MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 14

1 Last time: the GL(n) x GL(r) bicrystal

Last time, we extended the domain of the RSK correspondence from words to matrices X € Mat,.x,, (N).

The idea is to first turn a nonnegative integer matrix X into a two-line array jl j2 im
1 J2 o lm

Each column in this array is a pair { ; ] such that X;; # 0. This column is repeated exactly X;; times.

The columns are ordered lexicographically.
Then Prsk(X) = Prsk(j1j2 - - - jm) and we form Qrsk(X) by replacing each k in Qrsk(j1j2 - - Jm) by ik.
Key fact: PRSK(XT) = QRSK(X) and QRSK<XT) = PRSK(X)-

The map X — (Prsk(X), Qrsk(X)) is a bijection Mat, w,(N) = | |, SSYT, () x SSYT, (\) where the
union is over all partitions with at most min{r,n} parts. We give Mat, »,, (N) the unique GL(n) x GL(r)
crystal structure that makes this bijection into a crystal isomorphism.

One can describe the GL(n) x GL(r) crystal on Mat,.«,,(N) directly, without reference to RSK.

As an application, we showed that the Littlewood-Richardson coefficient cf‘w is both the multiplicity of
SSYT,,(A) in SSYT,, (p) ® SSYT,,(v) and the multiplicity of SSYT, (1) x SSYT,(v) in the GL(r) x GL(s)
crystal obtained by branching SSYT, 1 4()).

2 The Cauchy correspondence

We turn to Appendix B of Bump and Schilling’s book, which covers some results from representation
theory that are analogous to our results on GL(n) x GL(r) bicrystals from last time.

An affine algebraic group I is an affine algebraic variety that is also a group such the the group multipli-
cation map I' x I' — I" and the inverse map I' — I" are regular.

Our main example is the affine algebraic group I' = GL(n, C).

Let A = O(T") be the coordinate ring of regular functions on I". This is a finitely generated C-algebra
that is a reduced Noetherian ring. Since O(I' x I') = A ® A, the multiplication map V : T xT' = T
corresponds to an algebra homomorphism A : A - A ® A with the formula A(f) := fo V.

This comultiplication map A : A — A ® A makes the ring A into a commutative Hopf algebra, whose
antipode is the map S(f) := (z — f(z™1)).

As usual, a finite-dimensional representation of I' means a pair (7, V') where V is a finite-dimensional
complex vector space and 7 : I' — GL(V) is a regular map. When I' = GL(n, C), this reduces to our
earlier definition.

We assume that every finite-dimensional representation decomposes into a direct sum of irreducible
subrepresentations. In the case when I' = GL(n, C) this follows from Weyl’s unitarian trick.

The product group I' x I acts on A by (g1,92) - f = (z +— f (g;lxgl)).
This is indeed an action: (g3, 94) - ((g1,92) - f) for g; € T and f € A is the map

z = ((91,92) f) <QZI$93) =f (9519Z1$9391) ;
which is also the formula for (g3g1, gag2) - f-
If (m, V) is a finite-dimensional representation then let 7 € GL(V*) be the map

7(g): A= Xom(g™h).
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The pair (7, V*) is another finite-dimensional representation, called the contragredient representation.

Proposition 2.1. The coordinate ring A = O(T") decomposes as a I' x I" module as

A%@WXWT

where the summation runs over all isomorphism classes of finite-dimensional representations 7 of T'.

Proof sketch. Let (7, V) be a finite-dimensional representation.

Define an embeding ¢ : V ® V* — A by mapping v ® A, where v € V and A € V*, to the function
tv@A):g— A(w(g)v).
Note that T' x T acts on V@ V* by (g1,92) - (v @A) = w(g1)v @ Ao 7w(gy ). Thus
t((g1,92) - (@A) s 2 A (m(gg Dm(@)m(g1)v) = (v @ N) (g3 ' wg1) = ((91,92) - 1w @ N)) ().
In other words ¢ ((g1,92) - (v® X)) = (g91,92) - t(v ® A).
Thus the map ¢ : V® V* — A is a I' x I'-module homomorphism.
One needs to show that every element f € A is a linear combination of functions of the form ¢(v ® A).
Fix f € A and write Af =) ¢; ® ¢; where ¢;,1; € A, so that if z,y € T then f(zy) = >, ¢i(x)¥i(y).
Take V to be the vector space spanned by the right-translations (y,1) - f for y € T.

This vector space space is finite-dimensional since it is spanned by the finite set of functions ¢; that
appear in the formula Af = 3", ¢; ® ¢;. Specifically, if y € I' then (y,1) - f = >, ¢i(y)¢; since

((y; 1) - (@) = flzy) = Z ¢i(2)9i(y)-

Now suppose 7 : I' = GL(V) is the action by right translation, so that 7(g)é(z) = ¢(xg) for ¢ € V.
Finally let A : V' — C be the map A(¢) = ¢(1).
Then we have f = ¢(f ® A) since «(f @ A)(z) = A7 (2)f) = (w(z) f)(1) = f(z).

The result follows using our assumption that every representation is a direct sum of irreducibles. O

Lemma 2.2. If 7 is a finite-dimensional representation of GL(n,C), then 7 is isomorphic to the repre-
sentation g — 7 ((gfl)T), where g7 is the usual transpose of g.

Proof. You can check that if t1,ts,...,t, are the eigenvalues of 7(g) then xz(g) = > i, t;l. Each
g € GL(n,C) is conjugate to its transpose (one strategy to prove this: reduce to the case of a single block

in the Jordan canonical form).
This means the character of 7 evaluated at (¢g~!)7 is the same as the value at g~!. Conclude that the

representations g — 7 ((g*I)T) and 7 have the same character, so they are isomorphic. O

The tensor algebra T(V') of a vector space V is the algebra generated by all tensors v1 ® vy ® - -+ ® v
where v1,va,...,0; € V and k > 0. The product for this algebra is just ®. The symmetric algebra \/ V
on V is the quotient of T'(V') by the two-sided ideal generated by all differences z @ y — y ® x.

Thus, \/ V is the space of tensors v1 ® v2 ® - -+ ® v, where we are allowed to commute the tensor factors.
If V is a finite dimensional complex vector space then \/ V = Cz1, 22, ..., x,] for n = dim V.

If G is a group acting on V' and Gs is a group acting on W, then G; X G5 acts on V ® W and therefore
on the symmetric algebra \/ (V @ W).
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Lemma 2.3. There is a decomposition of graded GL(n, C) x GL(n, C)-representations
\/ (Cn ® (Cn @ 7_l_G'L(n GL(n)

where A runs through all partitions of with at most n nonzero parts.

GL() g rGL(m)

The grading on the right is such that elements of 7 are homogeneous of degree |\|.

Proof sketch. Let G = GL(n, C).

Instead of the given action, consider the action on the dual space Mat,, x,(C)* by

(91,92)f == (X — f(g3 Xq1)) for g1,g2 € G and f € Mat,x,(C)". (*)

This action is equivalent to the action on C™ ® C™ and the symmetric algebra over Mat,, x,(C)* is the
same as the affine algebra O(Mat,x,(C)), which is the polynomial ring generated by the coordinate
functions g;; for a matrix g = (gi;).

To understand this ring, we first discuss the decomposition of the affine algebra O(GL(n, C)) = C[g;;, det™'].

We have two slightly different actions of G x G on this algebra.

For the action (g1, 92)f : X — f(g5 ' Xg1), we have O(GL(n,C)) = @, WSL(") ® ﬁGL(”)_

For the action (*), Lemma [2.2] implies that we instead have O(GL(n,C)) = @, =, L) @ GL(”)
In both decompositions, the direct sums are over all dominant weights A = (A; > Ao > -+ > \,) € Z7,
which are only partitions if A,, > 0.

We are interested in the decomposition of the affine algebra Mat,,«,,(C). Since G = GL(n,C) is an open
subvariety of Mat, x,(C) (namely, the subset where the determinant is nonzero), the restriction map
V Mat,, «n(C) = O(GL(n,C)) is injective. The representations my that extend to regular functions on
Mat,,x(C) are precisely those that do not involve inverse powers of the determinant, namely, those that
are indexed by dominant weights A that are partitions. This implies the lemma. O

The theorem implies a related identity for symmetric functions:

Theorem 2.4 (Cauchy identity). Suppose x = (z1,z2,...) and y = (y1,y2,...) are sequences of com-
muting indeterminates that commute with each other and with the indeterminate ¢. Then

H (1 — z;y;t) ZS)\ W

1,j>1
where A runs through all partitions. Here, the factors on the left are interpreted as rational power series
(1= ziyt) ™" = 14 @yt + (2y;)*t° + (2iy;) 0 + ..

Proof. Suppose g1 € GL(n, C) has distinct eigenvalues x1, xa, ..., z, and go € GL(n, C) has distinct eigen-
values y1,ys, . .., Yn, then the trace of the action of (g1,g2) on V = C" @ C" is the sum > ., Z;—;l Y5
which is the coefficient of ¢ in [T;_; [T}_, (1 — Niy;t) .

Similarly, the trace of the action of (g1, g2) the subspace of homogeneous elements of \/ V' of degree k is
the coefficient of t* in T[T}, [T/, (1 — @sy;t)~". It follows that [T, [T/, (1 — ziy;t)~" is the value of
graded character of the G; x Gg—representatlon on \/ V evaluated at (gl, gg)

On other hand, the Weyl character formula tells us that that graded character of @, 7, GL(n) QT GL(n)
evaluated at (gl,gg) is >\ sa(@1, @2, ..., Zn)SA (Y1, Y2, - - - ,yn )t Since this is the same as the graded
character of \/ V' by the theorem, we get a finite version of the Cauchy identity, in terms of Schur
polynomials rather than Schur functions. Letting n — oo transforms this to the result. O
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Theorem 2.5 (Cauchy correspondence). Let G = GL(n,C) and Gy = GL(m, C) where m, n > 0.

There is a decomposition of graded G; x G-representations

\/ (Cn ® Cm @ WGL(TL )C\}L(m)

where A runs through all partitions of with at most min{m,n} nonzero parts.

GL(m)

The grading on the right is such that elements of 77)\ L(n) by are homogeneous of degree |A|.

Proof. Tt is enough to check that the graded characters of both sides coincide. This follows by setting
the variables z,,11 = Zpyo = - =0 and Y41 = Ymy2 = - -+ = 0 in the Cauchy identity. O

The representation Q = \/(C™ ® C™) gives us a correspondence

L Q L
GL(n) 7GLOm)

in the sense of Lecture 12. This is called GL(n) x GL(m)-duality or the Cauchy correspondence.

We also have a see-saw

GL(n,C) x GL(n,C) GL(r +5,C)

I><I

(r,C) x GL(s,C)

Here, GL(n,C) is viewed as the subgroup {(g,9) : ¢ € GL(n,C)} C GL(n,C) x GL(n,C).
Likewise, GL(r, C) x GL(s,C) is viewed as the subgroup of relevant block diagonal matrices

0
[g ) ] € GL(r + s, C).

One diagonal line in this see-saw is the Cauchy correspondence for GL(n,C) x GL(r + 1,C). The other
consists of the Cauchy correspondences for GL(n, C)xGL(r, C) and GL(n, C) x GL(s, C) tensored together.
Corollary 2.6. Let A, u, and v be partitions with |A| = |u| + |v].

Assume n > |A|, r > |p|, and s > |v|.

Then the multiplicity of 7TGL " in WGL(") GL(") is the same as the multiplicity of WGL(T) S’L(s) in

the restriction of 7y GLr5) ¢4 GL(r, C) x GL(s, C).

Both numbers are equal to the Littlewood-Richardson coefficient ci‘w
Proof. This follows by the general properties of see-saws from Lecture 12 applied to our specific case. [

The last result in Lecture 13 (see the end of today’s Section [1]) is a crystal analogue of this corollary.

3 Crystals for Stanley symmetric functions

In the second half of today’s lecture we give a brief survey of Chapter 10 of Bump and Schilling’s book.
We construct Sy, as the group of bijections [k] — [k] :={1,2,...,k}.

Let s; = (i,i+ 1) € Sk. A reduced word for a permutation w € Sy, is a word i1z - - - §; of shortest possible
length such that w = s;,8;, -+ - s;,. Let R(w) be the set of reduced words for w € S.
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The length of w is the length ¢(w) of any its reduced words.

This is also equal to the number of pairs (7, 7) € [k] x [k] with ¢ < j and w(i) > w(j).

We often write the word w(1)w(2) - --w(k) to represent w € Sy.

For example, £(321) = 3 and R(321) = {121,212} since 321 = (1,2)(2,3)(1,2) = (2,3)(1,2)(2,3).

Consider the equivalence relative on words that is the transitive closure of the symmetric relation with
abN.ba. and ...a(a+1)a...N...(a+1)a(a+1)...

for all integers a, b with |a — b > 1.

43

The corresponding symbols “--” here must mask identical subwords on either side of each relation.

Theorem 3.1 (Matsumoto’s theorem). Each set of reduced words R(w) for w € Sy is then a single
equivalence class under the relation ~. Moreover, a word is a reduced word for some permutation if and
only if its ~ equivalence class contains no elements with equal adjacent letters.

This statement can be generalized to arbitrary Coxeter groups.

The permutation wy = k- - - 321 is the unique element of maximal length in Sy. It has £(wy) = (’2“)

For k = 2 we have |R(wp)| = 1, which is the number of standard tableaux of shape

A=) =[]

For k = 3 we have |R(wp)| = 2, which is the number of standard tableaux of shape

A=(2,1) = |

For k = 4 we have |R(wp)| = 16, which is the number of standard tableaux of shape

A= (3,2,1) =

We will see shortly that this pattern continues.

When k =5 we have |R(wp)| = 768 and when k = 6 we have |R(wp)| = 292864.

We introduce another variant of the RSK correspondence, called the Edelman-Greene correspondence.

Suppose T is a tableau and « is an integer.

Form a tableau T <= a as follows (this almost the same as the definition of T £K a):
e At each stage a number x is inserted into a row, starting with a into the first row of T'.
e If z is greater than all entries in the row then it is added to the end.
e If the row already contains x, then the row is unchanged and = + 1 is inserted into the next row.

e Otherwise, let y be the first entry with = < y; then replace y by = and insert y into the next row.

112
4|

112 112
For example, we have EC = 5 and 1 Ei=

2
— 3
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Given a reduced word iyis - - - i; € R(w) for a permutation w € Sy, define

. . EG . EG . EG EG .
Peg(irig i) =0 — i1 +— g ¢— -+ +— 0.

Define Qgg(i1is -+ -4;) to be the standard tableau with the same shape as Pgg(i142 - - - 4;) that contains j
in the box added by the insertion of the letter ;.

The map a — (Pec(a), Qec(a)) for a € R(w) is called the Edelman-Greene correspondence.

Example 3.2. The word 34121 is a reduced word for the permutation w = 42153 € S5. We have

12 1|2
114 1|2
[3]~[3]4]~ 2 I ST [2]4]= Pec(34121) and  Qeq(34121) =[3 |4
— 3] 5]
We also have 34212 € R(w) and
2 4‘ 114 12 1|2
«»«» ~[ 2] ~l2]4]= Peg(34212) and  Qeg(34121) =[3 5
L= 3 3 4

A tableau is increasing if its rows and columns are strictly increasing.
Theorem 3.3. Fix a permutation w € S;. The map a — (Peg(a), Qec(a)) is a bijection from words
a € R(w) to pairs of tableaux (P, Q) in which P is increasing with vow(P) € R(w) and Q is standard

with the same shape as P.

Proof idea. Construct an inverse map, similar to what we did to invert RSK. O

Corollary 3.4. The number of reduced words for wg = k- -- 321 € S is the number of standard tableaux
of shape A= (k—1,...,3,2,1).

Proof. Every reduced word for wq has length (g) and involves only letters in {1,2,... k — 1}.

There is only one increasing tableau T with (’;) boxes that has all entries in {1,2,...,k —1}.
1 3[4]
1|2 11213 ‘ 2 4
This tableau is for k = 2, fork=3,|2|3 for k =4, for kK =5 and so on.
2] ; 3[4
— 4

The EG correspondence is therefore a bijection R(wg) — {T} x SYT(\) for A= (k—1,...,3,2,1). O

An n-fold increasing reduced factorization of w € Sy is a tuple (a',a?,...,a™) where each a’ is a strictly

increasing (possibly empty) word such that the concatenation a'a?---a™ € R(w).

Definition 3.5. Let RF,,(w) denote the set of all n-fold increasing reduced factorizations of w € Sy,

Given a = (a',a?,...,a") € RF,(w), define Peg(a) = Peg(ata®---am) and let Qgg(a) be the tableau
with the same shape as Peg(a) with the letter j in every box added by inserting letters in the factor a’.

2
5 |so QE(;(CL) =

For example, if a = (34,0,2,0,0,12) € RF(42153) then Qgg(34212) =

’»&w»—A

’CJC»D»—A



MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 14

Theorem 3.6. Let w € Si be a permutation. The map a — (Peg(a),Qec(a)) is a bijection from
increasing reduced factorizations a € RF,,(w) to pairs of tableaux (P, Q) in which P is increasing with
vor(P) € R(w) and @ is semistandard with the same shape as P and with entries in {1,2,...,n}.

Proof idea. The argument is similar to how we showed that the RSK correspondence for integer matrices
is a bijection to pairs of semistandard tableaux. O

It follows that if w € Sy then the Edelman-Green correspondence is a bijection

RE,(w) = || {7} xSSYT,()) (**)

T of shape A
for a finite set of increasing tableaux T'.
We view each set {T} x SSYT,,(A\) as a GL(n) crystal isomorphic to SSYT,,(}).
We then give RF,,(w) the GL(n) crystal structure that makes (**) into a crystal isomorphism. Ie.:

Theorem 3.7. Let w € Sj;,. There is a unique GL(n) crystal structure on RF,, (w) for the weight map
wt(a',d?,...,a") = (L(a"),0(a?),... L(a™))

such that for all i € [n — 1] and a = (a',d?,...,a") € RF,(w)) we have
Peg(ei(a)) = Pec(a) . Qec(eia)) = ei(Qec(a)
Pec(fi(a)) = Pec(a) Qec(fi(a)) = fi(Qec(a))-

Moreover, this is a Stembridge crystal.

Like the GL(n) x GL(r) bicrystal on Mat,x,(N), one can describe the operators e; and f; for this crystal
directly, in terms of a certain pairing on entries of adjacent factors a’ and a**! in an increasing reduced
factorization a, without reference to the Edelman-Greene correspondence. This is explained in detail in
Chapter 10 of Bump and Schilling’s book but we will skip the details here.

Is there a natural bicrystal that extends the GL(n) crystal structure on RF,, (w)? This is an open question.

Definition 3.8. The Stanley symmetric polynomial of w € Sy is

wt(al,a?,..., a™
Fy(r1,29,. .. 20) = 5 ™ )€ Ly, @0, ..., 2]
(a',a?,...,a”)ERF,, (w)

where wt(at,a?,...,a") = ({(a'),€(a?),...,0(a")) € Z".
The Stanley symmetric function of w € S is Fy, = lim, o0 Fip(x1, T2, ..., Ty).

Our formula is used as the definition of F,,-1. Note that it is not obvious that F,, is symmetric.

Corollary 3.9. Both F,(z1,2,...,2,) and F,, are Schur positive symmetric polynomials/functions,
i.e., each is a nonnegative integer linear combination of functions sy (1, z2,...,Z,) Or sy, as appropriate.

Proof. It suffices to show that F,,(z1,za,...,z,) is a Schur positive symmetric polynomial.
This holds because Fy, (21, xa,...,%,) is the character of the Stembridge crystal RF,,(w). O
Corollary 3.10. The longest permutation wo = k---321 € S has Fi,y = s(x—1,...3,2,1)-

Proof. Let 6, = (k—1,...,3,2,1). Our observations when computing |R(wp)| show that
RF, (wo) = {T} x SSYT,,(0) = SSYT,,(d%)

as GL(n) crystals, so Fy,, (21, 22,...,2n) = S5, (21,2, ...,2,) for all n. O
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