1 Last time: the GL $(n) \times \mathrm{GL}(r)$ bicrystal

Last time, we extended the domain of the RSK correspondence from words to matrices $X \in \operatorname{Mat}_{r \times n}(\mathbb{N})$.
The idea is to first turn a nonnegative integer matrix X into a two-line array $\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{m} \\ j_{1} & j_{2} & \cdots & i_{m}\end{array}\right]$.
Each column in this array is a pair $\left[\begin{array}{l}i \\ j\end{array}\right]$ such that $X_{i j} \neq 0$. This column is repeated exactly $X_{i j}$ times. The columns are ordered lexicographically.
Then $P_{\mathrm{RSK}}(X)=P_{\mathrm{RSK}}\left(j_{1} j_{2} \cdots j_{m}\right)$ and we form $Q_{\mathrm{RSK}}(X)$ by replacing each k in $Q_{\mathrm{RSK}}\left(j_{1} j_{2} \cdots j_{m}\right)$ by i_{k}. Key fact: $P_{\mathrm{RSK}}\left(X^{T}\right)=Q_{\mathrm{RSK}}(X)$ and $Q_{\mathrm{RSK}}\left(X^{T}\right)=P_{\mathrm{RSK}}(X)$.

The map $X \mapsto\left(P_{\text {RSK }}(X), Q_{\text {RSK }}(X)\right)$ is a bijection $\operatorname{Mat}_{r \times n}(\mathbb{N}) \xrightarrow{\sim} \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$ where the union is over all partitions with at most $\min \{r, n\}$ parts. We give $\operatorname{Mat}_{r \times n}(\mathbb{N})$ the unique $\operatorname{GL}(n) \times \operatorname{GL}(r)$ crystal structure that makes this bijection into a crystal isomorphism.

One can describe the $\mathrm{GL}(n) \times \mathrm{GL}(r)$ crystal on $\operatorname{Mat}_{r \times n}(\mathbb{N})$ directly, without reference to RSK.
As an application, we showed that the Littlewood-Richardson coefficient $c_{\mu \nu}^{\lambda}$ is both the multiplicity of $\operatorname{SSYT}_{n}(\lambda)$ in $\operatorname{SSYT}_{n}(\mu) \otimes \operatorname{SSYT}_{n}(\nu)$ and the multiplicity of $\operatorname{SSYT}_{r}(\mu) \times \operatorname{SSYT}_{s}(\nu)$ in the GL $(r) \times \operatorname{GL}(s)$ crystal obtained by branching $\operatorname{SSYT}_{r+s}(\lambda)$.

2 The Cauchy correspondence

We turn to Appendix B of Bump and Schilling's book, which covers some results from representation theory that are analogous to our results on $\mathrm{GL}(n) \times \mathrm{GL}(r)$ bicrystals from last time.
An affine algebraic group Γ is an affine algebraic variety that is also a group such the the group multiplication map $\Gamma \times \Gamma \rightarrow \Gamma$ and the inverse map $\Gamma \rightarrow \Gamma$ are regular.

Our main example is the affine algebraic group $\Gamma=\operatorname{GL}(n, \mathbb{C})$.
Let $A=\mathcal{O}(\Gamma)$ be the coordinate ring of regular functions on Γ. This is a finitely generated \mathbb{C}-algebra that is a reduced Noetherian ring. Since $\mathcal{O}(\Gamma \times \Gamma)=A \otimes A$, the multiplication map $\nabla: \Gamma \times \Gamma \rightarrow \Gamma$ corresponds to an algebra homomorphism $\Delta: A \rightarrow A \otimes A$ with the formula $\Delta(f):=f \circ \nabla$.
This comultiplication map $\Delta: A \rightarrow A \otimes A$ makes the ring A into a commutative Hopf algebra, whose antipode is the map $S(f):=\left(x \mapsto f\left(x^{-1}\right)\right)$.
As usual, a finite-dimensional representation of Γ means a pair (π, V) where V is a finite-dimensional complex vector space and $\pi: \Gamma \rightarrow \mathrm{GL}(V)$ is a regular map. When $\Gamma=\mathrm{GL}(n, \mathbb{C})$, this reduces to our earlier definition.

We assume that every finite-dimensional representation decomposes into a direct sum of irreducible subrepresentations. In the case when $\Gamma=\operatorname{GL}(n, \mathbb{C})$ this follows from Weyl's unitarian trick.
The product group $\Gamma \times \Gamma$ acts on A by $\left(g_{1}, g_{2}\right) \cdot f=\left(x \mapsto f\left(g_{2}^{-1} x g_{1}\right)\right)$.
This is indeed an action: $\left(g_{3}, g_{4}\right) \cdot\left(\left(g_{1}, g_{2}\right) \cdot f\right)$ for $g_{i} \in \Gamma$ and $f \in A$ is the map

$$
x \mapsto\left(\left(g_{1}, g_{2}\right) \cdot f\right)\left(g_{4}^{-1} x g_{3}\right)=f\left(g_{2}^{-1} g_{4}^{-1} x g_{3} g_{1}\right)
$$

which is also the formula for $\left(g_{3} g_{1}, g_{4} g_{2}\right) \cdot f$.
If (π, V) is a finite-dimensional representation then let $\hat{\pi} \in \mathrm{GL}\left(V^{*}\right)$ be the map

$$
\hat{\pi}(g): \lambda \mapsto \lambda \circ \pi\left(g^{-1}\right)
$$

The pair $\left(\hat{\pi}, V^{*}\right)$ is another finite-dimensional representation, called the contragredient representation.
Proposition 2.1. The coordinate ring $A=\mathcal{O}(\Gamma)$ decomposes as a $\Gamma \times \Gamma$ module as

$$
A \cong \bigoplus \pi \otimes \hat{\pi}
$$

where the summation runs over all isomorphism classes of finite-dimensional representations π of Γ.
Proof sketch. Let (π, V) be a finite-dimensional representation.
Define an embeding $\iota: V \otimes V^{*} \rightarrow A$ by mapping $v \otimes \lambda$, where $v \in V$ and $\lambda \in V^{*}$, to the function

$$
\iota(v \otimes \lambda): g \mapsto \lambda(\pi(g) v)
$$

Note that $\Gamma \times \Gamma$ acts on $V \otimes V^{*}$ by $\left(g_{1}, g_{2}\right) \cdot(v \otimes \lambda)=\pi\left(g_{1}\right) v \otimes \lambda \circ \pi\left(g_{2}^{-1}\right)$. Thus

$$
\iota\left(\left(g_{1}, g_{2}\right) \cdot(v \otimes \lambda)\right): x \mapsto \lambda\left(\pi\left(g_{2}^{-1}\right) \pi(x) \pi\left(g_{1}\right) v\right)=\iota(v \otimes \lambda)\left(g_{2}^{-1} x g_{1}\right)=\left(\left(g_{1}, g_{2}\right) \cdot \iota(v \otimes \lambda)\right)(x)
$$

In other words $\iota\left(\left(g_{1}, g_{2}\right) \cdot(v \otimes \lambda)\right)=\left(g_{1}, g_{2}\right) \cdot \iota(v \otimes \lambda)$.
Thus the map $\iota: V \otimes V^{*} \rightarrow A$ is a $\Gamma \times \Gamma$-module homomorphism.
One needs to show that every element $f \in A$ is a linear combination of functions of the form $\iota(v \otimes \lambda)$.
Fix $f \in A$ and write $\Delta f=\sum_{i} \phi_{i} \otimes \psi_{i}$ where $\phi_{i}, \psi_{i} \in A$, so that if $x, y \in \Gamma$ then $f(x y)=\sum_{i} \phi_{i}(x) \psi_{i}(y)$.
Take V to be the vector space spanned by the right-translations $(y, 1) \cdot f$ for $y \in \Gamma$.
This vector space space is finite-dimensional since it is spanned by the finite set of functions ϕ_{i} that appear in the formula $\Delta f=\sum_{i} \phi_{i} \otimes \psi_{i}$. Specifically, if $y \in \Gamma$ then $(y, 1) \cdot f=\sum_{i} \psi_{i}(y) \phi_{i}$ since

$$
((y, 1) \cdot f)(x)=f(x y)=\sum_{i} \phi_{i}(x) \psi_{i}(y)
$$

Now suppose $\pi: \Gamma \rightarrow \mathrm{GL}(V)$ is the action by right translation, so that $\pi(g) \phi(x)=\phi(x g)$ for $\phi \in V$.
Finally let $\lambda: V \rightarrow \mathbb{C}$ be the map $\lambda(\phi)=\phi(1)$.
Then we have $f=\iota(f \otimes \lambda)$ since $\iota(f \otimes \lambda)(x)=\lambda(\pi(x) f)=(\pi(x) f)(1)=f(x)$.
The result follows using our assumption that every representation is a direct sum of irreducibles.

Lemma 2.2. If π is a finite-dimensional representation of $\operatorname{GL}(n, \mathbb{C})$, then $\hat{\pi}$ is isomorphic to the representation $g \mapsto \pi\left(\left(g^{-1}\right)^{T}\right)$, where g^{T} is the usual transpose of g.

Proof. You can check that if $t_{1}, t_{2}, \ldots, t_{n}$ are the eigenvalues of $\pi(g)$ then $\chi_{\hat{\pi}}(g)=\sum_{i=1}^{n} t_{i}^{-1}$. Each $g \in \mathrm{GL}(n, \mathbb{C})$ is conjugate to its transpose (one strategy to prove this: reduce to the case of a single block in the Jordan canonical form).
This means the character of π evaluated at $\left(g^{-1}\right)^{T}$ is the same as the value at g^{-1}. Conclude that the representations $g \mapsto \pi\left(\left(g^{-1}\right)^{T}\right)$ and $\hat{\pi}$ have the same character, so they are isomorphic.

The tensor algebra $T(V)$ of a vector space V is the algebra generated by all tensors $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}$ where $v_{1}, v_{2}, \ldots, v_{k} \in V$ and $k \geq 0$. The product for this algebra is just \otimes. The symmetric algebra $\bigvee V$ on V is the quotient of $T(V)$ by the two-sided ideal generated by all differences $x \otimes y-y \otimes x$.

Thus, $\bigvee V$ is the space of tensors $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}$ where we are allowed to commute the tensor factors. If V is a finite dimensional complex vector space then $\bigvee V \cong \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for $n=\operatorname{dim} V$.
If G_{1} is a group acting on V and G_{2} is a group acting on W, then $G_{1} \times G_{2}$ acts on $V \otimes W$ and therefore on the symmetric algebra $\bigvee(V \otimes W)$.

Lemma 2.3. There is a decomposition of $\operatorname{graded} \operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(n, \mathbb{C})$-representations

$$
\bigvee\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}
$$

where λ runs through all partitions of with at most n nonzero parts.
The grading on the right is such that elements of $\pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$ are homogeneous of degree $|\lambda|$.
Proof sketch. Let $G=\mathrm{GL}(n, \mathbb{C})$.
Instead of the given action, consider the action on the dual space $\operatorname{Mat}_{n \times n}(\mathbb{C})^{*}$ by

$$
\begin{equation*}
\left(g_{1}, g_{2}\right) f:=\left(X \mapsto f\left(g_{2}^{T} X g_{1}\right)\right) \quad \text { for } g_{1}, g_{2} \in G \text { and } f \in \operatorname{Mat}_{n \times n}(\mathbb{C})^{*} \tag{}
\end{equation*}
$$

This action is equivalent to the action on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ and the symmetric algebra over $\operatorname{Mat}_{n \times n}(\mathbb{C})^{*}$ is the same as the affine algebra $\mathcal{O}\left(\operatorname{Mat}_{n \times n}(\mathbb{C})\right)$, which is the polynomial ring generated by the coordinate functions $g_{i j}$ for a matrix $g=\left(g_{i j}\right)$.
To understand this ring, we first discuss the decomposition of the affine algebra $\mathcal{O}(\operatorname{GL}(n, \mathbb{C}))=\mathbb{C}\left[g_{i j}, \operatorname{det}^{-1}\right]$.
We have two slightly different actions of $G \times G$ on this algebra.
For the action $\left(g_{1}, g_{2}\right) f: X \mapsto f\left(g_{2}^{-1} X g_{1}\right)$, we have $\mathcal{O}(\mathrm{GL}(n, \mathbb{C}))=\bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \hat{\pi}_{\lambda}^{\mathrm{GL}(n)}$.
For the action $\left(^{*}\right)$, Lemma 2.2 implies that we instead have $\mathcal{O}(\mathrm{GL}(n, \mathbb{C}))=\bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$.
In both decompositions, the direct sums are over all dominant weights $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right) \in \mathbb{Z}^{n}$, which are only partitions if $\lambda_{n}>0$.

We are interested in the decomposition of the affine algebra $\operatorname{Mat}_{n \times n}(\mathbb{C})$. Since $G=\mathrm{GL}(n, \mathbb{C})$ is an open subvariety of $\operatorname{Mat}_{n \times n}(\mathbb{C})$ (namely, the subset where the determinant is nonzero), the restriction map $\bigvee \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathcal{O}(\operatorname{GL}(n, \mathbb{C}))$ is injective. The representations π_{λ} that extend to regular functions on $\operatorname{Mat}_{n \times n}(\mathbb{C})$ are precisely those that do not involve inverse powers of the determinant, namely, those that are indexed by dominant weights λ that are partitions. This implies the lemma.

The theorem implies a related identity for symmetric functions:
Theorem 2.4 (Cauchy identity). Suppose $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots\right)$ are sequences of commuting indeterminates that commute with each other and with the indeterminate t. Then

$$
\prod_{i, j \geq 1}\left(1-x_{i} y_{j} t\right)^{-1}=\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) t^{|\lambda|}
$$

where λ runs through all partitions. Here, the factors on the left are interpreted as rational power series

$$
\left(1-x_{i} y_{j} t\right)^{-1}=1+x_{i} y_{j} t+\left(x_{i} y_{j}\right)^{2} t^{2}+\left(x_{i} y_{j}\right)^{3} t^{3}+\ldots
$$

Proof. Suppose $g_{1} \in \mathrm{GL}(n, \mathbb{C})$ has distinct eigenvalues $x_{1}, x_{2}, \ldots, x_{n}$ and $g_{2} \in \mathrm{GL}(n, \mathbb{C})$ has distinct eigenvalues $y_{1}, y_{2}, \ldots, y_{n}$, then the trace of the action of $\left(g_{1}, g_{2}\right)$ on $V=\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is the sum $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}$ which is the coefficient of t in $\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-\lambda_{i} y_{j} t\right)^{-1}$.
Similarly, the trace of the action of $\left(g_{1}, g_{2}\right)$ the subspace of homogeneous elements of $\bigvee V$ of degree k is the coefficient of t^{k} in $\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-x_{i} y_{j} t\right)^{-1}$. It follows that $\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-x_{i} y_{j} t\right)^{-1}$ is the value of graded character of the $G_{1} \times G_{2}$-representation on $\bigvee V$ evaluated at $\left(g_{1}, g_{2}\right)$.
On other hand, the Weyl character formula tells us that that graded character of $\bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$ evaluated at $\left(g_{1}, g_{2}\right)$ is $\sum_{\lambda} s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\lambda}\left(y_{1}, y_{2}, \ldots, y_{n}\right) t^{|\lambda|}$. Since this is the same as the graded character of $\bigvee V$ by the theorem, we get a finite version of the Cauchy identity, in terms of Schur polynomials rather than Schur functions. Letting $n \rightarrow \infty$ transforms this to the result.

Theorem 2.5 (Cauchy correspondence). Let $G_{1}=\mathrm{GL}(n, \mathbb{C})$ and $G_{2}=\mathrm{GL}(m, \mathbb{C})$ where $m, n>0$.
There is a decomposition of graded $G_{1} \times G_{2}$-representations

$$
\bigvee\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right) \cong \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(m)}
$$

where λ runs through all partitions of with at $\operatorname{most} \min \{m, n\}$ nonzero parts.
The grading on the right is such that elements of $\pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(m)}$ are homogeneous of degree $|\lambda|$.
Proof. It is enough to check that the graded characters of both sides coincide. This follows by setting the variables $x_{n+1}=x_{n+2}=\cdots=0$ and $y_{m+1}=y_{m+2}=\cdots=0$ in the Cauchy identity.

The representation $\Omega=\bigvee\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right)$ gives us a correspondence

$$
\pi_{\lambda}^{\mathrm{GL}(n)} \stackrel{\Omega}{\longleftrightarrow} \pi_{\lambda}^{\mathrm{GL}(m)}
$$

in the sense of Lecture 12. This is called $\mathrm{GL}(n) \times \mathrm{GL}(m)$-duality or the Cauchy correspondence.
We also have a see-saw

Here, $\mathrm{GL}(n, \mathbb{C})$ is viewed as the subgroup $\{(g, g): g \in \mathrm{GL}(n, \mathbb{C})\} \subset \mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(n, \mathbb{C})$.
Likewise, $\mathrm{GL}(r, \mathbb{C}) \times \mathrm{GL}(s, \mathbb{C})$ is viewed as the subgroup of relevant block diagonal matrices

$$
\left[\begin{array}{ll}
g & 0 \\
0 & h
\end{array}\right] \in \mathrm{GL}(r+s, \mathbb{C})
$$

One diagonal line in this see-saw is the Cauchy correspondence for $\operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(r+1, \mathbb{C})$. The other consists of the Cauchy correspondences for $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(r, \mathbb{C})$ and $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(s, \mathbb{C})$ tensored together.

Corollary 2.6. Let λ, μ, and ν be partitions with $|\lambda|=|\mu|+|\nu|$.
Assume $n \geq|\lambda|, r \geq|\mu|$, and $s \geq|\nu|$.
Then the multiplicity of $\pi_{\lambda}^{\mathrm{GL}(n)}$ in $\pi_{\mu}^{\mathrm{GL}(n)} \times \pi_{\nu}^{\mathrm{GL}(n)}$ is the same as the multiplicity of $\pi_{\mu}^{\mathrm{GL}(r)} \otimes \pi_{\nu}^{\mathrm{GL}(s)}$ in the restriction of $\pi_{\lambda}^{\mathrm{GL}(r+s)}$ to $\mathrm{GL}(r, \mathbb{C}) \times \mathrm{GL}(s, \mathbb{C})$.
Both numbers are equal to the Littlewood-Richardson coefficient $c_{\mu \nu}^{\lambda}$.
Proof. This follows by the general properties of see-saws from Lecture 12 applied to our specific case.
The last result in Lecture 13 (see the end of today's Section 1) is a crystal analogue of this corollary.

3 Crystals for Stanley symmetric functions

In the second half of today's lecture we give a brief survey of Chapter 10 of Bump and Schilling's book.
We construct S_{k} as the group of bijections $[k] \rightarrow[k]:=\{1,2, \ldots, k\}$.
Let $s_{i}=(i, i+1) \in S_{k}$. A reduced word for a permutation $w \in S_{k}$ is a word $i_{1} i_{2} \cdots i_{l}$ of shortest possible length such that $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}}$. Let $\mathcal{R}(w)$ be the set of reduced words for $w \in S_{k}$.

The length of w is the length $\ell(w)$ of any its reduced words.
This is also equal to the number of pairs $(i, j) \in[k] \times[k]$ with $i<j$ and $w(i)>w(j)$.
We often write the word $w(1) w(2) \cdots w(k)$ to represent $w \in S_{k}$.
For example, $\ell(321)=3$ and $\mathcal{R}(321)=\{121,212\}$ since $321=(1,2)(2,3)(1,2)=(2,3)(1,2)(2,3)$.
Consider the equivalence relative on words that is the transitive closure of the symmetric relation with

$$
\cdots a b \cdots \sim \cdots b a \cdots \quad \text { and } \quad \cdots a(a+1) a \cdots \sim \cdots(a+1) a(a+1) \cdots
$$

for all integers a, b with $|a-b|>1$.
The corresponding symbols "..." here must mask identical subwords on either side of each relation.
Theorem 3.1 (Matsumoto's theorem). Each set of reduced words $\mathcal{R}(w)$ for $w \in S_{k}$ is then a single equivalence class under the relation \sim. Moreover, a word is a reduced word for some permutation if and only if its \sim equivalence class contains no elements with equal adjacent letters.

This statement can be generalized to arbitrary Coxeter groups.

The permutation $w_{0}=k \cdots 321$ is the unique element of maximal length in S_{k}. It has $\ell\left(w_{0}\right)=\binom{k}{2}$. For $k=2$ we have $\left|\mathcal{R}\left(w_{0}\right)\right|=1$, which is the number of standard tableaux of shape

$$
\lambda=(1)=\square .
$$

For $k=3$ we have $\left|\mathcal{R}\left(w_{0}\right)\right|=2$, which is the number of standard tableaux of shape

$$
\lambda=(2,1)=\square .
$$

For $k=4$ we have $\left|\mathcal{R}\left(w_{0}\right)\right|=16$, which is the number of standard tableaux of shape

$$
\lambda=(3,2,1)=\begin{array}{|l}
\square \\
\square
\end{array} .
$$

We will see shortly that this pattern continues.
When $k=5$ we have $\left|\mathcal{R}\left(w_{0}\right)\right|=768$ and when $k=6$ we have $\left|\mathcal{R}\left(w_{0}\right)\right|=292864$.

We introduce another variant of the RSK correspondence, called the Edelman-Greene correspondence.
Suppose T is a tableau and a is an integer.
Form a tableau $T \stackrel{\mathrm{EG}}{\longleftarrow} a$ as follows (this almost the same as the definition of $T \stackrel{\mathrm{RSK}}{\longleftarrow} a$):

- At each stage a number x is inserted into a row, starting with a into the first row of T.
- If x is greater than all entries in the row then it is added to the end.
- If the row already contains x, then the row is unchanged and $x+1$ is inserted into the next row.
- Otherwise, let y be the first entry with $x<y$; then replace y by x and insert y into the next row.

Given a reduced word $i_{1} i_{2} \cdots i_{l} \in \mathcal{R}(w)$ for a permutation $w \in S_{k}$, define

$$
P_{\mathrm{EG}}\left(i_{1} i_{2} \cdots i_{l}\right)=\emptyset \stackrel{\mathrm{EG}}{\longleftarrow} i_{1} \stackrel{\mathrm{EG}}{\longleftarrow} i_{2} \stackrel{\mathrm{EG}}{\longleftarrow} \cdots \stackrel{\mathrm{EG}}{\longleftarrow} i_{l} .
$$

Define $Q_{\mathrm{EG}}\left(i_{1} i_{2} \cdots i_{l}\right)$ to be the standard tableau with the same shape as $P_{\mathrm{EG}}\left(i_{1} i_{2} \cdots i_{l}\right)$ that contains j in the box added by the insertion of the letter i_{j}.
The map $a \mapsto\left(P_{\mathrm{EG}}(a), Q_{\mathrm{EG}}(a)\right)$ for $a \in \mathcal{R}(w)$ is called the Edelman-Greene correspondence.
Example 3.2. The word 34121 is a reduced word for the permutation $w=42153 \in S_{5}$. We have

We also have $34212 \in \mathcal{R}(w)$ and

A tableau is increasing if its rows and columns are strictly increasing.
Theorem 3.3. Fix a permutation $w \in S_{k}$. The map $a \mapsto\left(P_{\mathrm{EG}}(a), Q_{\mathrm{EG}}(a)\right)$ is a bijection from words $a \in \mathcal{R}(w)$ to pairs of tableaux (P, Q) in which P is increasing with $\mathfrak{r o w}(P) \in \mathcal{R}(w)$ and Q is standard with the same shape as P.

Proof idea. Construct an inverse map, similar to what we did to invert RSK.

Corollary 3.4. The number of reduced words for $w_{0}=k \cdots 321 \in S_{k}$ is the number of standard tableaux of shape $\lambda=(k-1, \ldots, 3,2,1)$.

Proof. Every reduced word for w_{0} has length $\binom{k}{2}$ and involves only letters in $\{1,2, \ldots, k-1\}$.
There is only one increasing tableau T with $\binom{k}{2}$ boxes that has all entries in $\{1,2, \ldots, k-1\}$.

The EG correspondence is therefore a bijection $\mathcal{R}\left(w_{0}\right) \xrightarrow{\sim}\{T\} \times \operatorname{SYT}(\lambda)$ for $\lambda=(k-1, \ldots, 3,2,1)$.

An n-fold increasing reduced factorization of $w \in S_{k}$ is a tuple ($a^{1}, a^{2}, \ldots, a^{n}$) where each a^{i} is a strictly increasing (possibly empty) word such that the concatenation $a^{1} a^{2} \cdots a^{n} \in \mathcal{R}(w)$.

Definition 3.5. Let $\operatorname{RF}_{n}(w)$ denote the set of all n-fold increasing reduced factorizations of $w \in S_{k}$.

Given $a=\left(a^{1}, a^{2}, \ldots, a^{n}\right) \in \operatorname{RF}_{n}(w)$, define $P_{\mathrm{EG}}(a)=P_{\mathrm{EG}}\left(a^{1} a^{2} \cdots a^{n}\right)$ and let $Q_{\mathrm{EG}}(a)$ be the tableau with the same shape as $P_{\mathrm{EG}}(a)$ with the letter j in every box added by inserting letters in the factor a^{j}.

For example, if $a=(34, \emptyset, 2, \emptyset, \emptyset, 12) \in \operatorname{RF}_{6}(42153)$ then $Q_{\mathrm{EG}}(34212)=$\begin{tabular}{|l|l|}
\hline 1 \& 2

\hline 3 \& 5

\hline 4 \& so $Q_{\mathrm{EG}}(a)=$| 1 | 1 |
| :--- | :--- |
| 3 | 6 |
| 6 | |.

\end{tabular}

Theorem 3.6. Let $w \in S_{k}$ be a permutation. The map $a \mapsto\left(P_{\mathrm{EG}}(a), Q_{\mathrm{EG}}(a)\right)$ is a bijection from increasing reduced factorizations $a \in \operatorname{RF}_{n}(w)$ to pairs of tableaux (P, Q) in which P is increasing with $\mathfrak{r o w}(P) \in \mathcal{R}(w)$ and Q is semistandard with the same shape as P and with entries in $\{1,2, \ldots, n\}$.

Proof idea. The argument is similar to how we showed that the RSK correspondence for integer matrices is a bijection to pairs of semistandard tableaux.

It follows that if $w \in S_{k}$ then the Edelman-Green correspondence is a bijection

$$
\begin{equation*}
\operatorname{RF}_{n}(w) \xrightarrow{\sim} \bigsqcup_{T \text { of shape } \lambda}\{T\} \times \operatorname{SSYT}_{n}(\lambda) \tag{**}
\end{equation*}
$$

for a finite set of increasing tableaux T.
We view each set $\{T\} \times \operatorname{SSYT}_{n}(\lambda)$ as a GL (n) crystal isomorphic to $\operatorname{SSYT}_{n}(\lambda)$.
We then give $\operatorname{RF}_{n}(w)$ the $\mathrm{GL}(n)$ crystal structure that makes $\left({ }^{* *}\right)$ into a crystal isomorphism. I.e.:
Theorem 3.7. Let $w \in S_{k}$. There is a unique $\operatorname{GL}(n)$ crystal structure on $\operatorname{RF}_{n}(w)$ for the weight map

$$
\mathbf{w} \mathbf{t}\left(a^{1}, a^{2}, \ldots, a^{n}\right)=\left(\ell\left(a^{1}\right), \ell\left(a^{2}\right), \ldots, \ell\left(a^{n}\right)\right)
$$

such that for all $i \in[n-1]$ and $\left.a=\left(a^{1}, a^{2}, \ldots, a^{n}\right) \in \operatorname{RF}_{n}(w)\right)$ we have

$$
\begin{array}{ll}
P_{\mathrm{EG}}\left(e_{i}(a)\right)=P_{\mathrm{EG}}(a) \\
P_{\mathrm{EG}}\left(f_{i}(a)\right)=P_{\mathrm{EG}}(a)
\end{array} \quad \text { and } \quad \begin{aligned}
& Q_{\mathrm{EG}}\left(e_{i}(a)\right)=e_{i}\left(Q_{\mathrm{EG}}(a)\right) \\
& Q_{\mathrm{EG}}\left(f_{i}(a)\right)=f_{i}\left(Q_{\mathrm{EG}}(a)\right) .
\end{aligned}
$$

Moreover, this is a Stembridge crystal.
Like the $\mathrm{GL}(n) \times \mathrm{GL}(r)$ bicrystal on $\operatorname{Mat}_{r \times n}(\mathbb{N})$, one can describe the operators e_{i} and f_{i} for this crystal directly, in terms of a certain pairing on entries of adjacent factors a^{i} and a^{i+1} in an increasing reduced factorization a, without reference to the Edelman-Greene correspondence. This is explained in detail in Chapter 10 of Bump and Schilling's book but we will skip the details here.

Is there a natural bicrystal that extends the $\mathrm{GL}(n)$ crystal structure on $\operatorname{RF}_{n}(w)$? This is an open question.
Definition 3.8. The Stanley symmetric polynomial of $w \in S_{k}$ is

$$
F_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\left(a^{1}, a^{2}, \ldots, a^{n}\right) \in \mathrm{RF}_{n}(w)} x^{\mathbf{w t}\left(a^{1}, a^{2}, \ldots, a^{n}\right)} \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

where $\mathbf{w t}\left(a^{1}, a^{2}, \ldots, a^{n}\right)=\left(\ell\left(a^{1}\right), \ell\left(a^{2}\right), \ldots, \ell\left(a^{n}\right)\right) \in \mathbb{Z}^{n}$.
The Stanley symmetric function of $w \in S_{k}$ is $F_{w}=\lim _{n \rightarrow \infty} F_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Our formula is used as the definition of $F_{w^{-1}}$. Note that it is not obvious that F_{w} is symmetric.
Corollary 3.9. Both $F_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and F_{w} are Schur positive symmetric polynomials/functions, i.e., each is a nonnegative integer linear combination of functions $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or s_{λ}, as appropriate.

Proof. It suffices to show that $F_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a Schur positive symmetric polynomial.
This holds because $F_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the character of the Stembridge crystal $\mathrm{RF}_{n}(w)$.

Corollary 3.10. The longest permutation $w_{0}=k \cdots 321 \in S_{k}$ has $F_{w_{0}}=s_{(k-1, \ldots, 3,2,1)}$.
Proof. Let $\delta_{k}=(k-1, \ldots, 3,2,1)$. Our observations when computing $\left|\mathcal{R}\left(w_{0}\right)\right|$ show that

$$
\operatorname{RF}_{n}\left(w_{0}\right)=\{T\} \times \operatorname{SSYT}_{n}\left(\delta_{k}\right) \cong \operatorname{SSYT}_{n}\left(\delta_{k}\right)
$$

as $\operatorname{GL}(n)$ crystals, so $F_{w_{0}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=s_{\delta_{k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all n.

