h_{k}\right)=e_{k}$ for all $k$, so is a self-inverse bijection.

Proof. To show the first claim, it is enough to check that $\operatorname{Sym}_{n}=\mathbb{Z}\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ where we truncate to $n$ variables. This is well-known and not too hard to show directly; we will skip the details here.

The main thing left to prove is that $\omega\left(h_{k}\right)=e_{k}$. This can be shown using generating functions.
Define $H(t)=\sum_{k \geq 0} h_{k} t^{k}$ and $E(t)=\sum_{k \geq 0} e_{k} t^{k}$.
Argue that $H(t)=\prod_{k \geq 1}\left(1-x_{k} t\right)^{-1}$ and $E(t)=\prod_{k \geq 1}\left(1+x_{k} t\right)$, so $H(t) E(-t)=1$.
Extracting coefficients gives some relations that express the $h_{k}$ 's in terms of the $e_{k}$ 's. But you can observe that these same relations also express the $e_{k}$ 's in terms of the $h_{k}$ 's, so the ring homomorphism $\omega: e_{k} \mapsto h_{k}$ must be an involution, as we wanted to show.

Let $\mathcal{R}_{k}$ be free abelian group that is spanned by the symbols $\left[\pi_{\lambda}^{S_{k}}\right]$ as $\lambda$ ranges over all partitions of $k$.
This means that the elements of $\mathcal{R}_{k}$ are formal $\mathbb{Z}$-linear combinations of these symbols.
Given any representation $\pi$ of $S_{k}$, define $[\pi]=\sum_{\lambda} c_{\lambda}\left[\pi_{\lambda}^{S_{k}}\right]$ where $\pi \cong \sum_{\lambda}\left(\pi_{\lambda}^{S_{k}}\right)^{\oplus c_{\lambda}}$.

We view the direct $\operatorname{sum} \mathcal{R}=\bigoplus_{k \geq 0} \mathcal{R}_{k}$ as a graded ring by setting

$$
[\phi][\psi]:=\left[\operatorname{Ind}_{S_{k} \times S_{l}}^{S_{k+l}}(\phi \otimes \psi)\right]
$$

for representations $\phi$ of $S_{k}$ and $\psi$ of $S_{l}$. The induced representation is computed by viewing $S_{k} \times S_{l}$ as the subgroup of $S_{k+l}$ in which the first factor permutes $1,2, \ldots, k$ and the second permutes $k+1, k+2, \ldots, k+l$.
The Frobenius characteristic $\operatorname{ch}: \mathcal{R} \rightarrow$ Sym is the $\mathbb{Z}$-linear map with $\operatorname{ch}\left(\left[\pi_{\lambda}^{S_{k}}\right]\right)=s_{\lambda}$.
If $1_{S_{k}}$ and $\operatorname{sgn}_{S_{k}}$ are the trivial and sign representations of $S_{k}$, then $\operatorname{ch}\left(\left[1_{S_{k}}\right]\right)=h_{k}$ and $\operatorname{ch}\left(\left[\operatorname{sgn}_{S_{k}}\right]\right)=e_{k}$.
Clearly ch is a graded, linear bijection. Our last objective is to show that ch is also a ring isomorphism.

## 5 See-saws

For this, we talk briefly about see-saws. Suppose $G_{1}$ and $G_{2}$ are groups with subgroups $H_{i} \subset G_{i}$.
Let $\Omega$ be a vector space that is both a $G_{1}$-module and a $G_{2}$-module. Rather than assuming the actions of $G_{1}$ and $G_{2}$ commute, we instead assume that the action of $G_{1}$ commutes with the action of $H_{2}$ and that the action of $G_{2}$ commutes with the action of $H_{1}$.
This means that we can view $\Omega$ as either a $\left(G_{1} \times H_{2}\right)$-module or a $\left(G_{2} \times H_{1}\right)$-module.
We say that $\Omega$ is a see-saw if we have correspondences for both of these actions:

$$
\begin{equation*}
\pi_{i}^{G_{1}} \stackrel{\Omega}{\longleftrightarrow} \sigma_{i}^{H_{2}} \quad \text { and } \quad \pi_{j}^{G_{2}} \stackrel{\Omega}{\longleftrightarrow} \sigma_{j}^{H_{1}} \tag{5.1}
\end{equation*}
$$

We indicate this situation with the diagram


Example 5.1. An example of a see-saw is given by

for the vector space $\Omega=\left(\mathbb{C}^{n}\right)^{\otimes(k+l)}$. Here the $S_{k+l}$-action is the same right action as before.
We view $S_{k} \times S_{l}$ as a subgroup of $S_{k+l}$ as discussed earlier. The GL $(n, \mathbb{C}) \times \operatorname{GL}(n, \mathbb{C})$-action on $\Omega$ is

$$
(g, h)\left(v_{1} \otimes \cdots \otimes v_{k} \otimes v_{k+1} \otimes \cdots \otimes v_{k+l}\right)=g v_{1} \otimes \cdots \otimes g v_{k} \otimes h v_{k+1} \otimes \cdots \otimes h v_{k+l}
$$

Finally, we embed $\mathrm{GL}(n, \mathbb{C})$ as the subgroup $\{(g, g): g \in \mathrm{GL}(n, \mathbb{C})\} \subset \mathrm{GL}(n, \mathbb{C}) \times \operatorname{GL}(n, \mathbb{C})$.
Lemma 5.2. Assume we are in the situation of (5.2) with correspondences (5.1). Then the multiplicity of $\sigma_{j}^{H_{1}}$ in the restriction of $\pi_{i}^{G_{1}}$ to $H_{1}$ is also the multiplicity of $\sigma_{i}^{H_{2}}$ in the restriction of $\pi_{j}^{G_{2}}$ to $H_{2}$.

Proof. Argue that both multiplicities are the dimension of $\operatorname{Hom}_{H_{1} \times H_{2}}\left(\sigma_{j}^{H_{1}} \otimes \sigma_{i}^{H_{2}}, \Omega\right)$ since

$$
\operatorname{Hom}_{H_{1} \times H_{2}}\left(\sigma_{j}^{H_{1}} \otimes \sigma_{i}^{H_{2}}, \Omega\right) \cong \operatorname{Hom}_{H_{1}}\left(\sigma_{j}^{H_{1}}, \operatorname{Hom}_{H_{2}}\left(\sigma_{i}^{H_{2}}, \Omega\right)\right) \cong \operatorname{Hom}_{H_{1}}\left(\sigma_{j}^{H_{1}}, \pi_{i}^{G_{1}}\right)
$$

and also

$$
\operatorname{Hom}_{H_{1} \times H_{2}}\left(\sigma_{j}^{H_{1}} \otimes \sigma_{i}^{H_{2}}, \Omega\right) \cong \operatorname{Hom}_{H_{2}}\left(\sigma_{i}^{H_{2}}, \operatorname{Hom}_{H_{1}}\left(\sigma_{j}^{H_{1}}, \Omega\right)\right) \cong \operatorname{Hom}_{H_{2}}\left(\sigma_{i}^{H_{2}}, \pi_{j}^{G_{2}}\right)
$$

For more details, see the Appendix A. 4 in Bump and Schilling's book.

Theorem 5.3. The Frobenius characteristic map ch: $\mathcal{R} \rightarrow$ Sym is a ring isomorphism.
Proof. It only remains to show that ch is a multiplicative map.
Let $\lambda$ and $\mu$ be partitions of $k$ and $l$. Writing $s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}$, it suffices to show that the multiplicity of $\pi_{\nu}^{S_{k+l}}$ in $\pi_{\lambda}^{S_{k}} \otimes \pi_{\mu}^{S_{l}}$ induced to $S_{k+l}$ is also the nonnegative integer $c_{\lambda \mu}^{\nu}$.

By Frobenius reciprocity, the multiplicity we want to calculate is also the multiplicity of $\pi_{\lambda}^{S_{k}} \otimes \pi_{\mu}^{S_{l}}$ in the representation obtained by restricting $\pi_{\nu}^{S_{k+l}}$ to $S_{k} \times S_{l}$. By the previous proposition applied to the see-saw in Example 5.1, this multiplicity is equal, in turn, to the multiplicity of $\pi_{\nu}^{\mathrm{GL}(n)}$ in the restriction of $\pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\mu}^{\mathrm{GL}(n)}$ to the subgroup $\{(g, g): g \in \mathrm{GL}(n, \mathbb{C})\} \cong \mathrm{GL}(n, \mathbb{C})$.

This multiplicity is exactly $c_{\lambda \mu}^{\nu}$, as we need to show, because the relevant characters are the Schur polynomials $s_{\nu}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $s_{\lambda}\left(t_{1}, t_{2}, \ldots, t_{n}\right) s_{\mu}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ by the Weyl character formula.

