
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 14

1 Last time: the GL(n)×GL(r) bicrystal

Last time, we extended the domain of the RSK correspondence from words to matrices X ∈ Matr×n(N).

The idea is to first turn a nonnegative integer matrix X into a two-line array

[
i1 i2 · · · im
j1 j2 · · · im

]
.

Each column in this array is a pair

[
i
j

]
such that Xij 6= 0. This column is repeated exactly Xij times.

The columns are ordered lexicographically.

Then PRSK(X) = PRSK(j1j2 · · · jm) and we form QRSK(X) by replacing each k in QRSK(j1j2 · · · jm) by ik.

Key fact: PRSK(XT ) = QRSK(X) and QRSK(XT ) = PRSK(X).

The map X 7→ (PRSK(X), QRSK(X)) is a bijection Matr×n(N)
∼−→
⊔
λ SSYTn(λ) × SSYTr(λ) where the

union is over all partitions with at most min{r, n} parts. We give Matr×n(N) the unique GL(n)×GL(r)
crystal structure that makes this bijection into a crystal isomorphism.

One can describe the GL(n)×GL(r) crystal on Matr×n(N) directly, without reference to RSK.

As an application, we showed that the Littlewood-Richardson coefficient cλµν is both the multiplicity of
SSYTn(λ) in SSYTn(µ)⊗SSYTn(ν) and the multiplicity of SSYTr(µ)×SSYTs(ν) in the GL(r)×GL(s)
crystal obtained by branching SSYTr+s(λ).

2 The Cauchy correspondence

We turn to Appendix B of Bump and Schilling’s book, which covers some results from representation
theory that are analogous to our results on GL(n)×GL(r) bicrystals from last time.

An affine algebraic group Γ is an affine algebraic variety that is also a group such the the group multipli-
cation map Γ× Γ→ Γ and the inverse map Γ→ Γ are regular.

Our main example is the affine algebraic group Γ = GL(n,C).

Let A = O(Γ) be the coordinate ring of regular functions on Γ. This is a finitely generated C-algebra
that is a reduced Noetherian ring. Since O(Γ × Γ) = A ⊗ A, the multiplication map ∇ : Γ × Γ → Γ
corresponds to an algebra homomorphism ∆ : A→ A⊗A with the formula ∆(f) := f ◦ ∇.

This comultiplication map ∆ : A → A ⊗ A makes the ring A into a commutative Hopf algebra, whose
antipode is the map S(f) :=

(
x 7→ f(x−1)

)
.

As usual, a finite-dimensional representation of Γ means a pair (π, V ) where V is a finite-dimensional
complex vector space and π : Γ → GL(V ) is a regular map. When Γ = GL(n,C), this reduces to our
earlier definition.

We assume that every finite-dimensional representation decomposes into a direct sum of irreducible
subrepresentations. In the case when Γ = GL(n,C) this follows from Weyl’s unitarian trick.

The product group Γ× Γ acts on A by (g1, g2) · f =
(
x 7→ f

(
g−1

2 xg1

))
.

This is indeed an action: (g3, g4) · ((g1, g2) · f) for gi ∈ Γ and f ∈ A is the map

x 7→ ((g1, g2) · f)
(
g−1

4 xg3

)
= f

(
g−1

2 g−1
4 xg3g1

)
,

which is also the formula for (g3g1, g4g2) · f .

If (π, V ) is a finite-dimensional representation then let π̂ ∈ GL(V ∗) be the map

π̂(g) : λ 7→ λ ◦ π(g−1).
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The pair (π̂, V ∗) is another finite-dimensional representation, called the contragredient representation.

Proposition 2.1. The coordinate ring A = O(Γ) decomposes as a Γ× Γ module as

A ∼=
⊕

π ⊗ π̂

where the summation runs over all isomorphism classes of finite-dimensional representations π of Γ.

Proof sketch. Let (π, V ) be a finite-dimensional representation.

Define an embeding ι : V ⊗ V ∗ → A by mapping v ⊗ λ, where v ∈ V and λ ∈ V ∗, to the function

ι(v ⊗ λ) : g 7→ λ (π(g)v) .

Note that Γ× Γ acts on V ⊗ V ∗ by (g1, g2) · (v ⊗ λ) = π(g1)v ⊗ λ ◦ π(g−1
2 ). Thus

ι ((g1, g2) · (v ⊗ λ)) : x 7→ λ
(
π(g−1

2 )π(x)π(g1)v
)

= ι(v ⊗ λ)(g−1
2 xg1) = ((g1, g2) · ι(v ⊗ λ)) (x).

In other words ι ((g1, g2) · (v ⊗ λ)) = (g1, g2) · ι(v ⊗ λ).

Thus the map ι : V ⊗ V ∗ → A is a Γ× Γ-module homomorphism.

One needs to show that every element f ∈ A is a linear combination of functions of the form ι(v ⊗ λ).

Fix f ∈ A and write ∆f =
∑
i φi ⊗ ψi where φi, ψi ∈ A, so that if x, y ∈ Γ then f(xy) =

∑
i φi(x)ψi(y).

Take V to be the vector space spanned by the right-translations (y, 1) · f for y ∈ Γ.

This vector space space is finite-dimensional since it is spanned by the finite set of functions φi that
appear in the formula ∆f =

∑
i φi ⊗ ψi. Specifically, if y ∈ Γ then (y, 1) · f =

∑
i ψi(y)φi since

((y, 1) · f)(x) = f(xy) =
∑
i

φi(x)ψi(y).

Now suppose π : Γ→ GL(V ) is the action by right translation, so that π(g)φ(x) = φ(xg) for φ ∈ V .

Finally let λ : V → C be the map λ(φ) = φ(1).

Then we have f = ι(f ⊗ λ) since ι(f ⊗ λ)(x) = λ(π(x)f) = (π(x)f)(1) = f(x).

The result follows using our assumption that every representation is a direct sum of irreducibles.

Lemma 2.2. If π is a finite-dimensional representation of GL(n,C), then π̂ is isomorphic to the repre-
sentation g 7→ π

(
(g−1)T

)
, where gT is the usual transpose of g.

Proof. You can check that if t1, t2, . . . , tn are the eigenvalues of π(g) then χπ̂(g) =
∑n
i=1 t

−1
i . Each

g ∈ GL(n,C) is conjugate to its transpose (one strategy to prove this: reduce to the case of a single block
in the Jordan canonical form).

This means the character of π evaluated at (g−1)T is the same as the value at g−1. Conclude that the
representations g 7→ π

(
(g−1)T

)
and π̂ have the same character, so they are isomorphic.

The tensor algebra T (V ) of a vector space V is the algebra generated by all tensors v1 ⊗ v2 ⊗ · · · ⊗ vk
where v1, v2, . . . , vk ∈ V and k ≥ 0. The product for this algebra is just ⊗. The symmetric algebra

∨
V

on V is the quotient of T (V ) by the two-sided ideal generated by all differences x⊗ y − y ⊗ x.

Thus,
∨
V is the space of tensors v1 ⊗ v2 ⊗ · · · ⊗ vk where we are allowed to commute the tensor factors.

If V is a finite dimensional complex vector space then
∨
V ∼= C[x1, x2, . . . , xn] for n = dimV .

If G1 is a group acting on V and G2 is a group acting on W , then G1 ×G2 acts on V ⊗W and therefore
on the symmetric algebra

∨
(V ⊗W ).
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Lemma 2.3. There is a decomposition of graded GL(n,C)×GL(n,C)-representations∨
(Cn ⊗ Cn) ∼=

⊕
λ

π
GL(n)
λ ⊗ πGL(n)

λ

where λ runs through all partitions of with at most n nonzero parts.

The grading on the right is such that elements of π
GL(n)
λ ⊗ πGL(n)

λ are homogeneous of degree |λ|.

Proof sketch. Let G = GL(n,C).

Instead of the given action, consider the action on the dual space Matn×n(C)∗ by

(g1, g2)f :=
(
X 7→ f(gT2 Xg1)

)
for g1, g2 ∈ G and f ∈ Matn×n(C)∗. (*)

This action is equivalent to the action on Cn ⊗ Cn and the symmetric algebra over Matn×n(C)∗ is the
same as the affine algebra O(Matn×n(C)), which is the polynomial ring generated by the coordinate
functions gij for a matrix g = (gij).

To understand this ring, we first discuss the decomposition of the affine algebraO(GL(n,C)) = C[gij ,det−1].

We have two slightly different actions of G×G on this algebra.

For the action (g1, g2)f : X 7→ f(g−1
2 Xg1), we have O(GL(n,C)) =

⊕
λ π

GL(n)
λ ⊗ π̂GL(n)

λ .

For the action (*), Lemma 2.2 implies that we instead have O(GL(n,C)) =
⊕

λ π
GL(n)
λ ⊗ πGL(n)

λ .

In both decompositions, the direct sums are over all dominant weights λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) ∈ Zn,
which are only partitions if λn > 0.

We are interested in the decomposition of the affine algebra Matn×n(C). Since G = GL(n,C) is an open
subvariety of Matn×n(C) (namely, the subset where the determinant is nonzero), the restriction map∨

Matn×n(C) → O(GL(n,C)) is injective. The representations πλ that extend to regular functions on
Matn×n(C) are precisely those that do not involve inverse powers of the determinant, namely, those that
are indexed by dominant weights λ that are partitions. This implies the lemma.

The theorem implies a related identity for symmetric functions:

Theorem 2.4 (Cauchy identity). Suppose x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are sequences of com-
muting indeterminates that commute with each other and with the indeterminate t. Then∏

i,j≥1

(1− xiyjt)−1 =
∑
λ

sλ(x)sλ(y)t|λ|

where λ runs through all partitions. Here, the factors on the left are interpreted as rational power series

(1− xiyjt)−1 = 1 + xiyjt+ (xiyj)
2t2 + (xiyj)

3t3 + . . . .

Proof. Suppose g1 ∈ GL(n,C) has distinct eigenvalues x1, x2, . . . , xn and g2 ∈ GL(n,C) has distinct eigen-
values y1, y2, . . . , yn, then the trace of the action of (g1, g2) on V = Cn ⊗Cn is the sum

∑n
i=1

∑n
j=1 xiyj

which is the coefficient of t in
∏n
i=1

∏n
j=1(1− λiyjt)−1.

Similarly, the trace of the action of (g1, g2) the subspace of homogeneous elements of
∨
V of degree k is

the coefficient of tk in
∏n
i=1

∏n
j=1(1 − xiyjt)−1. It follows that

∏n
i=1

∏n
j=1(1 − xiyjt)−1 is the value of

graded character of the G1 ×G2-representation on
∨
V evaluated at (g1, g2).

On other hand, the Weyl character formula tells us that that graded character of
⊕

λ π
GL(n)
λ ⊗ πGL(n)

λ

evaluated at (g1, g2) is
∑
λ sλ(x1, x2, . . . , xn)sλ(y1, y2, . . . , yn)t|λ|. Since this is the same as the graded

character of
∨
V by the theorem, we get a finite version of the Cauchy identity, in terms of Schur

polynomials rather than Schur functions. Letting n→∞ transforms this to the result.
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Theorem 2.5 (Cauchy correspondence). Let G1 = GL(n,C) and G2 = GL(m,C) where m, n > 0.

There is a decomposition of graded G1 ×G2-representations∨
(Cn ⊗ Cm) ∼=

⊕
λ

π
GL(n)
λ ⊗ πGL(m)

λ

where λ runs through all partitions of with at most min{m,n} nonzero parts.

The grading on the right is such that elements of π
GL(n)
λ ⊗ πGL(m)

λ are homogeneous of degree |λ|.

Proof. It is enough to check that the graded characters of both sides coincide. This follows by setting
the variables xn+1 = xn+2 = · · · = 0 and ym+1 = ym+2 = · · · = 0 in the Cauchy identity.

The representation Ω =
∨

(Cn ⊗ Cm) gives us a correspondence

π
GL(n)
λ

Ω←−−→ π
GL(m)
λ

in the sense of Lecture 12. This is called GL(n)×GL(m)-duality or the Cauchy correspondence.

We also have a see-saw

GL(n,C)×GL(n,C) GL(r + s,C)

GL(n,C) GL(r,C)×GL(s,C)

Here, GL(n,C) is viewed as the subgroup {(g, g) : g ∈ GL(n,C)} ⊂ GL(n,C)×GL(n,C).

Likewise, GL(r,C)×GL(s,C) is viewed as the subgroup of relevant block diagonal matrices[
g 0
0 h

]
∈ GL(r + s,C).

One diagonal line in this see-saw is the Cauchy correspondence for GL(n,C)×GL(r + 1,C). The other
consists of the Cauchy correspondences for GL(n,C)×GL(r,C) and GL(n,C)×GL(s,C) tensored together.

Corollary 2.6. Let λ, µ, and ν be partitions with |λ| = |µ|+ |ν|.

Assume n ≥ |λ|, r ≥ |µ|, and s ≥ |ν|.

Then the multiplicity of π
GL(n)
λ in π

GL(n)
µ × πGL(n)

ν is the same as the multiplicity of π
GL(r)
µ ⊗ πGL(s)

ν in

the restriction of π
GL(r+s)
λ to GL(r,C)×GL(s,C).

Both numbers are equal to the Littlewood-Richardson coefficient cλµν .

Proof. This follows by the general properties of see-saws from Lecture 12 applied to our specific case.

The last result in Lecture 13 (see the end of today’s Section 1) is a crystal analogue of this corollary.

3 Crystals for Stanley symmetric functions

In the second half of today’s lecture we give a brief survey of Chapter 10 of Bump and Schilling’s book.

We construct Sk as the group of bijections [k]→ [k] := {1, 2, . . . , k}.

Let si = (i, i+ 1) ∈ Sk. A reduced word for a permutation w ∈ Sk is a word i1i2 · · · il of shortest possible
length such that w = si1si2 · · · sil . Let R(w) be the set of reduced words for w ∈ Sk.
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The length of w is the length `(w) of any its reduced words.

This is also equal to the number of pairs (i, j) ∈ [k]× [k] with i < j and w(i) > w(j).

We often write the word w(1)w(2) · · ·w(k) to represent w ∈ Sk.

For example, `(321) = 3 and R(321) = {121, 212} since 321 = (1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3).

Consider the equivalence relative on words that is the transitive closure of the symmetric relation with

· · · ab · · · ∼ · · · ba · · · and · · · a(a+ 1)a · · · ∼ · · · (a+ 1)a(a+ 1) · · ·

for all integers a, b with |a− b| > 1.

The corresponding symbols “· · · ” here must mask identical subwords on either side of each relation.

Theorem 3.1 (Matsumoto’s theorem). Each set of reduced words R(w) for w ∈ Sk is then a single
equivalence class under the relation ∼. Moreover, a word is a reduced word for some permutation if and
only if its ∼ equivalence class contains no elements with equal adjacent letters.

This statement can be generalized to arbitrary Coxeter groups.

The permutation w0 = k · · · 321 is the unique element of maximal length in Sk. It has `(w0) =
(
k
2

)
.

For k = 2 we have |R(w0)| = 1, which is the number of standard tableaux of shape

λ = (1) = .

For k = 3 we have |R(w0)| = 2, which is the number of standard tableaux of shape

λ = (2, 1) = .

For k = 4 we have |R(w0)| = 16, which is the number of standard tableaux of shape

λ = (3, 2, 1) = .

We will see shortly that this pattern continues.

When k = 5 we have |R(w0)| = 768 and when k = 6 we have |R(w0)| = 292864.

We introduce another variant of the RSK correspondence, called the Edelman-Greene correspondence.

Suppose T is a tableau and a is an integer.

Form a tableau T
EG←−− a as follows (this almost the same as the definition of T

RSK←−− a):

• At each stage a number x is inserted into a row, starting with a into the first row of T .

• If x is greater than all entries in the row then it is added to the end.

• If the row already contains x, then the row is unchanged and x+ 1 is inserted into the next row.

• Otherwise, let y be the first entry with x < y; then replace y by x and insert y into the next row.

For example, we have 1 2
EG←−− 1 =

1 2

2
and

1 2

3 4

EG←−− 1 =

1 2

2 4

3

.
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Given a reduced word i1i2 · · · il ∈ R(w) for a permutation w ∈ Sk, define

PEG(i1i2 · · · il) = ∅ EG←−− i1
EG←−− i2

EG←−− · · · EG←−− il.

Define QEG(i1i2 · · · il) to be the standard tableau with the same shape as PEG(i1i2 · · · il) that contains j
in the box added by the insertion of the letter ij .

The map a 7→ (PEG(a), QEG(a)) for a ∈ R(w) is called the Edelman-Greene correspondence.

Example 3.2. The word 34121 is a reduced word for the permutation w = 42153 ∈ S5. We have

3 ; 3 4 ;
1 4

3
;

1 2

3 4
;

1 2

2 4

3

= PEG(34121) and QEG(34121) =

1 2

3 4

5

.

We also have 34212 ∈ R(w) and

3 ; 3 4 ;
2 4

3
;

1 4

2

3

;

1 2

2 4

3

= PEG(34212) and QEG(34121) =

1 2

3 5

4

.

A tableau is increasing if its rows and columns are strictly increasing.

Theorem 3.3. Fix a permutation w ∈ Sk. The map a 7→ (PEG(a), QEG(a)) is a bijection from words
a ∈ R(w) to pairs of tableaux (P,Q) in which P is increasing with row(P ) ∈ R(w) and Q is standard
with the same shape as P .

Proof idea. Construct an inverse map, similar to what we did to invert RSK.

Corollary 3.4. The number of reduced words for w0 = k · · · 321 ∈ Sk is the number of standard tableaux
of shape λ = (k − 1, . . . , 3, 2, 1).

Proof. Every reduced word for w0 has length
(
k
2

)
and involves only letters in {1, 2, . . . , k − 1}.

There is only one increasing tableau T with
(
k
2

)
boxes that has all entries in {1, 2, . . . , k − 1}.

This tableau is 1 for k = 2,
1 2

2
for k = 3,

1 2 3

2 3

3

for k = 4,

1 2 3 4

2 3 4

3 4

4

for k = 5 and so on.

The EG correspondence is therefore a bijection R(w0)
∼−→ {T} × SYT(λ) for λ = (k − 1, . . . , 3, 2, 1).

An n-fold increasing reduced factorization of w ∈ Sk is a tuple (a1, a2, . . . , an) where each ai is a strictly
increasing (possibly empty) word such that the concatenation a1a2 · · · an ∈ R(w).

Definition 3.5. Let RFn(w) denote the set of all n-fold increasing reduced factorizations of w ∈ Sk.

Given a = (a1, a2, . . . , an) ∈ RFn(w), define PEG(a) = PEG(a1a2 · · · an) and let QEG(a) be the tableau
with the same shape as PEG(a) with the letter j in every box added by inserting letters in the factor aj .

For example, if a = (34, ∅, 2, ∅, ∅, 12) ∈ RF6(42153) then QEG(34212) =

1 2

3 5

4

so QEG(a) =

1 1

3 6

6

.
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Theorem 3.6. Let w ∈ Sk be a permutation. The map a 7→ (PEG(a), QEG(a)) is a bijection from
increasing reduced factorizations a ∈ RFn(w) to pairs of tableaux (P,Q) in which P is increasing with
row(P ) ∈ R(w) and Q is semistandard with the same shape as P and with entries in {1, 2, . . . , n}.

Proof idea. The argument is similar to how we showed that the RSK correspondence for integer matrices
is a bijection to pairs of semistandard tableaux.

It follows that if w ∈ Sk then the Edelman-Green correspondence is a bijection

RFn(w)
∼−→

⊔
T of shape λ

{T} × SSYTn(λ) (**)

for a finite set of increasing tableaux T .

We view each set {T} × SSYTn(λ) as a GL(n) crystal isomorphic to SSYTn(λ).

We then give RFn(w) the GL(n) crystal structure that makes (**) into a crystal isomorphism. I.e.:

Theorem 3.7. Let w ∈ Sk. There is a unique GL(n) crystal structure on RFn(w) for the weight map

wt(a1, a2, . . . , an) = (`(a1), `(a2), . . . , `(an))

such that for all i ∈ [n− 1] and a = (a1, a2, . . . , an) ∈ RFn(w)) we have

PEG(ei(a)) = PEG(a)

PEG(fi(a)) = PEG(a)
and

QEG(ei(a)) = ei(QEG(a))

QEG(fi(a)) = fi(QEG(a)).

Moreover, this is a Stembridge crystal.

Like the GL(n)×GL(r) bicrystal on Matr×n(N), one can describe the operators ei and fi for this crystal
directly, in terms of a certain pairing on entries of adjacent factors ai and ai+1 in an increasing reduced
factorization a, without reference to the Edelman-Greene correspondence. This is explained in detail in
Chapter 10 of Bump and Schilling’s book but we will skip the details here.

Is there a natural bicrystal that extends the GL(n) crystal structure on RFn(w)? This is an open question.

Definition 3.8. The Stanley symmetric polynomial of w ∈ Sk is

Fw(x1, x2, . . . , xn) =
∑

(a1,a2,...,an)∈RFn(w)

xwt(a1,a2,...,an) ∈ Z[x1, x2, . . . , xn].

where wt(a1, a2, . . . , an) = (`(a1), `(a2), . . . , `(an)) ∈ Zn.

The Stanley symmetric function of w ∈ Sk is Fw = limn→∞ Fw(x1, x2, . . . , xn).

Our formula is used as the definition of Fw−1 . Note that it is not obvious that Fw is symmetric.

Corollary 3.9. Both Fw(x1, x2, . . . , xn) and Fw are Schur positive symmetric polynomials/functions,
i.e., each is a nonnegative integer linear combination of functions sλ(x1, x2, . . . , xn) or sλ, as appropriate.

Proof. It suffices to show that Fw(x1, x2, . . . , xn) is a Schur positive symmetric polynomial.

This holds because Fw(x1, x2, . . . , xn) is the character of the Stembridge crystal RFn(w).

Corollary 3.10. The longest permutation w0 = k · · · 321 ∈ Sk has Fw0
= s(k−1,...,3,2,1).

Proof. Let δk = (k − 1, . . . , 3, 2, 1). Our observations when computing |R(w0)| show that

RFn(w0) = {T} × SSYTn(δk) ∼= SSYTn(δk)

as GL(n) crystals, so Fw0
(x1, x2, . . . , xn) = sδk(x1, x2, . . . , xn) for all n.
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