
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 12

1 Review from last time: representations of GL(n,C)

Everywhere in this lecture, n is a fixed positive integer and C is the field of complex numbers.

A finite-dimensional representation of GL(n,C) is a pair (π, V ) where V is a finite-dimensional complex
vector space and π : GL(n,C)→ GL(V ) is a homomorphism that is regular as a map of affine varieties.
Concretely, this means that if g = (gij) ∈ GL(n,C) is a matrix and we identify GL(V ) = GL(dimV,C) so
that π(g) = (π(g)kl) is another matrix, then the coefficients π(g)kl are polynomials in gij and det(g)−1.

If the matrix coefficients π(g)kl do not involve det(g)−1 then (π, V ) is a polynomial representation.

Each finite-dimensional representation is isomorphic to a direct sum of irreducible representations.

Let (π, V ) be a finite-dimensional representation of GL(n,C).

Let T be the subgroup of matrices t = diag(t1, t2, . . . , tn) ∈ GL(n,C) and set tµ =
∏n
i=1 t

µi
i for µ ∈ Zn.

The weight space of µ ∈ Zn in (π, V ) is Vµ := {v ∈ V : π(t)v = tµv for all t ∈ T}.

The vector µ ∈ Zn is a weight of the representation π if Vµ 6= 0. We have V =
⊕

µ∈Zn Vµ.

A weight λ ∈ Zn for π is maximal if it is dominant and maximal under the dominance order.

Dominant means λ1 ≥ λ2 ≥ · · · ≥ λn. The character χπ : GL(n,C)→ C of π is χπ(g) = tr(π(g)).

Weyl character formula: Assume (π, V ) is an irreducible finite-dimensional representation of GL(n,C).

• Then (π, V ) has a unique maximal weight λ ∈ Zn (called the highest weight), and dim (Vλ) = 1.

• Any other irreducible finite-dimensional representation with highest weight λ is isomorphic to (π, V ).

• Every dominant weight is the highest weight of some irreducible representation.

• If t ∈ T then χπ(t) =
∑
w∈Sn sgn(w)tw(λ+ρ)∑
w∈Sn sgn(w)tw(ρ) where ρ = (n− 1, . . . , 2, 1, 0) .

Caution: if t has repeated eigenvalues (e.g., if t = 1) then this formula becomes χπ(t) = 0
0 , but we

can extract the correct character value by interpreting the ratio as a limit.

For each dominant λ ∈ Zn, write π
GL(n)
λ for the irreducible representation with highest weight λ.

Weyl character formula ⇒ if λn ≥ 0 then χπ(t) = sλ(t1, . . . , tn) for π = π
GL(n)
λ and t = diag(t1, . . . , tn).

Analogous to crystals, if λ ∈ Zn is a partition then π
GL(n)
λ is isomorphic to a subrepresentation of (Cn)⊗|λ|.

2 Commuting endomorphism rings

The irreducible polynomial representations of GL(n,C) are indexed by partitions λ with `(λ) ≤ n.

On the other hand, the irreducible representations of Sk are also indexed by partitions λ with |λ| = k.

This is not a coincidence, and there is a canonical correspondence between the two families of represen-
tations that explains how both should by labeled by partitions in a consistent way. This correspondence
is called Schur-Weyl duality or sometimes Frobenius-Schur duality or Schur duality.

Fix positive integers k and n. Write e1, e2, . . . , en for the standard basis of Cn.

The standard module of GL(n,C) is Cn with the action g : v 7→ gv multiplying a matrix and a vector.

The tensor power (Cn)⊗k is the nk-dimensional vector space with basis elements ei1 ⊗ ei2 ⊗ · · · ⊗ eik .
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The elements of (Cn)⊗k are linear combinations of tensors v1 ⊗ v2 ⊗ · · · ⊗ vk with vi ∈ Cn, where

v1 ⊗ · · · ⊗ (avi + bwi)⊗ · · · ⊗ vk = a(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) + b(v1 ⊗ · · · ⊗ wi ⊗ · · · ⊗ vk)

v1 ⊗ · · · ⊗ avi ⊗ vi+1 ⊗ · · · ⊗ vk = v1 ⊗ · · · ⊗ vi ⊗ avi+1 ⊗ · · · ⊗ vk

for any scalars a, b ∈ C and indices i. These relations generate the kernel of the map (Cn)×k → (Cn)⊗k.

The group GL(n,C) acts linearly on (Cn)⊗k on the left by the formula

g(v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk for g ∈ GL(n,C).

The symmetric group Sk acts linearly on (Cn)⊗k on the right by the formula

(v1 ⊗ v2 ⊗ · · · ⊗ vk)w = vw(1) ⊗ vw(2) ⊗ · · · ⊗ vw(k) for w ∈ Sk.

These action makes (Cn)⊗k into a left GL(n,C)-module and a right Sk-module. Since we have

(g(v1 ⊗ v2 ⊗ · · · ⊗ vk))w = g((v1 ⊗ v2 ⊗ · · · ⊗ vk)w) = gvw(1) ⊗ gvw(2) ⊗ · · · ⊗ gvw(k),

these module structures are compatible and so (Cn)⊗k is a GL(n,C)× Sk-module.

Suppose Ω is a vector space.

Let End(Ω) denote the ring of all linear maps Ω→ Ω and suppose A ⊆ End(Ω) is a subring.

The commuting ring of A is the ring of linear maps Ω→ Ω that commute with all elements of A.

Theorem 2.1. Let A and B be the subrings of End
(
(Cn)⊗k

)
generated as

A = 〈λg : g ∈ GL(n,C)〉 and B = 〈ρw : w ∈ Sk〉

where λg and ρw are the linear maps (Cn)⊗k → (Cn)⊗k defined by

λg(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk and ρw(v1 ⊗ · · · ⊗ vk) = vw(1) ⊗ · · · ⊗ vw(k).

Then B is the commuting ring of A and A is the commuting ring of B.

Proof. Let V = Cn and Ω = V ⊗k. We first show that A is the commuting ring of B.

We have already observed that the elements of A and B commute with each other. Define a linear map

β : End(V )× · · · × End(V )→ End(Ω)

by letting β(f1, . . . , fk) be the linear map sending v1 ⊗ · · · ⊗ vk 7→ f1(v1)⊗ · · · ⊗ fk(vk).

A basis for End(V ) is given by the linear maps indexed by pairs (i, j) that send ei 7→ ej and ek 7→ 0 for
k 6= i. By taking f1, . . . , fk to be maps of this form one sees that End(Ω) is spanned by the image of β.

Next, we observe that ρw ◦ β(f1, . . . , fk) ◦ ρw−1 = β(fw(1), . . . , fw(k)).

It follows that the commuting ring of B is the span of the elements

β̃(f1, . . . , fk) :=
1

k!

∑
w∈Sk

β(fw(1), . . . , fw(k))

since if φ ∈ End(Ω) commutes with every ρw then φ = 1
k!

∑
w∈Sk ρw ◦ φ ◦ ρw−1 .

The next step to check is that if f1, f2, . . . , fk ∈ End(V ) are fixed and fI :=
∑
i∈I fi for I ⊆ [k], then

β̃(f1, f2, . . . , fk) =
1

k!

∑
I⊆[k]

(−1)k−|I|β(fI , fI , . . . , fI).
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This is a straightforward exercise using the inclusion-exclusion principle; we will skip the details.

We conclude that the commuting ring of B is spanned by the maps β(f, f, . . . , f) where f ∈ End(V ).

This is a promising observation because if f ∈ GL(V ) ⊂ End(V ) then β(f, f, . . . , f) = λf ∈ A.

Suppose f ∈ End(V ) is not invertible. We claim that we still have β(f, f, . . . , f) ∈ A since this endomor-
phism is generated by elements of the form λg ∈ A for g ∈ GL(V ). One argument goes as follows.

Since det(f) = 0 and the determinant is a nonzero polynomial function, if we choose ε > 0 to be any
sufficiently small real number, then det(f − εI) 6= 0 and we have

g := f − εI ∈ GL(V ) and h := εI ∈ GL(V ) and f = g + h.

Let ζ ∈ C be a primitive kth root of unity and define Q(φ) = β(φ, φ, . . . , φ) for φ ∈ End(V ).

Note again that Q(φ) = λφ ∈ A if φ is invertible.

If ε is small enough then we can further assume that g + ζeh ∈ GL(V ) for all e ∈ {1, 2, . . . , k − 1}.

It is now enough to show that
∑k−1
e=0 Q(g + ζeh) = kQ(g) + kQ(h), since this implies that

Q(f) = Q(g + h) = kQ(g) + kQ(h)−
k−1∑
e=1

Q(g + ζeh) = kλg + kλh −
k−1∑
e=1

λg+ζeh ∈ A.

The k = 2 case of this identity is instructive. Then we have ζ2 = −1 and

Q(g + h) +Q(g − h) = (g + h)⊗ (g + h) + (g − h)⊗ (g − h)

= (g ⊗ g + g ⊗ h+ h⊗ g + h⊗ h) + (g ⊗ g − g ⊗ h− h⊗ g + h⊗ h)

= 2(g ⊗ g + h⊗ h).

Here we are writing “φ⊗ ψ” to mean the map in End((Cn)2) with v1 ⊗ v2 7→ φ(v1)⊗ ψ(v2).

For k > 2 a similar cancelation occurs because 1 + ζ + ζ2 + · · ·+ ζk−1 = 0.

Specifically, consider a term in the expansion of Q(g + ζeh) = (g + ζeh)⊗ (g + ζeh)⊗ · · · ⊗ (g + ζeh).

If this term corresponds to choosing g instead of ζeh in exactly m factors, then the coefficient is ζe(k−m).

We have
∑k−1
e=0 ζ

e(k−m) = 0 if m /∈ {0, k}. If m ∈ {0, k} then this sum is k and the term is Q(g) or Q(h).

We conclude that
∑k−1
e=0 Q(g + ζeh) = kQ(g) + kQ(h) as needed.

Thus A = 〈λg : g ∈ GL(n,C)〉 is the commuting ring of B = 〈ρw : w ∈ Sk〉.

It remains to show the other statement in theorem, that B is likewise the commuting ring of A. The
standard approach to this is not particularly constructive or self-contained.

The argument in Bump and Schilling’s Appendix A.2 is to appeal to the fact that the ring B is semisimple,
which lets us use the Jacobson Density Theorem to deduce that B is automatically the commuting ring
of A since A is the commuting ring of B. A lot of prerequisites go into unpacking these claims.

For good discussions of more constructive proofs, check out these mathoverflow posts:

• Direct proof that the centralizer of GL(V ) acting on V ⊗n is spanned by Sn

• How to constructively/combinatorially prove Schur-Weyl duality?
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3 Schur-Weyl duality

To summarize: we have a left diagonal action of GL(n,C) on (Cn)⊗k which generates a ring of endomor-
phisms, and a right permutation action of Sk on (Cn)⊗k which generates another ring of endomorphisms,
and each of these rings consists of precisely the endomorphisms of (Cn)⊗k that commute with all elements
of the other ring. This fact leads to a consistent labeling of the irreducible (polynomial) representations
of GL(n,C) and Sk via the following general proposition:

Proposition 3.1. Let Ω be a finite-dimensional vector space and let A and B be subalgebras of End(Ω).
Assume that A is the commuting ring of B and B is the commuting ring of A, so that the action

(α, β) · ω := α(β(ω)) = β(α(ω)) for (α, β) ∈ A×B and ω ∈ Ω

makes Ω into an A×B-module. Suppose this module decomposes as Ω ∼=
⊕

i Ui ⊗Wi where the Ui are
A-modules and the Wi and B-modules. If i 6= j, then Ui 6∼= Uj as A-modules and Wi 6∼= Wj as B-modules.

Proof. Arguing by contradiction, suppose Ui ∼= Uj as A-modules for i 6= j and let φ : Ui → Uj be an
A-module isomorphism. Let ψ : Wi → Wj be any nonzero linear map and define f : Ω → Ω to be the
linear map that restricts to φ⊗ ψ on Ui ⊗Wi and is zero on the other summands.

Then f commutes with all elements of A, so f ∈ B. But this is impossible since f does not map the
B-module Ui ⊗Wi to itself. Thus no such isomorphism Ui ∼= Uj can exist.

The argument that Wi 6∼= Wj for i 6= j is similar.

Theorem 3.2. The GL(n,C)× Sk-module (Cn)⊗k decomposes as

(Cn)⊗k =
⊕
λ

V
GL(n)
λ ⊗ V Skλ

where λ runs through all partitions of k with at most n parts, and:

• V GL(n)
λ is an irreducible GL(n,C)-module isomorphic to the representation π

GL(n)
λ .

• V Skλ is a certain irreducible Sk-module that depends only on λ up to isomorphism.

Moreover, if n ≥ k then the modules V Skλ are a complete set of non-isomorphic irreducible Sk-modules.

Remark. It therefore makes sense to label the Sk-representation corresponding to V Skλ by πSkλ .

One can check that this makes πSk(k) and πSk
(1k)

the trivial and sign representations of Sk using the fact

that V
GL(n)
(k) is the kth symmetric power of Cn while V

GL(n)

(1k)
is the kth exterior power of Cn.

Proof. Each diagonal matrix t = diag(t1, t2, . . . , tk) multiplies the vector ei1⊗ei2⊗· · ·⊗eik by ti1ti2 · · · tik ,
so the weights of (Cn)⊗k must all be homogenous monomials of degree k.

This means that the irreducible GL(n,C)-representations V
GL(n)
λ that appear in our decomposition must

be indexed by some subset of partitions of k with at most n parts.

It follows from the preceding proposition with V = Cn and Ω = V ⊗k that there are no repetitions

among (the isomorphism classes of) the modules V
GL(n)
λ or V Skλ . The fact that V

GL(n)
λ appears for every

partition λ of k with at most n parts holds since we know that π
GL(n)
λ is a constituent of (Cn)⊗k.

If n ≥ k, then the number of such partitions is the same as the total number of partitions of k, which is the
number of isomorphism classes of irreducible Sk-representations. One concludes that the non-isomorphic
Sk-modules V Skλ must therefore represent all isomorphism classes of irreducible Sk-modules.
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Suppose G1 and G2 are groups and Ω is representation for the direct product G1 ×G2.

We say that Ω is a correspondence if there is a decomposition into irreducible G1×G2-subrepresentations

Ω =
⊕
i

πG1
i ⊗ π

G2
i

such that πG1
i 6∼= πG1

j as G1-representations if i 6= j and πG2
i 6∼= πG2

j as G2-representations if i 6= j.

In this case, Ω determines a bijection between the set of G1-representations {πG1
i } and the set of G2-

representations {πG2
i }. We indicate this situation by writing

πG1
i

Ω←−−→ πG2
i .

For example, Schur-Weyl duality refers to the correspondence written as π
GL(n)
λ

(Cn)⊗k←−−−−→ πSkλ .

4 Symmetric functions

We have briefly encountered the Schur functions sλ :=
∑
T∈SSYT(λ) x

wt(T ) which are the formal power

series analogues of the Schur polynomials sλ(x1, x2, . . . , xn) ∈ Symn ⊂ Z[x1, x2, . . . , xn].

Let Sym be the abelian group of formal power series spanned by the linearly independent set of Schur
functions sλ as λ varies over all partitions. The results summarized at the start of Lecture 4 show that
this abelian group is actually a graded ring. (For the grading, each sλ is homogeneous of degree |λ|.)

The ring Sym can also be identified as the inverse limit of the system Sym0 � Sym1 � Sym2 � · · · where
the projection Symn � Symn+1 is the map setting xn+1 = 0.

Let ek := s(1k) =
∑

1≤i1<i2<···<ik

xi1xi2 · · ·xik and hk := s(k) =
∑

1≤i1≤i2≤···≤ik

xi1xi2 · · ·xik for k ≥ 1.

These are the elementary symmetric functions and the complete homogeneous symmetric functions.

Theorem 4.1. It holds that Sym = Z[e1, e2, e3, . . . ] and also Sym = Z[h1, h2, h3, . . . ].

Consequently, there is a unique ring homomorphism ω : Sym→ Sym with ω(ek) = hk for all k.

This homomorphism also has ω(hk) = ek for all k, so is a self-inverse bijection.

Proof. To show the first claim, it is enough to check that Symn = Z[e1, e2, . . . , en] where we truncate to
n variables. This is well-known and not too hard to show directly; we will skip the details here.

The main thing left to prove is that ω(hk) = ek. This can be shown using generating functions.

Define H(t) =
∑
k≥0 hkt

k and E(t) =
∑
k≥0 ekt

k.

Argue that H(t) =
∏
k≥1(1− xkt)−1 and E(t) =

∏
k≥1(1 + xkt), so H(t)E(−t) = 1.

Extracting coefficients gives some relations that express the hk’s in terms of the ek’s. But you can observe
that these same relations also express the ek’s in terms of the hk’s, so the ring homomorphism ω : ek 7→ hk
must be an involution, as we wanted to show.

Let Rk be free abelian group that is spanned by the symbols [πSkλ ] as λ ranges over all partitions of k.

This means that the elements of Rk are formal Z-linear combinations of these symbols.

Given any representation π of Sk, define [π] =
∑
λ cλ[πSkλ ] where π ∼=

∑
λ(πSkλ )⊕cλ .
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We view the direct sum R =
⊕

k≥0Rk as a graded ring by setting

[φ][ψ] :=
[
Ind

Sk+l
Sk×Sl(φ⊗ ψ)

]
for representations φ of Sk and ψ of Sl. The induced representation is computed by viewing Sk×Sl as the
subgroup of Sk+l in which the first factor permutes 1, 2, . . . , k and the second permutes k+1, k+2, . . . , k+l.

The Frobenius characteristic ch : R → Sym is the Z-linear map with ch([πSkλ ]) = sλ.

If 1Sk and sgnSk are the trivial and sign representations of Sk, then ch([1Sk ]) = hk and ch([sgnSk ]) = ek.

Clearly ch is a graded, linear bijection. Our last objective is to show that ch is also a ring isomorphism.

5 See-saws

For this, we talk briefly about see-saws. Suppose G1 and G2 are groups with subgroups Hi ⊂ Gi.

Let Ω be a vector space that is both a G1-module and a G2-module. Rather than assuming the actions
of G1 and G2 commute, we instead assume that the action of G1 commutes with the action of H2 and
that the action of G2 commutes with the action of H1.

This means that we can view Ω as either a (G1 ×H2)-module or a (G2 ×H1)-module.

We say that Ω is a see-saw if we have correspondences for both of these actions:

πG1
i

Ω←−−→ σH2
i and πG2

j
Ω←−−→ σH1

j . (5.1)

We indicate this situation with the diagram

G1 G2

H1 H2

(5.2)

Example 5.1. An example of a see-saw is given by

Sk+l GL(n,C)×GL(n,C)

Sk × Sl GL(n,C)

for the vector space Ω = (Cn)⊗(k+l). Here the Sk+l-action is the same right action as before.

We view Sk × Sl as a subgroup of Sk+l as discussed earlier. The GL(n,C)×GL(n,C)-action on Ω is

(g, h)(v1 ⊗ · · · ⊗ vk ⊗ vk+1 ⊗ · · · ⊗ vk+l) = gv1 ⊗ · · · ⊗ gvk ⊗ hvk+1 ⊗ · · · ⊗ hvk+l.

Finally, we embed GL(n,C) as the subgroup {(g, g) : g ∈ GL(n,C)} ⊂ GL(n,C)×GL(n,C).

Lemma 5.2. Assume we are in the situation of (5.2) with correspondences (5.1). Then the multiplicity
of σH1

j in the restriction of πG1
i to H1 is also the multiplicity of σH2

i in the restriction of πG2
j to H2.

Proof. Argue that both multiplicities are the dimension of HomH1×H2

(
σH1
j ⊗ σ

H2
i ,Ω

)
since

HomH1×H2

(
σH1
j ⊗ σ

H2
i ,Ω

)
∼= HomH1

(
σH1
j ,HomH2

(
σH2
i ,Ω

))
∼= HomH1

(
σH1
j , πG1

i

)
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and also

HomH1×H2

(
σH1
j ⊗ σ

H2
i ,Ω

)
∼= HomH2

(
σH2
i ,HomH1

(
σH1
j ,Ω

))
∼= HomH2

(
σH2
i , πG2

j

)
.

For more details, see the Appendix A.4 in Bump and Schilling’s book.

Theorem 5.3. The Frobenius characteristic map ch : R → Sym is a ring isomorphism.

Proof. It only remains to show that ch is a multiplicative map.

Let λ and µ be partitions of k and l. Writing sλsµ =
∑
ν c

ν
λµsν , it suffices to show that the multiplicity

of π
Sk+l
ν in πSkλ ⊗ πSlµ induced to Sk+l is also the nonnegative integer cνλµ.

By Frobenius reciprocity, the multiplicity we want to calculate is also the multiplicity of πSkλ ⊗ πSlµ in

the representation obtained by restricting π
Sk+l
ν to Sk × Sl. By the previous proposition applied to the

see-saw in Example 5.1, this multiplicity is equal, in turn, to the multiplicity of π
GL(n)
ν in the restriction

of π
GL(n)
λ ⊗ πGL(n)

µ to the subgroup {(g, g) : g ∈ GL(n,C)} ∼= GL(n,C).

This multiplicity is exactly cνλµ, as we need to show, because the relevant characters are the Schur
polynomials sν(t1, t2, . . . , tn) and sλ(t1, t2, . . . , tn)sµ(t1, t2, . . . , tn) by the Weyl character formula.

7


	Review from last time: representations of GL(n,C)
	Commuting endomorphism rings
	Schur-Weyl duality
	Symmetric functions
	See-saws

