1 Review from last time: Schur-Weyl duality

As usual fix positive integers n and k.
The group $\mathrm{GL}(n, \mathbb{C})$ acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally by $g: v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k} \mapsto g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k}$.
The symmetric group S_{k} acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by permuting tensor factors.
These two actions commute with each other. More strongly and less trivially: if we consider the two subrings A and B of the ring of all linear maps $\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes k}$ generated by the actions of $\mathrm{GL}(n, \mathbb{C})$ and S_{k}, respectively, then A and B are the commuting rings of each other.
This implies $\left(\mathbb{C}^{n}\right)^{\otimes k}$ decomposes into $\left(\operatorname{GL}(n, \mathbb{C}) \times S_{k}\right)$-submodules as $\left(\mathbb{C}^{n}\right)^{\otimes k}=\bigoplus_{\lambda} V_{\lambda}^{\mathrm{GL}(n)} \otimes V_{\lambda}^{S_{k}}$ where

- λ runs through all partitions of k with at most n parts.
- $V_{\lambda}^{\mathrm{GL}(n)}$ is an irreducible $\mathrm{GL}(n, \mathbb{C})$-module with $V_{\lambda}^{\mathrm{GL}(n)} \not \neq V_{\mu}^{\mathrm{GL}(n)}$ if $\lambda \neq \mu$.
- $V_{\lambda}^{S_{k}}$ is an irreducible S_{k}-module with $V_{\lambda}^{S_{k}} \not \equiv V_{\mu}^{S_{k}}$ if $\lambda \neq \mu$.
- If $n \geq k$ then the $V_{\lambda}^{S_{k}}$ represent all non-isomorphic irreducible S_{k}-modules.

We write $\pi_{\lambda}^{\mathrm{GL}(n)}$ and $\pi_{\lambda}^{S_{k}}$ for the representations corresponding to the modules $V_{\lambda}^{\mathrm{GL}(n)}$ and $V_{\lambda}^{S_{k}}$.
This is consistent with our earlier notation for polynomial GL (n, \mathbb{C})-representations.
The decomposition of $\left(\mathbb{C}^{n}\right)^{\otimes k}$ identifies a correspondence $\pi_{\lambda}^{\mathrm{GL}(n)} \stackrel{\left(\mathbb{C}^{n}\right)^{\otimes k}}{\longleftrightarrow} \pi_{\lambda}^{S_{k}}$.
This correspondence is Schur-Weyl duality. It gives us a natural embedding of the set of irreducible representations of S_{k} into the set of irreducible polynomial representations of $\operatorname{GL}(n, \mathbb{C})$ for all $n \geq k$.

This has many generalizations. A similar correspondence exists between the irreducible modules of subrings $A, B \subset \operatorname{End}(\Omega)$ whenever A is the commuting ring of B and B is the commuting ring of A.

2 Extending the RSK correspondence

Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right)$ be a partition with at most n nonzero parts.
The Weyl character formula tells us that the character of the irreducible polynomial representation $\pi_{\lambda}^{\mathrm{GL}(n)}$ evaluated at a diagonal matrix $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is the Schur polynomial $s_{\lambda}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Taking $t=1$ gives $\operatorname{deg} \pi_{\lambda}^{\mathrm{GL}(n)}=s_{\lambda}(1,1, \ldots, 1)=\left|\operatorname{SSYT}_{n}(\lambda)\right|$.
It is well-known that $\operatorname{deg} \pi_{\lambda}^{S_{k}}=|\operatorname{SYT}(\lambda)|$ where $\operatorname{SYT}(\lambda)$ is the set of standard tabeaux of shape λ, i.e., semistandard tableaux of shape λ containing each of the numbers $1,2, \ldots,|\lambda|$ (exactly once, necessarily).
Schur-Weyl duality implies the following enumerative identity:
Corollary 2.1. It holds that

$$
n^{k}=\sum_{\lambda}\left|\operatorname{SSYT}_{n}(\lambda)\right| \cdot|\operatorname{SYT}(\lambda)|
$$

where the sum is over all partitions of k with at most n parts.
Proof. The left-hand side is $\operatorname{dim}\left(\mathbb{C}^{n}\right)^{\otimes k}$ and each summand is the dimension of $V_{\lambda}^{\mathrm{GL}(n)} \otimes V_{\lambda}^{S_{k}}$.
We have already seen a proof of this result using the RSK correspondence $w \mapsto\left(P_{\mathrm{RSK}}(w), Q_{\mathrm{RSK}}(w)\right)$.
Recall that if $w=w_{1} w_{2} \cdots w_{k}$ then

$$
P_{\mathrm{RSK}}(w)=\emptyset \leftarrow w_{1} \leftarrow w_{2} \leftarrow \cdots \leftarrow w_{k}
$$

where if T is a tableau and $a \in \mathbb{Z}$ then $T \leftarrow a$ is formed as follows:

- At each stage a number x is inserted into a row, starting with a into the first row of T.

When x is inserted, let y be the first entry in the row with $x<y$.

- If no such entry exists then x is added to the end of the row.

Otherwise we replace y by x and insert y into the next row.

For example, we have \begin{tabular}{|l|l|}
\hline 1 \& 2

\hline 3 \& 3

\hline

$\leftarrow 1=$

\hline 1 \& 1

\hline 2 \& 3

\hline 3 \& \multicolumn{4}{|c}{.}

\hline
\end{tabular}

The tableau $P_{\mathrm{RSK}}(w)$ is always semistandard, and $Q_{\mathrm{RSK}}(w)$ is the standard tableau with the same shape as $P_{\mathrm{RSK}}(w)$ that contains i in the box added by inserting the letter w_{i}.
The RSK correspondence is a bijection from words with letters in $[n]=\{1,2, \ldots, n\}$ to pairs (P, Q) of tableaux with the same shape in which P is semistandard with entries in $[n]$ and Q is standard.

We begin today by noting a generalization of this bijection.
Suppose $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$ is an $r \times n$ matrix with nonnegative integer entries.
Form a two-line array $A=\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{m} \\ j_{1} & j_{2} & \cdots & i_{m}\end{array}\right]$ from X as follows.
Each column of this array is a pair $\left[\begin{array}{l}i \\ j\end{array}\right]$ such that $X_{i j} \neq 0$. This column is repeated exactly $X_{i j}$ times.
The columns of A are ordered lexicographically, so $i_{1} \leq i_{2} \leq \cdots \leq i_{k}$ and if $i_{t}=i_{t+1}$ then $j_{t} \leq j_{t+1}$.
For example, $X=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 2\end{array}\right] \leadsto A=\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 1 & 1 & 3 & 3\end{array}\right]$.

Now define $P_{\mathrm{RSK}}(X)=P_{\mathrm{RSK}}\left(j_{1} j_{2} \cdots j_{m}\right)$ and let $Q_{\mathrm{RSK}}(X)$ be the tableau with the same shape of $P_{\mathrm{RSK}}(X)$ that contains i_{t} in the box added by inserting j_{t} for each $t=1,2, \ldots, m$.

For example, if $X=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 2\end{array}\right]$ then $P_{\mathrm{RSK}}(X)=P_{\mathrm{RSK}}(12221133)$ so

$$
\begin{aligned}
& \leadsto \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 2 \\
\hline 2 & 2 & & \\
\hline
\end{array} \\
& \leadsto \\
& \leadsto \begin{array}{|l|l|l|l|l|l}
\hline 1 & 1 & 1 & 2 & 3 & 3 \\
\hline 2 & 2 & & & &
\end{array} \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 3 & 3 \\
\hline 2 & 2 & & & & \\
\hline
\end{array}=P_{\mathrm{RSK}}(X) .
\end{aligned}
$$

We then have $Q_{\text {RSK }}(12221133)=$\begin{tabular}{|l|l|l|l|l|l}
\hline 1 \& 2 \& 3 \& 4 \& 7 \& 8

\hline 5 \& 6 \& \&

 and $Q_{\text {RSK }}(X)=$

\hline 1 \& 1 \& 1 \& 1 \& 2 \& 2

\hline 2 \& 2 \& \& \& \&

\hline
\end{tabular} .

Clearly $P_{\mathrm{RSK}}(X)$ is always semistandard.
Lemma 2.2. If $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$ then $Q_{\mathrm{RSK}}(X)$ is also semistandard.

Proof. It is clear that $Q_{\mathrm{RSK}}(X)$ has weakly increasing rows and columns.
Consider the columns $\left[\begin{array}{l}i \\ j\end{array}\right]$ in the corresponding two-line array A.
When i is fixed, the entries below i are in weakly increasing order.
The boxes added by inserting these entries are the ones labeled i in $Q_{\mathrm{RSK}}(X)$.
It not hard to check that when we insert a sequence of entries in weakly increasing order, the box added by one insertion ends up in a column strictly less than the box added by the next insertion.

Therefore boxes labeled by i in $Q_{\mathrm{RSK}}(X)$ are all in distinct columns.
Thus the columns of $Q_{\mathrm{RSK}}(X)$ are actually strictly increasing, so the tableau in semistandard.
Suppose Q is a semistandard tableau with m boxes $\square_{1}, \square_{2}, \ldots, \square_{m}$.
Assume these boxes are indexed in the unique way such that if $i<j$ then either the entry of \square_{i} is less than that of \square_{j}, or the entries in the boxes are equal but the column of \square_{i} is less than the column of \square_{j}.
Define the standardization of Q to be the tableau $\operatorname{std}(Q)$ formed by replacing \square_{i} by i for all $i \in[m]$.
Since Q is semistandard, $\operatorname{std}(Q)$ is standard. For example,

$$
\operatorname{std}\left(\begin{array}{|l|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 2 & 2 & & & & \\
\hline
\end{array}\right)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 7 & 8 \\
\hline 5 & 6 & & & & \\
\hline
\end{array} .
$$

As we see in this example, if X corresponds to the two-line array $A=\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{m} \\ j_{1} & j_{2} & \cdots & i_{m}\end{array}\right]$ then

$$
Q_{\mathrm{RSK}}\left(i_{1} i_{2} \cdots i_{m}\right)=\operatorname{std}\left(Q_{\mathrm{RSK}}(X)\right)
$$

while by definition $P_{\mathrm{RSK}}\left(j_{1} j_{2} \cdots j_{m}\right)=P_{\mathrm{RSK}}(X)$.
Theorem 2.3. Let r and n be positive integers. Then the map $X \mapsto\left(P_{\mathrm{RSK}}(X), Q_{\mathrm{RSK}}(X)\right)$ is a bijection

$$
\operatorname{Mat}_{r \times n}(\mathbb{N}) \rightarrow \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)
$$

of all $r \times n$ matrices with nonnegative integer entries to the set of pairs (P, Q) of semistandard tableaux of the same shape, where P has entries in $[n]$ and Q has entries in $[r]$.

Proof. It suffices to construct an inverse map.
We leverage the fact that we already know how to invert the RSK correspondence for words.
Given $(P, Q)=\left(P_{\mathrm{RSK}}(X), Q_{\mathrm{RSK}}(X)\right)$, define $j_{1} j_{2} \cdots j_{m}$ to be word obtained by obtained the inverse RSK correspondence to the pair $(P, \operatorname{std}(Q))$, in which the second tableau in standard.

Then let $i_{1} i_{2} \cdots i_{m}$ be the sequence where i_{t} is then entry in the box of Q that contains t in $\operatorname{std}(Q)$.
We then recover X as the unique matrix corresponding to the array $A=\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{m} \\ j_{1} & j_{2} & \cdots & i_{m}\end{array}\right]$.
This correspondence $(P, Q) \mapsto X$ is the map described in theorem, so both maps are bijections.

There is a followup result we should mention, which is proved in Chapter 7 of Bump and Schilling's book.
Fix a nonnegative integer matrix $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$.
Theorem 2.4. If $(P, Q)=\left(P_{\mathrm{RSK}}(X), Q_{\mathrm{RSK}}(X)\right)$, then $(Q, P)=\left(P_{\mathrm{RSK}}\left(X^{T}\right), Q_{\mathrm{RSK}}\left(X^{T}\right)\right)$.

3 The GL $(n) \times \operatorname{GL}(r)$ bicrystal

Let n and r be positive integers.
Consider partitions λ and μ with at most n and at most r parts, respectively.
The sets $\operatorname{SSYT}_{n}(\lambda)$ is a $\operatorname{GL}(n)$-crystal while $\operatorname{SSYT}_{r}(\mu)$ is a $\operatorname{GL}(r)$-crystal.
Thus $\operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$ is a crystal for the product Cartan type GL $(n) \times \operatorname{GL}(r)$.
Observation 3.1. The set $\operatorname{Mat}_{r \times n}(\mathbb{N})$ of $r \times n$ matrices with nonnegative integer entries has a unique $\mathrm{GL}(n) \times \mathrm{GL}(r)$ crystal structure such that the generalized RSK correspondence $X \mapsto\left(P_{\text {RSK }}(X), Q_{\text {RSK }}(X)\right)$ is a crystal isomorphism $\operatorname{Mat}_{r \times n}(\mathbb{N}) \cong \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$.
We view $\operatorname{Mat}_{r \times n}(\mathbb{N})$ as a crystal in this way.
It is pleasantly simple to implement this crystal structure on nonnegative integer matrices directly.
The $\mathrm{GL}(n)$ - and $\mathrm{GL}(r)$-crystal structure will correspond to operations on rows and columns, respectively.
Let $\Lambda=\mathbb{Z}^{n}$ and $\Lambda^{\prime}=\mathbb{Z}^{r}$. Fix a matrix $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$.
The $\mathrm{GL}(n)$ weight map is given by the column sums $\mathbf{w t}(X)=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $s_{j}:=\sum_{i=1}^{r} X_{i j}$.
The $\mathrm{GL}(r)$ weight map is given by the row sums $\mathbf{w t}^{\prime}(X)=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{r}^{\prime}\right)$ where $s_{i}^{\prime}:=\sum_{j=1}^{n} X_{i j}$.

To define the GL (n) crystal operators, let

$$
\begin{aligned}
\Psi_{i}(X, k) & =\left(a_{1}+a_{2}+\cdots+a_{k}\right)-\left(b_{1}+b_{2}+\cdots+b_{k-1}\right) \\
\Delta_{i}(X, k) & =\left(b_{k}+b_{k+1}+\cdots+b_{r}\right)-\left(a_{k+1}+a_{k+2}+\cdots+a_{r}\right)
\end{aligned}
$$

where columns i and $i+1$ of X are

$$
\left[\begin{array}{ll}
X_{1, i} & X_{1, i+1} \\
X_{2, i} & X_{2, i+1} \\
\vdots & \vdots \\
X_{k, i} & X_{k, i+1} \\
X_{k+1, i} & X_{k+1, i+1} \\
\vdots & \vdots \\
X_{r, i} & X_{r, i+1}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
\vdots & \vdots \\
a_{k} & b_{k} \\
a_{k+1} & b_{k+1} \\
\vdots & \vdots \\
a_{r} & b_{r}
\end{array}\right] .
$$

Write $\alpha_{i}=\mathbf{e}_{i}-\mathbf{e}_{i+1}=(0, \ldots, 0,1,-1,0, \ldots, 0) \in \mathbb{Z}^{n}$, viewed as a row vector.
Now define $\varphi_{i}(X)=\max _{1 \leq k \leq r} \Psi_{i}(X, k)$ and $\varepsilon_{i}(X)=\max _{1 \leq k \leq r} \Delta_{i}(X, k)$.
If $\varphi_{i}(X)=0$ then $f_{i}(X)=0$. If $\varphi_{i}(X) \neq 0$ then $f_{i}(X)$ is obtained by subtracting α_{i} to the k th row of X, where k is the first value where $\Psi_{i}(X, k)$ attains its maximum.

Likewise, if $\varepsilon_{i}(X)=0$ then $e_{i}(X)=0$. If $\varepsilon_{i}(X) \neq 0$ then $e_{i}(X)$ is obtained by adding α_{i} to the k th row of X, where k is the last value where $\Delta_{i}(X, k)$ attains its maximum.

The GL (r) crystal operators are defined by transposing everything in sight.
For example, we set $\varphi_{i}^{\prime}(X)=\varphi_{i}\left(X^{T}\right)$ and $\varepsilon_{i}^{\prime}(X)=\varepsilon_{i}\left(X^{T}\right)$.
If $\varphi_{i}^{\prime}(X)=0$ then $f_{i}^{\prime}(X)=0$ and if $\varepsilon_{i}^{\prime}(X)=0$ then $e_{i}^{\prime}(X)=0$.
Otherwise, $f_{i}^{\prime}(X)=f_{i}\left(X^{T}\right)^{T}$ and $e_{i}^{\prime}(X)=e_{i}\left(X^{T}\right)^{T}$.

These operators can be defined in terms of adding or subtracting the column vector $\alpha_{i}^{\prime}=\mathbf{e}_{i}-\mathbf{e}_{i+1} \in \mathbb{Z}^{r}$ from the k th column of X, where k is the first or last value at which the quantities

$$
\Psi_{i}^{\prime}(X, k):=\Psi_{i}\left(X^{T}, k\right) \quad \text { or } \quad \Delta_{i}^{\prime}(X, k):=\Delta_{i}\left(X^{T}, k\right)
$$

attains their maximum.

Theorem 3.2. The GL (n)-crystal structure on $\operatorname{Mat}_{r \times n}(\mathbb{N})$ corresponds to the weight map wt, string lengths φ_{i} and ε_{i} for $i \in[n-1]$, and crystal operators e_{i} and f_{i} for $i \in[n-1]$ just described.
The $\mathrm{GL}(r)$-crystal structure on $\operatorname{Mat}_{r \times n}(\mathbb{N})$ corresponds to the weight map $\mathbf{w} \mathbf{t}^{\prime}$, string lengths φ_{i}^{\prime} and ε_{i}^{\prime} for $i \in[r-1]$, and crystal operators e_{i}^{\prime} and f_{i}^{\prime} for $i \in[r-1]$ just described.
These structures are compatible and correspond to the $\mathrm{GL}(n) \times \mathrm{GL}(r)$-crystal structure on Mat ${ }_{r \times n}(\mathbb{N})$.
In particular, for any matrix $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$ we have

$$
\begin{array}{lll}
P_{\mathrm{RSK}}\left(e_{i}(X)\right)=e_{i}\left(P_{\mathrm{RSK}}(X)\right) & \text { and } & Q_{\mathrm{RSK}}\left(e_{i}(X)\right)=Q_{\mathrm{RSK}}(X), \\
P_{\mathrm{RSK}}\left(f_{i}(X)\right)=f_{i}\left(P_{\mathrm{RSK}}(X)\right) & \text { and } & Q_{\mathrm{RSK}}\left(f_{i}(X)\right)=Q_{\mathrm{RSK}}(X),
\end{array}
$$

for each $i \in[n-1]$ with $f_{i}(X) \neq 0$ or $e_{i}(X) \neq 0$ as appropriate, and

$$
\begin{array}{lll}
P_{\mathrm{RSK}}\left(e_{i}^{\prime}(X)\right)=P_{\mathrm{RSK}}(X) & \text { and } & Q_{\mathrm{RSK}}\left(e_{i}^{\prime}(X)\right)=e_{i}\left(Q_{\mathrm{RSK}}(X)\right), \\
P_{\mathrm{RSK}}\left(f_{i}^{\prime}(X)\right)=P_{\mathrm{RSK}}(X) & \text { and } & Q_{\mathrm{RSK}}\left(f_{i}^{\prime}(X)\right)=f_{i}\left(Q_{\mathrm{RSK}}(X)\right),
\end{array}
$$

for each $i \in[r-1]$ with $f_{i}^{\prime}(X) \neq 0$ or $e_{i}^{\prime}(X) \neq 0$ as appropriate.

Proof. The details are a little technical but straightforward.
Because of Theorem 2.4, it is only necessary to check these assertions for the GL(n)-crystal structure.
One can show that the string lengths and crystal operators act as we expect by matching up some general formulas for iterated tensor products, using the fact the $P_{\text {RSK }}$ is constant on plactic equivalence classes.

The claim that $Q_{\mathrm{RSK}}\left(e_{i}(X)\right)=Q_{\mathrm{RSK}}(X)$ and $Q_{\mathrm{RSK}}\left(f_{i}(X)\right)=Q_{\mathrm{RSK}}(X)$ is deduced by tracing through the definitions and using the fact that words belong to the same connected component of $\mathbb{B}_{n}^{\otimes k}$ if and only if have they have the same image under $Q_{\text {RSK }}$.

The full arguments are in Chapter 9 of Bump and Schilling's book.

4 The crystal see-saw and the Littlewood-Richardson rule

Let n, r, and s be positive integers.
We have just described a $\mathrm{GL}(n) \times \mathrm{GL}(r+s)$ crystal structures on $\operatorname{Mat}_{(r+s) \times n}(\mathbb{N})$.
Since can write any matrix $X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N})$ as two stacked matrices

$$
X=\left[\begin{array}{l}
X^{\prime} \\
X^{\prime \prime}
\end{array}\right] \quad \text { for } X^{\prime} \in \operatorname{Mat}_{r \times n}(\mathbb{N}) \text { and } X^{\prime \prime} \in \operatorname{Mat}_{s \times n}(\mathbb{N})
$$

the set $\operatorname{Mat}_{(r+s) \times n}(\mathbb{N})$ also has a $\mathrm{GL}(n) \times \mathrm{GL}(r) \times \mathrm{GL}(n) \times \mathrm{GL}(s)$ crystal structure.
Lemma 4.1. In the above situation, let $(P, Q),\left(P^{\prime}, Q^{\prime}\right)$, and $\left(P^{\prime \prime}, Q^{\prime \prime}\right)$ be the results of applying RSK to the matrices X, X^{\prime}, and $X^{\prime \prime}$, respectively. Then P is plactically equivalent to $P^{\prime} \otimes P^{\prime \prime}$ as elements of $\mathrm{GL}(n)$ crystals, while Q is plactically equivalent to $\left(Q^{\prime}, Q^{\prime \prime}\right)$ as elements of $\mathrm{GL}(r) \times \mathrm{GL}(s)$ crystals.

Proof. Suppose the two-line array associated to X is

$$
A=\left[\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{m} \\
j_{1} & j_{2} & \cdots & i_{m}
\end{array}\right]
$$

Then P is plactically equivalently to the word $j_{1} j_{2} \cdots j_{m} \in \mathbb{B}_{n}^{\otimes m}$ while P^{\prime} and P^{\prime} are plactically equivalent to $j_{1} j_{2} \cdots j_{k} \in \mathbb{B}_{n}^{\otimes k}$ and $j_{k+1} \cdots j_{m} \in \mathbb{B}_{n}^{\otimes(m-k)}$, respectively, where k is the last index with $i_{k} \leq r$.

Hence $P^{\prime} \otimes P^{\prime \prime} \equiv j_{1} j_{2} \cdots j_{k} \otimes j_{k+1} \cdots j_{m}=j_{1} j_{2} \cdots j_{m} \equiv P$.
Other the other hand, let C_{j} be the weakly increasing word formed by repeating the row index i of each nonzero entry in column j of X eactly $X_{i j}$ times. In view of Theorem 2.4 Q is GL $(r+s)$-plactically equivalent to $C_{1} C_{2} \cdots C_{n}=C_{1} \otimes C_{2} \otimes \cdots \otimes C_{n}$.
Each C_{j} can be written as $C_{j}=C_{j}^{\prime} C_{j}^{\prime \prime}$ where C_{j}^{\prime} are has all letters in $\{1, \ldots, r\}$ and $C_{j}^{\prime \prime}$ has all letters in $\{r+1, \ldots, s\}$. As an element of a (branched) $\mathrm{GL}(r) \times \mathrm{GL}(s)$-crystal, Q is plactically equivalent to

$$
\left(C_{1}^{\prime}, C_{1}^{\prime \prime}\right) \otimes\left(C_{2}^{\prime}, C_{2}^{\prime \prime}\right) \otimes \cdots \otimes\left(C_{n}^{\prime}, C_{n}^{\prime \prime}\right) \equiv\left(C_{1}^{\prime} C_{2}^{\prime} \cdots C_{n}^{\prime}, C_{1}^{\prime \prime} C_{2}^{\prime \prime} \cdots C_{n}^{\prime \prime}\right)
$$

Again using Theorem2.4, we have $Q^{\prime} \equiv C_{1}^{\prime} C_{2}^{\prime} \cdots C_{n}^{\prime}$ as elements of GL (r) crystals and $Q^{\prime \prime} \equiv C_{1}^{\prime \prime} C_{2}^{\prime \prime} \cdots C_{n}^{\prime \prime}$ as elements of $\mathrm{GL}(s)$ crystals, so $Q \equiv\left(Q^{\prime}, Q^{\prime \prime}\right)$.

Theorem 4.2. Let λ, μ, and ν be partitions.
Then the multiplicity of $\operatorname{SSYT}_{n}(\lambda)$ in $\operatorname{SSYT}_{n}(\mu) \otimes \operatorname{SSYT}_{n}(\nu)$ equals the multiplicity of $\operatorname{SSYT}_{r}(\mu) \times$ $\operatorname{SSYT}_{s}(\nu)$ in the $\mathrm{GL}(r) \times \mathrm{GL}(s)$ crystal obtained by branching $\operatorname{SSYT}_{r+s}(\lambda)$.
In other words, our two interpretations of the Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$, as either the number of skew tableaux of shape λ / μ with weight ν whose reading words are Yamanouchi words, or as the multiplicity of s_{λ} in the product of Schur functions $s_{\mu} s_{\nu}$, are consistent.

Proof. Consider the set

$$
\mathcal{C}:=\left\{X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}): P_{\mathrm{RSK}}(X) \in \operatorname{SSYT}_{n}(\lambda), Q_{\mathrm{RSK}}\left(X^{\prime}\right) \in \operatorname{SSYT}_{r}(\mu), Q_{\mathrm{RSK}}\left(X^{\prime \prime}\right) \in \operatorname{SSYT}_{s}(\nu)\right\}
$$

which consists of all elements of $\operatorname{Mat}_{(r+s) \times n}(\mathbb{N})$ that are $(\mathrm{GL}(n) \times \mathrm{GL}(r) \times \mathrm{GL}(s))$-plactically equivalent to elements of the $\operatorname{GL}(n) \times \operatorname{GL}(r) \times \operatorname{GL}(s)$ crystal $\operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\mu) \times \operatorname{SSYT}_{s}(\nu)$. The set \mathcal{C} is a disjoint union of copies of this crystal and the idea is to count these copies in two different ways.

On other hand, we have $\mathcal{C} \subset\left\{X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}): P_{\mathrm{RSK}}(X) \in \operatorname{SSYT}_{n}(\lambda)\right\}$. This is a GL $(n) \times \mathrm{GL}(r+s)$ crystal isomorphic to $\operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r+s}(\lambda)$. On branching to GL $(n) \times \mathrm{GL}(r) \times \operatorname{GL}(s)$, the number of subcrystals isomorphic to $\operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\mu) \times \operatorname{SSYT}_{s}(\nu)$ is equal to the multiplicity of $\operatorname{SSYT}_{r}(\mu) \times$ $\operatorname{SSYT}_{\nu}(s)$ in the $\mathrm{GL}(r) \times \mathrm{GL}(s)$ crystal obtained by branching $\operatorname{SSYT}_{r+s}(\lambda)$.

On the other hand, $\mathcal{C} \subset\left\{X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}): Q_{\text {RSK }}\left(X^{\prime}\right) \in \operatorname{SSYT}_{r}(\mu), Q_{\mathrm{RSK}}\left(X^{\prime \prime}\right) \in \operatorname{SSYT}_{s}(\nu)\right\}$. This is isomorphic to $\operatorname{SSYT}_{n}(\mu) \times \operatorname{SSYT}_{n}(\nu) \times \operatorname{SSYT}_{r}(\mu) \times \operatorname{SSYT}_{s}(\nu)$ as a $\operatorname{GL}(n) \times \mathrm{GL}(n) \times \mathrm{GL}(r) \times \mathrm{GL}(s)$ crystal. Since by the lemma $P_{\mathrm{RSK}}(X) \equiv P_{\mathrm{RSK}}\left(X^{\prime}\right) \otimes P_{\mathrm{RSK}}\left(X^{\prime \prime}\right)$, it follows that the number of subcrystals isomorphic to $\operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\mu) \times \operatorname{SSYT}_{s}(\nu)$ equals the multiplicity of $\operatorname{SSYT}_{n}(\lambda)$ in $\operatorname{SSYT}_{n}(\mu) \otimes \operatorname{SSYT}_{n}(\nu)$.

The theorem follows by comparing these two multiplicity calculations.

