1 Last time: the $GL(n) \times GL(r)$ bicrystal

Last time, we extended the domain of the RSK correspondence from words to matrices $X \in Mat_{r \times n}(\mathbb{N})$.

The idea is to first turn a nonnegative integer matrix X into a two-line array $\begin{bmatrix} i_1 & i_2 & \cdots & i_m \\ j_1 & j_2 & \cdots & i_m \end{bmatrix}$.

Each column in this array is a pair $\begin{bmatrix} i \\ j \end{bmatrix}$ such that $X_{ij} \neq 0$. This column is repeated exactly X_{ij} times.

The columns are ordered lexicographically.

Then $P_{\mathsf{RSK}}(X) = P_{\mathsf{RSK}}(j_1 j_2 \cdots j_m)$ and we form $Q_{\mathsf{RSK}}(X)$ by replacing each k in $Q_{\mathsf{RSK}}(j_1 j_2 \cdots j_m)$ by i_k . Key fact: $P_{\mathsf{RSK}}(X^T) = Q_{\mathsf{RSK}}(X)$ and $Q_{\mathsf{RSK}}(X^T) = P_{\mathsf{RSK}}(X)$.

The map $X \mapsto (P_{\mathsf{RSK}}(X), Q_{\mathsf{RSK}}(X))$ is a bijection $\operatorname{Mat}_{r \times n}(\mathbb{N}) \xrightarrow{\sim} \bigsqcup_{\lambda} \operatorname{SSYT}_{n}(\lambda) \times \operatorname{SSYT}_{r}(\lambda)$ where the union is over all partitions with at most $\min\{r, n\}$ parts. We give $\operatorname{Mat}_{r \times n}(\mathbb{N})$ the unique $\operatorname{GL}(n) \times \operatorname{GL}(r)$ crystal structure that makes this bijection into a crystal isomorphism.

One can describe the $GL(n) \times GL(r)$ crystal on $Mat_{r \times n}(\mathbb{N})$ directly, without reference to RSK.

As an application, we showed that the Littlewood-Richardson coefficient $c_{\mu\nu}^{\lambda}$ is both the multiplicity of $SSYT_n(\lambda)$ in $SSYT_n(\mu) \otimes SSYT_n(\nu)$ and the multiplicity of $SSYT_r(\mu) \times SSYT_s(\nu)$ in the $GL(r) \times GL(s)$ crystal obtained by branching $SSYT_{r+s}(\lambda)$.

2 The Cauchy correspondence

We turn to Appendix B of Bump and Schilling's book, which covers some results from representation theory that are analogous to our results on $GL(n) \times GL(r)$ bicrystals from last time.

An affine algebraic group Γ is an affine algebraic variety that is also a group such the the group multiplication map $\Gamma \times \Gamma \to \Gamma$ and the inverse map $\Gamma \to \Gamma$ are regular.

Our main example is the affine algebraic group $\Gamma = \operatorname{GL}(n, \mathbb{C})$.

Let $A = \mathcal{O}(\Gamma)$ be the coordinate ring of regular functions on Γ . This is a finitely generated \mathbb{C} -algebra that is a reduced Noetherian ring. Since $\mathcal{O}(\Gamma \times \Gamma) = A \otimes A$, the multiplication map $\nabla : \Gamma \times \Gamma \to \Gamma$ corresponds to an algebra homomorphism $\Delta : A \to A \otimes A$ with the formula $\Delta(f) := f \circ \nabla$.

This comultiplication map $\Delta : A \to A \otimes A$ makes the ring A into a commutative Hopf algebra, whose antipode is the map $S(f) := (x \mapsto f(x^{-1}))$.

As usual, a finite-dimensional representation of Γ means a pair (π, V) where V is a finite-dimensional complex vector space and $\pi : \Gamma \to \operatorname{GL}(V)$ is a regular map. When $\Gamma = \operatorname{GL}(n, \mathbb{C})$, this reduces to our earlier definition.

We assume that every finite-dimensional representation decomposes into a direct sum of irreducible subrepresentations. In the case when $\Gamma = GL(n, \mathbb{C})$ this follows from Weyl's unitarian trick.

The product group $\Gamma \times \Gamma$ acts on A by $(g_1, g_2) \cdot f = (x \mapsto f(g_2^{-1}xg_1)).$

This is indeed an action: $(g_3, g_4) \cdot ((g_1, g_2) \cdot f)$ for $g_i \in \Gamma$ and $f \in A$ is the map

$$x \mapsto ((g_1, g_2) \cdot f) (g_4^{-1} x g_3) = f (g_2^{-1} g_4^{-1} x g_3 g_1),$$

which is also the formula for $(g_3g_1, g_4g_2) \cdot f$.

If (π, V) is a finite-dimensional representation then let $\hat{\pi} \in GL(V^*)$ be the map

$$\hat{\pi}(g): \lambda \mapsto \lambda \circ \pi(g^{-1})$$

The pair $(\hat{\pi}, V^*)$ is another finite-dimensional representation, called the *contragredient representation*.

Proposition 2.1. The coordinate ring $A = \mathcal{O}(\Gamma)$ decomposes as a $\Gamma \times \Gamma$ module as

$$A \cong \bigoplus \pi \otimes \hat{\pi}$$

where the summation runs over all isomorphism classes of finite-dimensional representations π of Γ .

Proof sketch. Let (π, V) be a finite-dimensional representation.

Define an embedding $\iota: V \otimes V^* \to A$ by mapping $v \otimes \lambda$, where $v \in V$ and $\lambda \in V^*$, to the function

$$\iota(v \otimes \lambda) : g \mapsto \lambda\left(\pi(g)v\right)$$

Note that $\Gamma \times \Gamma$ acts on $V \otimes V^*$ by $(g_1, g_2) \cdot (v \otimes \lambda) = \pi(g_1)v \otimes \lambda \circ \pi(g_2^{-1})$. Thus

$$\iota\left((g_1,g_2)\cdot(v\otimes\lambda)\right):x\mapsto\lambda\left(\pi(g_2^{-1})\pi(x)\pi(g_1)v\right)=\iota(v\otimes\lambda)(g_2^{-1}xg_1)=\left((g_1,g_2)\cdot\iota(v\otimes\lambda)\right)(x)$$

In other words $\iota((g_1, g_2) \cdot (v \otimes \lambda)) = (g_1, g_2) \cdot \iota(v \otimes \lambda).$

Thus the map $\iota: V \otimes V^* \to A$ is a $\Gamma \times \Gamma$ -module homomorphism.

One needs to show that every element $f \in A$ is a linear combination of functions of the form $\iota(v \otimes \lambda)$. Fix $f \in A$ and write $\Delta f = \sum_i \phi_i \otimes \psi_i$ where $\phi_i, \psi_i \in A$, so that if $x, y \in \Gamma$ then $f(xy) = \sum_i \phi_i(x)\psi_i(y)$. Take V to be the vector space spanned by the right-translations $(y, 1) \cdot f$ for $y \in \Gamma$.

This vector space space is finite-dimensional since it is spanned by the finite set of functions ϕ_i that appear in the formula $\Delta f = \sum_i \phi_i \otimes \psi_i$. Specifically, if $y \in \Gamma$ then $(y, 1) \cdot f = \sum_i \psi_i(y)\phi_i$ since

$$((y,1)\cdot f)(x) = f(xy) = \sum_{i} \phi_i(x)\psi_i(y).$$

Now suppose $\pi : \Gamma \to \operatorname{GL}(V)$ is the action by right translation, so that $\pi(g)\phi(x) = \phi(xg)$ for $\phi \in V$. Finally let $\lambda : V \to \mathbb{C}$ be the map $\lambda(\phi) = \phi(1)$.

Then we have $f = \iota(f \otimes \lambda)$ since $\iota(f \otimes \lambda)(x) = \lambda(\pi(x)f) = (\pi(x)f)(1) = f(x)$.

The result follows using our assumption that every representation is a direct sum of irreducibles. \Box

Lemma 2.2. If π is a finite-dimensional representation of $GL(n, \mathbb{C})$, then $\hat{\pi}$ is isomorphic to the representation $g \mapsto \pi((g^{-1})^T)$, where g^T is the usual transpose of g.

Proof. You can check that if t_1, t_2, \ldots, t_n are the eigenvalues of $\pi(g)$ then $\chi_{\hat{\pi}}(g) = \sum_{i=1}^n t_i^{-1}$. Each $g \in \operatorname{GL}(n, \mathbb{C})$ is conjugate to its transpose (one strategy to prove this: reduce to the case of a single block in the Jordan canonical form).

This means the character of π evaluated at $(g^{-1})^T$ is the same as the value at g^{-1} . Conclude that the representations $g \mapsto \pi\left((g^{-1})^T\right)$ and $\hat{\pi}$ have the same character, so they are isomorphic.

The tensor algebra T(V) of a vector space V is the algebra generated by all tensors $v_1 \otimes v_2 \otimes \cdots \otimes v_k$ where $v_1, v_2, \ldots, v_k \in V$ and $k \ge 0$. The product for this algebra is just \otimes . The symmetric algebra $\bigvee V$ on V is the quotient of T(V) by the two-sided ideal generated by all differences $x \otimes y - y \otimes x$.

Thus, $\bigvee V$ is the space of tensors $v_1 \otimes v_2 \otimes \cdots \otimes v_k$ where we are allowed to commute the tensor factors.

If V is a finite dimensional complex vector space then $\bigvee V \cong \mathbb{C}[x_1, x_2, \ldots, x_n]$ for $n = \dim V$.

If G_1 is a group acting on V and G_2 is a group acting on W, then $G_1 \times G_2$ acts on $V \otimes W$ and therefore on the symmetric algebra $\bigvee (V \otimes W)$. **Lemma 2.3.** There is a decomposition of graded $\operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(n, \mathbb{C})$ -representations

$$\bigvee \left(\mathbb{C}^n \otimes \mathbb{C}^n \right) \cong \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$$

where λ runs through all partitions of with at most *n* nonzero parts.

The grading on the right is such that elements of $\pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$ are homogeneous of degree $|\lambda|$.

Proof sketch. Let $G = GL(n, \mathbb{C})$.

Instead of the given action, consider the action on the dual space $\operatorname{Mat}_{n\times n}(\mathbb{C})^*$ by

$$(g_1, g_2)f := \left(X \mapsto f(g_2^T X g_1)\right) \quad \text{for } g_1, g_2 \in G \text{ and } f \in \operatorname{Mat}_{n \times n}(\mathbb{C})^*.$$
(*)

This action is equivalent to the action on $\mathbb{C}^n \otimes \mathbb{C}^n$ and the symmetric algebra over $\operatorname{Mat}_{n \times n}(\mathbb{C})^*$ is the same as the affine algebra $\mathcal{O}(\operatorname{Mat}_{n \times n}(\mathbb{C}))$, which is the polynomial ring generated by the coordinate functions g_{ij} for a matrix $g = (g_{ij})$.

To understand this ring, we first discuss the decomposition of the affine algebra $\mathcal{O}(\mathrm{GL}(n,\mathbb{C})) = \mathbb{C}[g_{ij}, \det^{-1}].$

We have two slightly different actions of $G \times G$ on this algebra.

For the action $(g_1, g_2)f : X \mapsto f(g_2^{-1}Xg_1)$, we have $\mathcal{O}(\mathrm{GL}(n, \mathbb{C})) = \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \hat{\pi}_{\lambda}^{\mathrm{GL}(n)}$.

For the action (*), Lemma 2.2 implies that we instead have $\mathcal{O}(\mathrm{GL}(n,\mathbb{C})) = \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$.

In both decompositions, the direct sums are over all dominant weights $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n) \in \mathbb{Z}^n$, which are only partitions if $\lambda_n > 0$.

We are interested in the decomposition of the affine algebra $\operatorname{Mat}_{n \times n}(\mathbb{C})$. Since $G = \operatorname{GL}(n, \mathbb{C})$ is an open subvariety of $\operatorname{Mat}_{n \times n}(\mathbb{C})$ (namely, the subset where the determinant is nonzero), the restriction map $\bigvee \operatorname{Mat}_{n \times n}(\mathbb{C}) \to \mathcal{O}(\operatorname{GL}(n, \mathbb{C}))$ is injective. The representations π_{λ} that extend to regular functions on $\operatorname{Mat}_{n \times n}(\mathbb{C})$ are precisely those that do not involve inverse powers of the determinant, namely, those that are indexed by dominant weights λ that are partitions. This implies the lemma. \Box

The theorem implies a related identity for symmetric functions:

Theorem 2.4 (Cauchy identity). Suppose $\mathbf{x} = (x_1, x_2, ...)$ and $\mathbf{y} = (y_1, y_2, ...)$ are sequences of commuting indeterminates that commute with each other and with the indeterminate t. Then

$$\prod_{i,j\geq 1} (1-x_i y_j t)^{-1} = \sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) t^{|\lambda|}$$

where λ runs through all partitions. Here, the factors on the left are interpreted as rational power series

$$(1 - x_i y_j t)^{-1} = 1 + x_i y_j t + (x_i y_j)^2 t^2 + (x_i y_j)^3 t^3 + \dots$$

Proof. Suppose $g_1 \in \operatorname{GL}(n, \mathbb{C})$ has distinct eigenvalues x_1, x_2, \ldots, x_n and $g_2 \in \operatorname{GL}(n, \mathbb{C})$ has distinct eigenvalues y_1, y_2, \ldots, y_n , then the trace of the action of (g_1, g_2) on $V = \mathbb{C}^n \otimes \mathbb{C}^n$ is the sum $\sum_{i=1}^n \sum_{j=1}^n x_i y_j$ which is the coefficient of t in $\prod_{i=1}^n \prod_{j=1}^n (1 - \lambda_i y_j t)^{-1}$.

Similarly, the trace of the action of (g_1, g_2) the subspace of homogeneous elements of $\bigvee V$ of degree k is the coefficient of t^k in $\prod_{i=1}^n \prod_{j=1}^n (1 - x_i y_j t)^{-1}$. It follows that $\prod_{i=1}^n \prod_{j=1}^n (1 - x_i y_j t)^{-1}$ is the value of graded character of the $G_1 \times G_2$ -representation on $\bigvee V$ evaluated at (g_1, g_2) .

On other hand, the Weyl character formula tells us that that graded character of $\bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$ evaluated at (g_1, g_2) is $\sum_{\lambda} s_{\lambda}(x_1, x_2, \dots, x_n) s_{\lambda}(y_1, y_2, \dots, y_n) t^{|\lambda|}$. Since this is the same as the graded character of $\bigvee V$ by the theorem, we get a finite version of the Cauchy identity, in terms of Schur polynomials rather than Schur functions. Letting $n \to \infty$ transforms this to the result.

Theorem 2.5 (Cauchy correspondence). Let $G_1 = \operatorname{GL}(n, \mathbb{C})$ and $G_2 = \operatorname{GL}(m, \mathbb{C})$ where m, n > 0. There is a decomposition of graded $G_1 \times G_2$ -representations

$$\bigvee \left(\mathbb{C}^n \otimes \mathbb{C}^m\right) \cong \bigoplus_{\lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(m)}$$

where λ runs through all partitions of with at most min $\{m, n\}$ nonzero parts.

The grading on the right is such that elements of $\pi_{\lambda}^{\operatorname{GL}(n)} \otimes \pi_{\lambda}^{\operatorname{GL}(m)}$ are homogeneous of degree $|\lambda|$.

Proof. It is enough to check that the graded characters of both sides coincide. This follows by setting the variables $x_{n+1} = x_{n+2} = \cdots = 0$ and $y_{m+1} = y_{m+2} = \cdots = 0$ in the Cauchy identity.

The representation $\Omega = \bigvee (\mathbb{C}^n \otimes \mathbb{C}^m)$ gives us a *correspondence*

$$\pi^{\operatorname{GL}(n)}_{\lambda} \xleftarrow{\Omega}{\longrightarrow} \pi^{\operatorname{GL}(m)}_{\lambda}$$

in the sense of Lecture 12. This is called $\operatorname{GL}(n) \times \operatorname{GL}(m)$ -duality or the Cauchy correspondence. We also have a see-saw

$$\begin{array}{c} \operatorname{GL}(n,\mathbb{C})\times\operatorname{GL}(n,\mathbb{C}) & \qquad \operatorname{GL}(r+s,\mathbb{C}) \\ \uparrow & \qquad \uparrow \\ \operatorname{GL}(n,\mathbb{C}) & \qquad \operatorname{GL}(r,\mathbb{C})\times\operatorname{GL}(s,\mathbb{C}) \end{array}$$

Here, $\operatorname{GL}(n,\mathbb{C})$ is viewed as the subgroup $\{(g,g): g \in \operatorname{GL}(n,\mathbb{C})\} \subset \operatorname{GL}(n,\mathbb{C}) \times \operatorname{GL}(n,\mathbb{C}).$

Likewise, $\operatorname{GL}(r, \mathbb{C}) \times \operatorname{GL}(s, \mathbb{C})$ is viewed as the subgroup of relevant block diagonal matrices

$$\left[\begin{array}{cc}g&0\\0&h\end{array}\right]\in\mathrm{GL}(r+s,\mathbb{C}).$$

One diagonal line in this see-saw is the Cauchy correspondence for $GL(n, \mathbb{C}) \times GL(r+1, \mathbb{C})$. The other consists of the Cauchy correspondences for $GL(n, \mathbb{C}) \times GL(r, \mathbb{C})$ and $GL(n, \mathbb{C}) \times GL(s, \mathbb{C})$ tensored together.

Corollary 2.6. Let λ , μ , and ν be partitions with $|\lambda| = |\mu| + |\nu|$.

Assume $n \ge |\lambda|, r \ge |\mu|$, and $s \ge |\nu|$.

Then the multiplicity of $\pi_{\lambda}^{\mathrm{GL}(n)}$ in $\pi_{\mu}^{\mathrm{GL}(n)} \times \pi_{\nu}^{\mathrm{GL}(n)}$ is the same as the multiplicity of $\pi_{\mu}^{\mathrm{GL}(r)} \otimes \pi_{\nu}^{\mathrm{GL}(s)}$ in the restriction of $\pi_{\lambda}^{\mathrm{GL}(r+s)}$ to $\mathrm{GL}(r,\mathbb{C}) \times \mathrm{GL}(s,\mathbb{C})$.

Both numbers are equal to the Littlewood-Richardson coefficient $c_{\mu\nu}^{\lambda}$.

Proof. This follows by the general properties of see-saws from Lecture 12 applied to our specific case. \Box

The last result in Lecture 13 (see the end of today's Section 1) is a crystal analogue of this corollary.

3 Crystals for Stanley symmetric functions

In the second half of today's lecture we give a brief survey of Chapter 10 of Bump and Schilling's book. We construct S_k as the group of bijections $[k] \to [k] := \{1, 2, ..., k\}$.

Let $s_i = (i, i+1) \in S_k$. A reduced word for a permutation $w \in S_k$ is a word $i_1 i_2 \cdots i_l$ of shortest possible length such that $w = s_{i_1} s_{i_2} \cdots s_{i_l}$. Let $\mathcal{R}(w)$ be the set of reduced words for $w \in S_k$. The *length* of w is the length $\ell(w)$ of any its reduced words.

This is also equal to the number of pairs $(i, j) \in [k] \times [k]$ with i < j and w(i) > w(j).

We often write the word $w(1)w(2)\cdots w(k)$ to represent $w \in S_k$.

For example, $\ell(321) = 3$ and $\mathcal{R}(321) = \{121, 212\}$ since 321 = (1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3).

Consider the equivalence relative on words that is the transitive closure of the symmetric relation with

 $\cdots ab \cdots \sim \cdots ba \cdots$ and $\cdots a(a+1)a \cdots \sim \cdots (a+1)a(a+1) \cdots$

for all integers a, b with |a - b| > 1.

The corresponding symbols "..." here must mask identical subwords on either side of each relation.

Theorem 3.1 (Matsumoto's theorem). Each set of reduced words $\mathcal{R}(w)$ for $w \in S_k$ is then a single equivalence class under the relation \sim . Moreover, a word is a reduced word for some permutation if and only if its \sim equivalence class contains no elements with equal adjacent letters.

This statement can be generalized to arbitrary Coxeter groups.

The permutation $w_0 = k \cdots 321$ is the unique element of maximal length in S_k . It has $\ell(w_0) = \binom{k}{2}$. For k = 2 we have $|\mathcal{R}(w_0)| = 1$, which is the number of standard tableaux of shape

$$\lambda = (1) = \square$$

For k = 3 we have $|\mathcal{R}(w_0)| = 2$, which is the number of standard tableaux of shape

$$\lambda = (2,1) =$$

For k = 4 we have $|\mathcal{R}(w_0)| = 16$, which is the number of standard tableaux of shape

$$\lambda = (3, 2, 1) =$$

We will see shortly that this pattern continues.

When k = 5 we have $|\mathcal{R}(w_0)| = 768$ and when k = 6 we have $|\mathcal{R}(w_0)| = 292864$.

We introduce another variant of the RSK correspondence, called the *Edelman-Greene correspondence*.

Suppose T is a tableau and a is an integer.

Form a tableau $T \xleftarrow{\mathsf{EG}} a$ as follows (this almost the same as the definition of $T \xleftarrow{\mathsf{RSK}} a$):

- At each stage a number x is inserted into a row, starting with a into the first row of T.
- If x is greater than all entries in the row then it is added to the end.
- If the row already contains x, then the row is unchanged and x + 1 is inserted into the next row.
- Otherwise, let y be the first entry with x < y; then replace y by x and insert y into the next row.

For example, we have
$$\boxed{1 \ 2} \xleftarrow{\mathsf{EG}} 1 = \boxed{\begin{array}{c}1 \ 2\\2\end{array}} \text{ and } \boxed{\begin{array}{c}1 \ 2\\3 \ 4\end{array}} \xleftarrow{\mathsf{EG}} 1 = \boxed{\begin{array}{c}1 \ 2\\2 \ 4\end{array}}$$

Given a reduced word $i_1 i_2 \cdots i_l \in \mathcal{R}(w)$ for a permutation $w \in S_k$, define

$$P_{\mathsf{EG}}(i_1i_2\cdots i_l) = \emptyset \xleftarrow{\mathsf{EG}} i_1 \xleftarrow{\mathsf{EG}} i_2 \xleftarrow{\mathsf{EG}} \cdots \xleftarrow{\mathsf{EG}} i_l.$$

Define $Q_{\mathsf{EG}}(i_1i_2\cdots i_l)$ to be the standard tableau with the same shape as $P_{\mathsf{EG}}(i_1i_2\cdots i_l)$ that contains j in the box added by the insertion of the letter i_j .

The map $a \mapsto (P_{\mathsf{EG}}(a), Q_{\mathsf{EG}}(a))$ for $a \in \mathcal{R}(w)$ is called the *Edelman-Greene correspondence*.

Example 3.2. The word 34121 is a reduced word for the permutation $w = 42153 \in S_5$. We have

$$\boxed{3} \rightsquigarrow \boxed{3} \boxed{4} \rightsquigarrow \boxed{1} \boxed{4} \implies \boxed{1} \boxed{2} \boxed{3} \boxed{4} \implies \boxed{1} \boxed{2} \boxed{2} \boxed{4} = P_{\mathsf{EG}}(34121) \text{ and } Q_{\mathsf{EG}}(34121) = \boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5}$$

We also have $34212 \in \mathcal{R}(w)$ and

$$\boxed{3} \rightarrow \boxed{3} 4 \rightarrow \boxed{\frac{2}{3}} 4 \rightarrow \boxed{\frac{1}{2}} 4 \rightarrow \boxed{\frac{1}{2}} 4 = P_{\mathsf{EG}}(34212) \text{ and } Q_{\mathsf{EG}}(34121) = \boxed{\frac{1}{2}} \frac{2}{3} \frac{5}{5}.$$

A tableau is *increasing* if its rows and columns are strictly increasing.

Theorem 3.3. Fix a permutation $w \in S_k$. The map $a \mapsto (P_{\mathsf{EG}}(a), Q_{\mathsf{EG}}(a))$ is a bijection from words $a \in \mathcal{R}(w)$ to pairs of tableaux (P, Q) in which P is increasing with $\mathfrak{row}(P) \in \mathcal{R}(w)$ and Q is standard with the same shape as P.

Proof idea. Construct an inverse map, similar to what we did to invert RSK.

Corollary 3.4. The number of reduced words for $w_0 = k \cdots 321 \in S_k$ is the number of standard tableaux of shape $\lambda = (k - 1, \dots, 3, 2, 1)$.

Proof. Every reduced word for w_0 has length $\binom{k}{2}$ and involves only letters in $\{1, 2, \ldots, k-1\}$.

There is only one increasing tableau T with $\binom{k}{2}$ boxes that has all entries in $\{1, 2, \ldots, k-1\}$.

This tableau is 1 for
$$k = 2$$
, $\frac{1}{2}$ for $k = 3$, $\frac{1}{2}$ for $k = 4$, $\frac{1}{3}$ for $k = 4$, $\frac{1}{3}$ for $k = 5$ and so on.

The EG correspondence is therefore a bijection $\mathcal{R}(w_0) \xrightarrow{\sim} \{T\} \times \text{SYT}(\lambda)$ for $\lambda = (k - 1, \dots, 3, 2, 1)$. \Box

An *n*-fold increasing reduced factorization of $w \in S_k$ is a tuple (a^1, a^2, \ldots, a^n) where each a^i is a strictly increasing (possibly empty) word such that the concatenation $a^1 a^2 \cdots a^n \in \mathcal{R}(w)$.

Definition 3.5. Let $RF_n(w)$ denote the set of all *n*-fold increasing reduced factorizations of $w \in S_k$.

Given $a = (a^1, a^2, \ldots, a^n) \in \operatorname{RF}_n(w)$, define $P_{\mathsf{EG}}(a) = P_{\mathsf{EG}}(a^1 a^2 \cdots a^n)$ and let $Q_{\mathsf{EG}}(a)$ be the tableau with the same shape as $P_{\mathsf{EG}}(a)$ with the letter j in every box added by inserting letters in the factor a^j .

For example, if
$$a = (34, \emptyset, 2, \emptyset, \emptyset, 12) \in \operatorname{RF}_6(42153)$$
 then $Q_{\mathsf{EG}}(34212) = \begin{array}{c|c} 1 & 2 \\ \hline 3 & 5 \\ \hline 4 \end{array}$ so $Q_{\mathsf{EG}}(a) = \begin{array}{c|c} 1 & 1 \\ \hline 3 & 6 \\ \hline 6 \end{array}$

Theorem 3.6. Let $w \in S_k$ be a permutation. The map $a \mapsto (P_{\mathsf{EG}}(a), Q_{\mathsf{EG}}(a))$ is a bijection from increasing reduced factorizations $a \in \mathrm{RF}_n(w)$ to pairs of tableaux (P,Q) in which P is increasing with $\mathfrak{row}(P) \in \mathcal{R}(w)$ and Q is semistandard with the same shape as P and with entries in $\{1, 2, \ldots, n\}$.

Proof idea. The argument is similar to how we showed that the RSK correspondence for integer matrices is a bijection to pairs of semistandard tableaux. \Box

It follows that if $w \in S_k$ then the Edelman-Green correspondence is a bijection

$$\operatorname{RF}_{n}(w) \xrightarrow{\sim} \bigsqcup_{T \text{ of shape } \lambda} \{T\} \times \operatorname{SSYT}_{n}(\lambda) \tag{**}$$

for a finite set of increasing tableaux T.

We view each set $\{T\} \times SSYT_n(\lambda)$ as a GL(n) crystal isomorphic to $SSYT_n(\lambda)$.

We then give $RF_n(w)$ the GL(n) crystal structure that makes (**) into a crystal isomorphism. I.e.:

Theorem 3.7. Let $w \in S_k$. There is a unique GL(n) crystal structure on $RF_n(w)$ for the weight map

$$\mathbf{wt}(a^1, a^2, \dots, a^n) = (\ell(a^1), \ell(a^2), \dots, \ell(a^n))$$

such that for all $i \in [n-1]$ and $a = (a^1, a^2, \dots, a^n) \in \operatorname{RF}_n(w)$ we have

$$\begin{aligned} P_{\mathsf{EG}}(e_i(a)) &= P_{\mathsf{EG}}(a) \\ P_{\mathsf{EG}}(f_i(a)) &= P_{\mathsf{EG}}(a) \end{aligned} \quad \text{and} \quad \begin{aligned} Q_{\mathsf{EG}}(e_i(a)) &= e_i(Q_{\mathsf{EG}}(a)) \\ Q_{\mathsf{EG}}(f_i(a)) &= f_i(Q_{\mathsf{EG}}(a)). \end{aligned}$$

Moreover, this is a Stembridge crystal.

Like the $\operatorname{GL}(n) \times \operatorname{GL}(r)$ bicrystal on $\operatorname{Mat}_{r \times n}(\mathbb{N})$, one can describe the operators e_i and f_i for this crystal directly, in terms of a certain pairing on entries of adjacent factors a^i and a^{i+1} in an increasing reduced factorization a, without reference to the Edelman-Greene correspondence. This is explained in detail in Chapter 10 of Bump and Schilling's book but we will skip the details here.

Is there a natural bicrystal that extends the GL(n) crystal structure on $RF_n(w)$? This is an open question.

Definition 3.8. The Stanley symmetric polynomial of $w \in S_k$ is

$$F_w(x_1, x_2, \dots, x_n) = \sum_{(a^1, a^2, \dots, a^n) \in \mathrm{RF}_n(w)} x^{\mathbf{wt}(a^1, a^2, \dots, a^n)} \in \mathbb{Z}[x_1, x_2, \dots, x_n]$$

where $wt(a^1, a^2, ..., a^n) = (\ell(a^1), \ell(a^2), ..., \ell(a^n)) \in \mathbb{Z}^n$.

The Stanley symmetric function of $w \in S_k$ is $F_w = \lim_{n \to \infty} F_w(x_1, x_2, \dots, x_n)$.

Our formula is used as the definition of $F_{w^{-1}}$. Note that it is not obvious that F_w is symmetric.

Corollary 3.9. Both $F_w(x_1, x_2, ..., x_n)$ and F_w are Schur positive symmetric polynomials/functions, i.e., each is a nonnegative integer linear combination of functions $s_\lambda(x_1, x_2, ..., x_n)$ or s_λ , as appropriate.

Proof. It suffices to show that $F_w(x_1, x_2, \ldots, x_n)$ is a Schur positive symmetric polynomial.

This holds because $F_w(x_1, x_2, \ldots, x_n)$ is the character of the Stembridge crystal $RF_n(w)$.

Corollary 3.10. The longest permutation $w_0 = k \cdots 321 \in S_k$ has $F_{w_0} = s_{(k-1,\ldots,3,2,1)}$.

Proof. Let $\delta_k = (k - 1, \dots, 3, 2, 1)$. Our observations when computing $|\mathcal{R}(w_0)|$ show that $\operatorname{RF}_n(w_0) = \{T\} \times \operatorname{SSYT}_n(\delta_k) \cong \operatorname{SSYT}_n(\delta_k)$

as GL(n) crystals, so $F_{w_0}(x_1, x_2, \ldots, x_n) = s_{\delta_k}(x_1, x_2, \ldots, x_n)$ for all n.