
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 13

1 Review from last time: Schur-Weyl duality

As usual fix positive integers n and k.

The group GL(n,C) acts on (Cn)⊗k diagonally by g : v1 ⊗ v2 ⊗ · · · ⊗ vk 7→ gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

The symmetric group Sk acts on (Cn)⊗k by permuting tensor factors.

These two actions commute with each other. More strongly and less trivially: if we consider the two
subrings A and B of the ring of all linear maps (Cn)⊗k → (Cn)⊗k generated by the actions of GL(n,C)
and Sk, respectively, then A and B are the commuting rings of each other.

This implies (Cn)⊗k decomposes into (GL(n,C)×Sk)-submodules as (Cn)⊗k =
⊕

λ V
GL(n)
λ ⊗V Sk

λ where

• λ runs through all partitions of k with at most n parts.

• V GL(n)
λ is an irreducible GL(n,C)-module with V

GL(n)
λ 6∼= V

GL(n)
µ if λ 6= µ.

• V Sk

λ is an irreducible Sk-module with V Sk

λ 6∼= V Sk
µ if λ 6= µ.

• If n ≥ k then the V Sk

λ represent all non-isomorphic irreducible Sk-modules.

We write π
GL(n)
λ and πSk

λ for the representations corresponding to the modules V
GL(n)
λ and V Sk

λ .

This is consistent with our earlier notation for polynomial GL(n,C)-representations.

The decomposition of (Cn)⊗k identifies a correspondence π
GL(n)
λ

(Cn)⊗k

←−−−−→ πSk

λ .

This correspondence is Schur-Weyl duality. It gives us a natural embedding of the set of irreducible
representations of Sk into the set of irreducible polynomial representations of GL(n,C) for all n ≥ k.

This has many generalizations. A similar correspondence exists between the irreducible modules of
subrings A,B ⊂ End(Ω) whenever A is the commuting ring of B and B is the commuting ring of A.

2 Extending the RSK correspondence

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with at most n nonzero parts.

The Weyl character formula tells us that the character of the irreducible polynomial representation π
GL(n)
λ

evaluated at a diagonal matrix t = diag(t1, t2, . . . , tn) is the Schur polynomial sλ(t1, t2, . . . , tn).

Taking t = 1 gives deg π
GL(n)
λ = sλ(1, 1, . . . , 1) = |SSYTn(λ)|.

It is well-known that deg πSk

λ = |SYT(λ)| where SYT(λ) is the set of standard tabeaux of shape λ, i.e.,
semistandard tableaux of shape λ containing each of the numbers 1, 2, . . . , |λ| (exactly once, necessarily).

Schur-Weyl duality implies the following enumerative identity:

Corollary 2.1. It holds that

nk =
∑
λ

|SSYTn(λ)| · |SYT(λ)|

where the sum is over all partitions of k with at most n parts.

Proof. The left-hand side is dim (Cn)⊗k and each summand is the dimension of V
GL(n)
λ ⊗ V Sk

λ .

We have already seen a proof of this result using the RSK correspondence w 7→ (PRSK(w), QRSK(w)).

Recall that if w = w1w2 · · ·wk then

PRSK(w) = ∅ ← w1 ← w2 ← · · · ← wk
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where if T is a tableau and a ∈ Z then T ← a is formed as follows:

• At each stage a number x is inserted into a row, starting with a into the first row of T .

When x is inserted, let y be the first entry in the row with x < y.

• If no such entry exists then x is added to the end of the row.

Otherwise we replace y by x and insert y into the next row.

For example, we have
1 2

3 3
← 1 =

1 1

2 3

3

.

The tableau PRSK(w) is always semistandard, and QRSK(w) is the standard tableau with the same shape
as PRSK(w) that contains i in the box added by inserting the letter wi.

The RSK correspondence is a bijection from words with letters in [n] = {1, 2, . . . , n} to pairs (P,Q) of
tableaux with the same shape in which P is semistandard with entries in [n] and Q is standard.

We begin today by noting a generalization of this bijection.

Suppose X ∈ Matr×n(N) is an r × n matrix with nonnegative integer entries.

Form a two-line array A =

[
i1 i2 · · · im
j1 j2 · · · im

]
from X as follows.

Each column of this array is a pair

[
i
j

]
such that Xij 6= 0. This column is repeated exactly Xij times.

The columns of A are ordered lexicographically, so i1 ≤ i2 ≤ · · · ≤ ik and if it = it+1 then jt ≤ jt+1.

For example, X =

[
1 3 0
2 0 2

]
; A =

[
1 1 1 1 2 2 2 2
1 2 2 2 1 1 3 3

]
.

Now define PRSK(X) = PRSK(j1j2 · · · jm) and let QRSK(X) be the tableau with the same shape of PRSK(X)
that contains it in the box added by inserting jt for each t = 1, 2, . . . ,m.

For example, if X =

[
1 3 0
2 0 2

]
then PRSK(X) = PRSK(12221133) so

1 ; 1 2 ; 1 2 2 ; 1 2 2 2 ;
1 1 2 2

2

;
1 1 1 2

2 2

;
1 1 1 2 3

2 2

;
1 1 1 2 3 3

2 2
;

1 1 1 2 3 3

2 2
= PRSK(X).

We then have QRSK(12221133) =
1 2 3 4 7 8

5 6
and QRSK(X) =

1 1 1 1 2 2

2 2
.

Clearly PRSK(X) is always semistandard.

Lemma 2.2. If X ∈ Matr×n(N) then QRSK(X) is also semistandard.
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Proof. It is clear that QRSK(X) has weakly increasing rows and columns.

Consider the columns

[
i
j

]
in the corresponding two-line array A.

When i is fixed, the entries below i are in weakly increasing order.

The boxes added by inserting these entries are the ones labeled i in QRSK(X).

It not hard to check that when we insert a sequence of entries in weakly increasing order, the box added
by one insertion ends up in a column strictly less than the box added by the next insertion.

Therefore boxes labeled by i in QRSK(X) are all in distinct columns.

Thus the columns of QRSK(X) are actually strictly increasing, so the tableau in semistandard.

Suppose Q is a semistandard tableau with m boxes �1,�2, . . . ,�m.

Assume these boxes are indexed in the unique way such that if i < j then either the entry of �i is less
than that of �j , or the entries in the boxes are equal but the column of �i is less than the column of �j .

Define the standardization of Q to be the tableau std(Q) formed by replacing �i by i for all i ∈ [m].

Since Q is semistandard, std(Q) is standard. For example,

std

(
1 1 1 1 2 2

2 2

)
=

1 2 3 4 7 8

5 6
.

As we see in this example, if X corresponds to the two-line array A =

[
i1 i2 · · · im
j1 j2 · · · im

]
then

QRSK(i1i2 · · · im) = std(QRSK(X))

while by definition PRSK(j1j2 · · · jm) = PRSK(X).

Theorem 2.3. Let r and n be positive integers. Then the map X 7→ (PRSK(X), QRSK(X)) is a bijection

Matr×n(N)→
⊔
λ

SSYTn(λ)× SSYTr(λ)

of all r × n matrices with nonnegative integer entries to the set of pairs (P,Q) of semistandard tableaux
of the same shape, where P has entries in [n] and Q has entries in [r].

Proof. It suffices to construct an inverse map.

We leverage the fact that we already know how to invert the RSK correspondence for words.

Given (P,Q) = (PRSK(X), QRSK(X)), define j1j2 · · · jm to be word obtained by obtained the inverse RSK
correspondence to the pair (P, std(Q)), in which the second tableau in standard.

Then let i1i2 · · · im be the sequence where it is then entry in the box of Q that contains t in std(Q).

We then recover X as the unique matrix corresponding to the array A =

[
i1 i2 · · · im
j1 j2 · · · im

]
.

This correspondence (P,Q) 7→ X is the map described in theorem, so both maps are bijections.

There is a followup result we should mention, which is proved in Chapter 7 of Bump and Schilling’s book.

Fix a nonnegative integer matrix X ∈ Matr×n(N).

Theorem 2.4. If (P,Q) = (PRSK(X), QRSK(X)), then (Q,P ) = (PRSK(XT ), QRSK(XT )).
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3 The GL(n)×GL(r) bicrystal

Let n and r be positive integers.

Consider partitions λ and µ with at most n and at most r parts, respectively.

The sets SSYTn(λ) is a GL(n)-crystal while SSYTr(µ) is a GL(r)-crystal.

Thus SSYTn(λ)× SSYTr(λ) is a crystal for the product Cartan type GL(n)×GL(r).

Observation 3.1. The set Matr×n(N) of r × n matrices with nonnegative integer entries has a unique
GL(n)×GL(r) crystal structure such that the generalized RSK correspondence X 7→ (PRSK(X), QRSK(X))
is a crystal isomorphism Matr×n(N) ∼=

⊔
λ SSYTn(λ)× SSYTr(λ).

We view Matr×n(N) as a crystal in this way.

It is pleasantly simple to implement this crystal structure on nonnegative integer matrices directly.

The GL(n)- and GL(r)-crystal structure will correspond to operations on rows and columns, respectively.

Let Λ = Zn and Λ′ = Zr. Fix a matrix X ∈ Matr×n(N).

The GL(n) weight map is given by the column sums wt(X) = (s1, s2, . . . , sn) where sj :=
∑r
i=1Xij .

The GL(r) weight map is given by the row sums wt′(X) = (s′1, s
′
2, . . . , s

′
r) where s′i :=

∑n
j=1Xij .

To define the GL(n) crystal operators, let

Ψi(X, k) = (a1 + a2 + · · ·+ ak)− (b1 + b2 + · · ·+ bk−1)

∆i(X, k) = (bk + bk+1 + · · ·+ br)− (ak+1 + ak+2 + · · ·+ ar)

where columns i and i+ 1 of X are

X1,i X1,i+1

X2,i X2,i+1

...
...

Xk,i Xk,i+1

Xk+1,i Xk+1,i+1

...
...

Xr,i Xr,i+1


=



a1 b1
a2 b2
...

...
ak bk
ak+1 bk+1

...
...

ar br


.

Write αi = ei − ei+1 = (0, . . . , 0, 1,−1, 0, . . . , 0) ∈ Zn, viewed as a row vector.

Now define ϕi(X) = max1≤k≤r Ψi(X, k) and εi(X) = max1≤k≤r ∆i(X, k).

If ϕi(X) = 0 then fi(X) = 0. If ϕi(X) 6= 0 then fi(X) is obtained by subtracting αi to the kth row of
X, where k is the first value where Ψi(X, k) attains its maximum.

Likewise, if εi(X) = 0 then ei(X) = 0. If εi(X) 6= 0 then ei(X) is obtained by adding αi to the kth row
of X, where k is the last value where ∆i(X, k) attains its maximum.

The GL(r) crystal operators are defined by transposing everything in sight.

For example, we set ϕ′i(X) = ϕi(X
T ) and ε′i(X) = εi(X

T ).

If ϕ′i(X) = 0 then f ′i(X) = 0 and if ε′i(X) = 0 then e′i(X) = 0.

Otherwise, f ′i(X) = fi(X
T )T and e′i(X) = ei(X

T )T .
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These operators can be defined in terms of adding or subtracting the column vector α′i = ei − ei+1 ∈ Zr
from the kth column of X, where k is the first or last value at which the quantities

Ψ′i(X, k) := Ψi(X
T , k) or ∆′i(X, k) := ∆i(X

T , k)

attains their maximum.

Theorem 3.2. The GL(n)-crystal structure on Matr×n(N) corresponds to the weight map wt, string
lengths ϕi and εi for i ∈ [n− 1], and crystal operators ei and fi for i ∈ [n− 1] just described.

The GL(r)-crystal structure on Matr×n(N) corresponds to the weight map wt′, string lengths ϕ′i and ε′i
for i ∈ [r − 1], and crystal operators e′i and f ′i for i ∈ [r − 1] just described.

These structures are compatible and correspond to the GL(n)×GL(r)-crystal structure on Matr×n(N).

In particular, for any matrix X ∈ Matr×n(N) we have

PRSK(ei(X)) = ei(PRSK(X)) and QRSK(ei(X)) = QRSK(X),

PRSK(fi(X)) = fi(PRSK(X)) and QRSK(fi(X)) = QRSK(X),

for each i ∈ [n− 1] with fi(X) 6= 0 or ei(X) 6= 0 as appropriate, and

PRSK(e′i(X)) = PRSK(X) and QRSK(e′i(X)) = ei(QRSK(X)),

PRSK(f ′i(X)) = PRSK(X) and QRSK(f ′i(X)) = fi(QRSK(X)),

for each i ∈ [r − 1] with f ′i(X) 6= 0 or e′i(X) 6= 0 as appropriate.

Proof. The details are a little technical but straightforward.

Because of Theorem 2.4, it is only necessary to check these assertions for the GL(n)-crystal structure.

One can show that the string lengths and crystal operators act as we expect by matching up some general
formulas for iterated tensor products, using the fact the PRSK is constant on plactic equivalence classes.

The claim that QRSK(ei(X)) = QRSK(X) and QRSK(fi(X)) = QRSK(X) is deduced by tracing through the
definitions and using the fact that words belong to the same connected component of B⊗kn if and only if
have they have the same image under QRSK.

The full arguments are in Chapter 9 of Bump and Schilling’s book.

4 The crystal see-saw and the Littlewood-Richardson rule

Let n, r, and s be positive integers.

We have just described a GL(n)×GL(r + s) crystal structures on Mat(r+s)×n(N).

Since can write any matrix X ∈ Mat(r+s)×n(N) as two stacked matrices

X =

[
X ′

X ′′

]
for X ′ ∈ Matr×n(N) and X ′′ ∈ Mats×n(N),

the set Mat(r+s)×n(N) also has a GL(n)×GL(r)×GL(n)×GL(s) crystal structure.

Lemma 4.1. In the above situation, let (P,Q), (P ′, Q′), and (P ′′, Q′′) be the results of applying RSK
to the matrices X, X ′, and X ′′, respectively. Then P is plactically equivalent to P ′ ⊗ P ′′ as elements of
GL(n) crystals, while Q is plactically equivalent to (Q′, Q′′) as elements of GL(r)×GL(s) crystals.
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Proof. Suppose the two-line array associated to X is

A =

[
i1 i2 · · · im
j1 j2 · · · im

]
.

Then P is plactically equivalently to the word j1j2 · · · jm ∈ B⊗mn while P ′ and P ′ are plactically equivalent

to j1j2 · · · jk ∈ B⊗kn and jk+1 · · · jm ∈ B⊗(m−k)n , respectively, where k is the last index with ik ≤ r.

Hence P ′ ⊗ P ′′ ≡ j1j2 · · · jk ⊗ jk+1 · · · jm = j1j2 · · · jm ≡ P .

Other the other hand, let Cj be the weakly increasing word formed by repeating the row index i of each
nonzero entry in column j of X eactly Xij times. In view of Theorem 2.4, Q is GL(r + s)-plactically
equivalent to C1C2 · · ·Cn = C1 ⊗ C2 ⊗ · · · ⊗ Cn.

Each Cj can be written as Cj = C ′jC
′′
j where C ′j are has all letters in {1, . . . , r} and C ′′j has all letters in

{r + 1, . . . , s}. As an element of a (branched) GL(r)×GL(s)-crystal, Q is plactically equivalent to

(C ′1, C
′′
1 )⊗ (C ′2, C

′′
2 )⊗ · · · ⊗ (C ′n, C

′′
n) ≡ (C ′1C

′
2 · · ·C ′n, C ′′1C ′′2 · · ·C ′′n).

Again using Theorem 2.4, we have Q′ ≡ C ′1C ′2 · · ·C ′n as elements of GL(r) crystals and Q′′ ≡ C ′′1C ′′2 · · ·C ′′n
as elements of GL(s) crystals, so Q ≡ (Q′, Q′′).

Theorem 4.2. Let λ, µ, and ν be partitions.

Then the multiplicity of SSYTn(λ) in SSYTn(µ) ⊗ SSYTn(ν) equals the multiplicity of SSYTr(µ) ×
SSYTs(ν) in the GL(r)×GL(s) crystal obtained by branching SSYTr+s(λ).

In other words, our two interpretations of the Littlewood-Richardson coefficients cλµν , as either the number
of skew tableaux of shape λ/µ with weight ν whose reading words are Yamanouchi words, or as the
multiplicity of sλ in the product of Schur functions sµsν , are consistent.

Proof. Consider the set

C := {X ∈ Mat(r+s)×n(N) : PRSK(X) ∈ SSYTn(λ), QRSK(X ′) ∈ SSYTr(µ), QRSK(X ′′) ∈ SSYTs(ν)}

which consists of all elements of Mat(r+s)×n(N) that are (GL(n)×GL(r)×GL(s))-plactically equivalent
to elements of the GL(n) × GL(r) × GL(s) crystal SSYTn(λ) × SSYTr(µ) × SSYTs(ν). The set C is a
disjoint union of copies of this crystal and the idea is to count these copies in two different ways.

On other hand, we have C ⊂ {X ∈ Mat(r+s)×n(N) : PRSK(X) ∈ SSYTn(λ)}. This is a GL(n)×GL(r+ s)
crystal isomorphic to SSYTn(λ)×SSYTr+s(λ). On branching to GL(n)×GL(r)×GL(s), the number of
subcrystals isomorphic to SSYTn(λ)× SSYTr(µ)× SSYTs(ν) is equal to the multiplicity of SSYTr(µ)×
SSYTν(s) in the GL(r)×GL(s) crystal obtained by branching SSYTr+s(λ).

On the other hand, C ⊂ {X ∈ Mat(r+s)×n(N) : QRSK(X ′) ∈ SSYTr(µ), QRSK(X ′′) ∈ SSYTs(ν)}. This is
isomorphic to SSYTn(µ)×SSYTn(ν)×SSYTr(µ)×SSYTs(ν) as a GL(n)×GL(n)×GL(r)×GL(s) crystal.
Since by the lemma PRSK(X) ≡ PRSK(X ′)⊗PRSK(X ′′), it follows that the number of subcrystals isomorphic
to SSYTn(λ)× SSYTr(µ)× SSYTs(ν) equals the multiplicity of SSYTn(λ) in SSYTn(µ)⊗ SSYTn(ν).

The theorem follows by comparing these two multiplicity calculations.
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