1 Review from last time: Schur-Weyl duality

As usual fix positive integers n and k.

The group $\operatorname{GL}(n,\mathbb{C})$ acts on $(\mathbb{C}^n)^{\otimes k}$ diagonally by $g: v_1 \otimes v_2 \otimes \cdots \otimes v_k \mapsto gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k$.

The symmetric group S_k acts on $(\mathbb{C}^n)^{\otimes k}$ by permuting tensor factors.

These two actions commute with each other. More strongly and less trivially: if we consider the two subrings A and B of the ring of all linear maps $(\mathbb{C}^n)^{\otimes k} \to (\mathbb{C}^n)^{\otimes k}$ generated by the actions of $\mathrm{GL}(n,\mathbb{C})$ and S_k , respectively, then A and B are the *commuting rings* of each other.

This implies $(\mathbb{C}^n)^{\otimes k}$ decomposes into $(\operatorname{GL}(n,\mathbb{C})\times S_k)$ -submodules as $(\mathbb{C}^n)^{\otimes k} = \bigoplus_{\lambda} V_{\lambda}^{\operatorname{GL}(n)} \otimes V_{\lambda}^{S_k}$ where

- λ runs through all partitions of k with at most n parts.
- $V_{\lambda}^{\mathrm{GL}(n)}$ is an irreducible $\mathrm{GL}(n,\mathbb{C})$ -module with $V_{\lambda}^{\mathrm{GL}(n)} \cong V_{\mu}^{\mathrm{GL}(n)}$ if $\lambda \neq \mu$.
- $V_{\lambda}^{S_k}$ is an irreducible S_k -module with $V_{\lambda}^{S_k} \not\cong V_{\mu}^{S_k}$ if $\lambda \neq \mu$.
- If $n \ge k$ then the $V_{\lambda}^{S_k}$ represent all non-isomorphic irreducible S_k -modules.

We write $\pi_{\lambda}^{\mathrm{GL}(n)}$ and $\pi_{\lambda}^{S_k}$ for the representations corresponding to the modules $V_{\lambda}^{\mathrm{GL}(n)}$ and $V_{\lambda}^{S_k}$.

This is consistent with our earlier notation for polynomial $\mathrm{GL}(n,\mathbb{C})\text{-representations}.$

The decomposition of $(\mathbb{C}^n)^{\otimes k}$ identifies a correspondence $\pi_{\lambda}^{\mathrm{GL}(n)} \xleftarrow{(\mathbb{C}^n)^{\otimes k}} \pi_{\lambda}^{S_k}$.

This correspondence is *Schur-Weyl duality*. It gives us a natural embedding of the set of irreducible representations of S_k into the set of irreducible polynomial representations of $GL(n, \mathbb{C})$ for all $n \ge k$.

This has many generalizations. A similar correspondence exists between the irreducible modules of subrings $A, B \subset \text{End}(\Omega)$ whenever A is the commuting ring of B and B is the commuting ring of A.

2 Extending the RSK correspondence

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$ be a partition with at most *n* nonzero parts.

The Weyl character formula tells us that the character of the irreducible polynomial representation $\pi_{\lambda}^{\text{GL}(n)}$ evaluated at a diagonal matrix $t = \text{diag}(t_1, t_2, \ldots, t_n)$ is the Schur polynomial $s_{\lambda}(t_1, t_2, \ldots, t_n)$.

Taking t = 1 gives deg $\pi_{\lambda}^{\operatorname{GL}(n)} = s_{\lambda}(1, 1, \dots, 1) = |\operatorname{SSYT}_{n}(\lambda)|.$

It is well-known that $\deg \pi_{\lambda}^{S_k} = |SYT(\lambda)|$ where $SYT(\lambda)$ is the set of *standard tabeaux* of shape λ , i.e., semistandard tableaux of shape λ containing each of the numbers $1, 2, \ldots, |\lambda|$ (exactly once, necessarily).

Schur-Weyl duality implies the following enumerative identity:

Corollary 2.1. It holds that

$$n^k = \sum_{\lambda} |\mathrm{SSYT}_n(\lambda)| \cdot |\mathrm{SYT}(\lambda)|$$

where the sum is over all partitions of k with at most n parts.

Proof. The left-hand side is dim $(\mathbb{C}^n)^{\otimes k}$ and each summand is the dimension of $V_{\lambda}^{\mathrm{GL}(n)} \otimes V_{\lambda}^{S_k}$.

We have already seen a proof of this result using the RSK correspondence $w \mapsto (P_{\mathsf{RSK}}(w), Q_{\mathsf{RSK}}(w))$. Recall that if $w = w_1 w_2 \cdots w_k$ then

$$P_{\mathsf{RSK}}(w) = \emptyset \leftarrow w_1 \leftarrow w_2 \leftarrow \dots \leftarrow w_k$$

where if T is a tableau and $a \in \mathbb{Z}$ then $T \leftarrow a$ is formed as follows:

- At each stage a number x is inserted into a row, starting with a into the first row of T.
 - When x is inserted, let y be the first entry in the row with x < y.
- If no such entry exists then x is added to the end of the row.

Otherwise we replace y by x and insert y into the next row.

For example, we have
$$\boxed{\begin{array}{c}1&2\\3&3\end{array}} \leftarrow 1 = \boxed{\begin{array}{c}1&1\\2&3\\3\end{array}}$$

The tableau $P_{\mathsf{RSK}}(w)$ is always semistandard, and $Q_{\mathsf{RSK}}(w)$ is the standard tableau with the same shape as $P_{\mathsf{RSK}}(w)$ that contains *i* in the box added by inserting the letter w_i .

The RSK correspondence is a bijection from words with letters in $[n] = \{1, 2, ..., n\}$ to pairs (P, Q) of tableaux with the same shape in which P is semistandard with entries in [n] and Q is standard.

We begin today by noting a generalization of this bijection.

Suppose $X \in Mat_{r \times n}(\mathbb{N})$ is an $r \times n$ matrix with nonnegative integer entries.

Form a two-line array
$$A = \begin{bmatrix} i_1 & i_2 & \cdots & i_m \\ j_1 & j_2 & \cdots & i_m \end{bmatrix}$$
 from X as follows.

Each column of this array is a pair $\begin{bmatrix} i \\ j \end{bmatrix}$ such that $X_{ij} \neq 0$. This column is repeated exactly X_{ij} times. The columns of A are ordered lexicographically, so $i_1 \leq i_2 \leq \cdots \leq i_k$ and if $i_t = i_{t+1}$ then $j_t \leq j_{t+1}$.

For example, $X = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 2 \end{bmatrix} \rightsquigarrow A = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 1 & 1 & 3 & 3 \end{bmatrix}$.

Now define $P_{\mathsf{RSK}}(X) = P_{\mathsf{RSK}}(j_1 j_2 \cdots j_m)$ and let $Q_{\mathsf{RSK}}(X)$ be the tableau with the same shape of $P_{\mathsf{RSK}}(X)$ that contains i_t in the box added by inserting j_t for each $t = 1, 2, \ldots, m$.

For example, if
$$X = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
 then $P_{\mathsf{RSK}}(X) = P_{\mathsf{RSK}}(12221133)$ so

$$1 \rightarrow 1 2 \rightarrow 1 2 2 \rightarrow 1 2 2 2 \rightarrow \frac{1}{2} 2 - \frac{1}{2} 2 - \frac{1}{2} 2 \rightarrow \frac{1}{2} 2 - \frac{1}{2} - \frac{1}{2} 2 - \frac{1}{2} - \frac{$$

Clearly $P_{\mathsf{RSK}}(X)$ is always semistandard.

Lemma 2.2. If $X \in Mat_{r \times n}(\mathbb{N})$ then $Q_{\mathsf{RSK}}(X)$ is also semistandard.

Proof. It is clear that $Q_{\mathsf{RSK}}(X)$ has weakly increasing rows and columns.

Consider the columns $\begin{bmatrix} i \\ j \end{bmatrix}$ in the corresponding two-line array A.

When i is fixed, the entries below i are in weakly increasing order.

The boxes added by inserting these entries are the ones labeled *i* in $Q_{\mathsf{RSK}}(X)$.

It not hard to check that when we insert a sequence of entries in weakly increasing order, the box added by one insertion ends up in a column strictly less than the box added by the next insertion.

Therefore boxes labeled by i in $Q_{\mathsf{RSK}}(X)$ are all in distinct columns.

Thus the columns of $Q_{\mathsf{RSK}}(X)$ are actually strictly increasing, so the tableau in semistandard.

Suppose Q is a semistandard tableau with m boxes $\Box_1, \Box_2, \ldots, \Box_m$.

Assume these boxes are indexed in the unique way such that if i < j then either the entry of \Box_i is less than that of \Box_j , or the entries in the boxes are equal but the column of \Box_i is less than the column of \Box_j . Define the *standardization* of Q to be the tableau $\mathsf{std}(Q)$ formed by replacing \Box_i by i for all $i \in [m]$. Since Q is semistandard, $\mathsf{std}(Q)$ is standard. For example,

As we see in this example, if X corresponds to the two-line array $A = \begin{bmatrix} i_1 & i_2 & \cdots & i_m \\ j_1 & j_2 & \cdots & i_m \end{bmatrix}$ then

$$Q_{\mathsf{RSK}}(i_1 i_2 \cdots i_m) = \mathsf{std}(Q_{\mathsf{RSK}}(X))$$

while by definition $P_{\mathsf{RSK}}(j_1 j_2 \cdots j_m) = P_{\mathsf{RSK}}(X)$.

Theorem 2.3. Let r and n be positive integers. Then the map $X \mapsto (P_{\mathsf{RSK}}(X), Q_{\mathsf{RSK}}(X))$ is a bijection

$$\operatorname{Mat}_{r \times n}(\mathbb{N}) \to \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$$

of all $r \times n$ matrices with nonnegative integer entries to the set of pairs (P, Q) of semistandard tableaux of the same shape, where P has entries in [n] and Q has entries in [r].

Proof. It suffices to construct an inverse map.

We leverage the fact that we already know how to invert the RSK correspondence for words.

Given $(P,Q) = (P_{\mathsf{RSK}}(X), Q_{\mathsf{RSK}}(X))$, define $j_1 j_2 \cdots j_m$ to be word obtained by obtained the inverse RSK correspondence to the pair $(P, \mathsf{std}(Q))$, in which the second tableau in standard.

Then let $i_1 i_2 \cdots i_m$ be the sequence where i_t is then entry in the box of Q that contains t in std(Q).

We then recover X as the unique matrix corresponding to the array $A = \begin{bmatrix} i_1 & i_2 & \cdots & i_m \\ j_1 & j_2 & \cdots & i_m \end{bmatrix}$.

This correspondence $(P,Q) \mapsto X$ is the map described in theorem, so both maps are bijections. \Box

There is a followup result we should mention, which is proved in Chapter 7 of Bump and Schilling's book. Fix a nonnegative integer matrix $X \in Mat_{r \times n}(\mathbb{N})$.

Theorem 2.4. If $(P,Q) = (P_{\mathsf{RSK}}(X), Q_{\mathsf{RSK}}(X))$, then $(Q,P) = (P_{\mathsf{RSK}}(X^T), Q_{\mathsf{RSK}}(X^T))$.

3 The $GL(n) \times GL(r)$ bicrystal

Let n and r be positive integers.

Consider partitions λ and μ with at most n and at most r parts, respectively.

The sets $SSYT_n(\lambda)$ is a GL(n)-crystal while $SSYT_r(\mu)$ is a GL(r)-crystal.

Thus $SSYT_n(\lambda) \times SSYT_r(\lambda)$ is a crystal for the product Cartan type $GL(n) \times GL(r)$.

Observation 3.1. The set $\operatorname{Mat}_{r \times n}(\mathbb{N})$ of $r \times n$ matrices with nonnegative integer entries has a unique $\operatorname{GL}(n) \times \operatorname{GL}(r)$ crystal structure such that the generalized RSK correspondence $X \mapsto (P_{\mathsf{RSK}}(X), Q_{\mathsf{RSK}}(X))$ is a crystal isomorphism $\operatorname{Mat}_{r \times n}(\mathbb{N}) \cong \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$.

We view $\operatorname{Mat}_{r \times n}(\mathbb{N})$ as a crystal in this way.

It is pleasantly simple to implement this crystal structure on nonnegative integer matrices directly.

The GL(n)- and GL(r)-crystal structure will correspond to operations on rows and columns, respectively.

Let $\Lambda = \mathbb{Z}^n$ and $\Lambda' = \mathbb{Z}^r$. Fix a matrix $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$.

The GL(n) weight map is given by the column sums $\mathbf{wt}(X) = (s_1, s_2, \dots, s_n)$ where $s_j := \sum_{i=1}^r X_{ij}$. The GL(r) weight map is given by the row sums $\mathbf{wt}'(X) = (s'_1, s'_2, \dots, s'_r)$ where $s'_i := \sum_{j=1}^n X_{ij}$.

To define the GL(n) crystal operators, let

$$\Psi_i(X,k) = (a_1 + a_2 + \dots + a_k) - (b_1 + b_2 + \dots + b_{k-1})$$

$$\Delta_i(X,k) = (b_k + b_{k+1} + \dots + b_r) - (a_{k+1} + a_{k+2} + \dots + a_r)$$

where columns i and i + 1 of X are

$$\begin{bmatrix} X_{1,i} & X_{1,i+1} \\ X_{2,i} & X_{2,i+1} \\ \vdots & \vdots \\ X_{k,i} & X_{k,i+1} \\ X_{k+1,i} & X_{k+1,i+1} \\ \vdots & \vdots \\ X_{r,i} & X_{r,i+1} \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_k & b_k \\ a_{k+1} & b_{k+1} \\ \vdots & \vdots \\ a_r & b_r \end{bmatrix}.$$

Write $\alpha_i = \mathbf{e}_i - \mathbf{e}_{i+1} = (0, \dots, 0, 1, -1, 0, \dots, 0) \in \mathbb{Z}^n$, viewed as a row vector.

Now define $\varphi_i(X) = \max_{1 \le k \le r} \Psi_i(X, k)$ and $\varepsilon_i(X) = \max_{1 \le k \le r} \Delta_i(X, k)$.

If $\varphi_i(X) = 0$ then $f_i(X) = 0$. If $\varphi_i(X) \neq 0$ then $f_i(X)$ is obtained by subtracting α_i to the kth row of X, where k is the first value where $\Psi_i(X, k)$ attains its maximum.

Likewise, if $\varepsilon_i(X) = 0$ then $e_i(X) = 0$. If $\varepsilon_i(X) \neq 0$ then $e_i(X)$ is obtained by adding α_i to the kth row of X, where k is the last value where $\Delta_i(X, k)$ attains its maximum.

The GL(r) crystal operators are defined by transposing everything in sight.

For example, we set $\varphi'_i(X) = \varphi_i(X^T)$ and $\varepsilon'_i(X) = \varepsilon_i(X^T)$. If $\varphi'_i(X) = 0$ then $f'_i(X) = 0$ and if $\varepsilon'_i(X) = 0$ then $e'_i(X) = 0$. Otherwise, $f'_i(X) = f_i(X^T)^T$ and $e'_i(X) = e_i(X^T)^T$. These operators can be defined in terms of adding or subtracting the column vector $\alpha'_i = \mathbf{e}_i - \mathbf{e}_{i+1} \in \mathbb{Z}^r$ from the *k*th column of *X*, where *k* is the first or last value at which the quantities

$$\Psi'_i(X,k) := \Psi_i(X^T,k) \quad \text{or} \quad \Delta'_i(X,k) := \Delta_i(X^T,k)$$

attains their maximum.

Theorem 3.2. The GL(n)-crystal structure on $\operatorname{Mat}_{r \times n}(\mathbb{N})$ corresponds to the weight map **wt**, string lengths φ_i and ε_i for $i \in [n-1]$, and crystal operators e_i and f_i for $i \in [n-1]$ just described.

The $\operatorname{GL}(r)$ -crystal structure on $\operatorname{Mat}_{r \times n}(\mathbb{N})$ corresponds to the weight map wt', string lengths φ'_i and ε'_i for $i \in [r-1]$, and crystal operators e'_i and f'_i for $i \in [r-1]$ just described.

These structures are compatible and correspond to the $\operatorname{GL}(n) \times \operatorname{GL}(r)$ -crystal structure on $\operatorname{Mat}_{r \times n}(\mathbb{N})$.

In particular, for any matrix $X \in Mat_{r \times n}(\mathbb{N})$ we have

$$\begin{aligned} P_{\mathsf{RSK}}(e_i(X)) &= e_i(P_{\mathsf{RSK}}(X)) & \text{and} & Q_{\mathsf{RSK}}(e_i(X)) = Q_{\mathsf{RSK}}(X), \\ P_{\mathsf{RSK}}(f_i(X)) &= f_i(P_{\mathsf{RSK}}(X)) & \text{and} & Q_{\mathsf{RSK}}(f_i(X)) = Q_{\mathsf{RSK}}(X), \end{aligned}$$

for each $i \in [n-1]$ with $f_i(X) \neq 0$ or $e_i(X) \neq 0$ as appropriate, and

$$\begin{aligned} P_{\mathsf{RSK}}(e'_i(X)) &= P_{\mathsf{RSK}}(X) & \text{and} & Q_{\mathsf{RSK}}(e'_i(X)) = e_i(Q_{\mathsf{RSK}}(X)), \\ P_{\mathsf{RSK}}(f'_i(X)) &= P_{\mathsf{RSK}}(X) & \text{and} & Q_{\mathsf{RSK}}(f'_i(X)) = f_i(Q_{\mathsf{RSK}}(X)), \end{aligned}$$

for each $i \in [r-1]$ with $f'_i(X) \neq 0$ or $e'_i(X) \neq 0$ as appropriate.

Proof. The details are a little technical but straightforward.

Because of Theorem 2.4, it is only necessary to check these assertions for the GL(n)-crystal structure.

One can show that the string lengths and crystal operators act as we expect by matching up some general formulas for iterated tensor products, using the fact the P_{RSK} is constant on plactic equivalence classes.

The claim that $Q_{\mathsf{RSK}}(e_i(X)) = Q_{\mathsf{RSK}}(X)$ and $Q_{\mathsf{RSK}}(f_i(X)) = Q_{\mathsf{RSK}}(X)$ is deduced by tracing through the definitions and using the fact that words belong to the same connected component of $\mathbb{B}_n^{\otimes k}$ if and only if have they have the same image under Q_{RSK} .

The full arguments are in Chapter 9 of Bump and Schilling's book.

4 The crystal see-saw and the Littlewood-Richardson rule

Let n, r, and s be positive integers.

We have just described a $GL(n) \times GL(r+s)$ crystal structures on $Mat_{(r+s)\times n}(\mathbb{N})$.

Since can write any matrix $X \in Mat_{(r+s)\times n}(\mathbb{N})$ as two stacked matrices

$$X = \begin{bmatrix} X' \\ X'' \end{bmatrix} \quad \text{for } X' \in \operatorname{Mat}_{r \times n}(\mathbb{N}) \text{ and } X'' \in \operatorname{Mat}_{s \times n}(\mathbb{N}),$$

the set $\operatorname{Mat}_{(r+s)\times n}(\mathbb{N})$ also has a $\operatorname{GL}(n)\times \operatorname{GL}(r)\times \operatorname{GL}(n)\times \operatorname{GL}(s)$ crystal structure.

Lemma 4.1. In the above situation, let (P, Q), (P', Q'), and (P'', Q'') be the results of applying RSK to the matrices X, X', and X'', respectively. Then P is plactically equivalent to $P' \otimes P''$ as elements of GL(n) crystals, while Q is plactically equivalent to (Q', Q'') as elements of $GL(r) \times GL(s)$ crystals.

Proof. Suppose the two-line array associated to X is

$$A = \left[\begin{array}{cccc} i_1 & i_2 & \cdots & i_m \\ j_1 & j_2 & \cdots & i_m \end{array} \right].$$

Then P is plactically equivalently to the word $j_1 j_2 \cdots j_m \in \mathbb{B}_n^{\otimes m}$ while P' and P' are plactically equivalent to $j_1 j_2 \cdots j_k \in \mathbb{B}_n^{\otimes k}$ and $j_{k+1} \cdots j_m \in \mathbb{B}_n^{\otimes (m-k)}$, respectively, where k is the last index with $i_k \leq r$.

Hence
$$P' \otimes P'' \equiv j_1 j_2 \cdots j_k \otimes j_{k+1} \cdots j_m = j_1 j_2 \cdots j_m \equiv P$$
.

Other the other hand, let C_j be the weakly increasing word formed by repeating the row index *i* of each nonzero entry in column *j* of *X* eactly X_{ij} times. In view of Theorem 2.4, *Q* is GL(r+s)-plactically equivalent to $C_1C_2\cdots C_n = C_1 \otimes C_2 \otimes \cdots \otimes C_n$.

Each C_j can be written as $C_j = C'_j C''_j$ where C'_j are has all letters in $\{1, \ldots, r\}$ and C''_j has all letters in $\{r+1, \ldots, s\}$. As an element of a (branched) $\operatorname{GL}(r) \times \operatorname{GL}(s)$ -crystal, Q is plactically equivalent to

$$(C'_1, C''_1) \otimes (C'_2, C''_2) \otimes \dots \otimes (C'_n, C''_n) \equiv (C'_1 C'_2 \cdots C'_n, C''_1 C''_2 \cdots C''_n)$$

Again using Theorem 2.4, we have $Q' \equiv C'_1 C'_2 \cdots C'_n$ as elements of GL(r) crystals and $Q'' \equiv C''_1 C''_2 \cdots C''_n$ as elements of GL(s) crystals, so $Q \equiv (Q', Q'')$.

Theorem 4.2. Let λ , μ , and ν be partitions.

Then the multiplicity of $\text{SSYT}_n(\lambda)$ in $\text{SSYT}_n(\mu) \otimes \text{SSYT}_n(\nu)$ equals the multiplicity of $\text{SSYT}_r(\mu) \times \text{SSYT}_s(\nu)$ in the $\text{GL}(r) \times \text{GL}(s)$ crystal obtained by branching $\text{SSYT}_{r+s}(\lambda)$.

In other words, our two interpretations of the Littlewood-Richardson coefficients $c^{\lambda}_{\mu\nu}$, as either the number of skew tableaux of shape λ/μ with weight ν whose reading words are Yamanouchi words, or as the multiplicity of s_{λ} in the product of Schur functions $s_{\mu}s_{\nu}$, are consistent.

Proof. Consider the set

$$\mathcal{C} := \{ X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}) : P_{\mathsf{RSK}}(X) \in \operatorname{SSYT}_{n}(\lambda), \ Q_{\mathsf{RSK}}(X') \in \operatorname{SSYT}_{r}(\mu), \ Q_{\mathsf{RSK}}(X'') \in \operatorname{SSYT}_{s}(\nu) \}$$

which consists of all elements of $\operatorname{Mat}_{(r+s)\times n}(\mathbb{N})$ that are $(\operatorname{GL}(n) \times \operatorname{GL}(r) \times \operatorname{GL}(s))$ -plactically equivalent to elements of the $\operatorname{GL}(n) \times \operatorname{GL}(r) \times \operatorname{GL}(s)$ crystal $\operatorname{SSYT}_n(\lambda) \times \operatorname{SSYT}_r(\mu) \times \operatorname{SSYT}_s(\nu)$. The set \mathcal{C} is a disjoint union of copies of this crystal and the idea is to count these copies in two different ways.

On other hand, we have $\mathcal{C} \subset \{X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}) : P_{\mathsf{RSK}}(X) \in \operatorname{SSYT}_n(\lambda)\}$. This is a $\operatorname{GL}(n) \times \operatorname{GL}(r+s)$ crystal isomorphic to $\operatorname{SSYT}_n(\lambda) \times \operatorname{SSYT}_{r+s}(\lambda)$. On branching to $\operatorname{GL}(n) \times \operatorname{GL}(r) \times \operatorname{GL}(s)$, the number of subcrystals isomorphic to $\operatorname{SSYT}_n(\lambda) \times \operatorname{SSYT}_r(\mu) \times \operatorname{SSYT}_s(\nu)$ is equal to the multiplicity of $\operatorname{SSYT}_r(\mu) \times \operatorname{SSYT}_\nu(s)$ in the $\operatorname{GL}(r) \times \operatorname{GL}(s)$ crystal obtained by branching $\operatorname{SSYT}_{r+s}(\lambda)$.

On the other hand, $C \subset \{X \in \operatorname{Mat}_{(r+s) \times n}(\mathbb{N}) : Q_{\mathsf{RSK}}(X') \in \operatorname{SSYT}_r(\mu), Q_{\mathsf{RSK}}(X'') \in \operatorname{SSYT}_s(\nu)\}$. This is isomorphic to $\operatorname{SSYT}_n(\mu) \times \operatorname{SSYT}_n(\nu) \times \operatorname{SSYT}_r(\mu) \times \operatorname{SSYT}_s(\nu)$ as a $\operatorname{GL}(n) \times \operatorname{GL}(n) \times \operatorname{GL}(r) \times \operatorname{GL}(s)$ crystal. Since by the lemma $P_{\mathsf{RSK}}(X) \equiv P_{\mathsf{RSK}}(X') \otimes P_{\mathsf{RSK}}(X'')$, it follows that the number of subcrystals isomorphic to $\operatorname{SSYT}_n(\lambda) \times \operatorname{SSYT}_r(\mu) \times \operatorname{SSYT}_s(\nu)$ equals the multiplicity of $\operatorname{SSYT}_n(\lambda)$ in $\operatorname{SSYT}_n(\mu) \otimes \operatorname{SSYT}_n(\nu)$.

The theorem follows by comparing these two multiplicity calculations.