
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 15

1 Review from last time

Cauchy identity. Suppose x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are sequences of commuting indeter-
minates that commute with each other and with another indeterminate t. Then∏

i,j≥1

(1− xiyjt)−1 =
∑

λ partition

sλ(x)sλ(y)t|λ|

Cauchy correspondence. Let m, n > 0 be positive integers.

There is a decomposition of graded GL(n,C)×GL(m,C)-representations∨
(Cn ⊗ Cm) ∼=

⊕
λ

π
GL(n)
λ ⊗ πGL(m)

λ

where λ runs through all partitions of with at most min{m,n} nonzero parts.

Reduced factorizations. A reduced word for w ∈ Sk is a word i1i2 · · · il of shortest possible length
such that w = si1si2 · · · sil where si = (i, i+ 1). Let R(w) be the set of such words. An n-fold increasing
reduced factorization of w ∈ Sk is a tuple (a1, a2, . . . , an) where each ai is a strictly increasing (possibly
empty) word such that the concatenation a1a2 · · · an ∈ R(w). Let RFn(w) denote the set of such tuples.

Edelman-Greene correspondence. We introduced another variant of the RSK correspondence, called
the Edelman-Greene correspondence. If w ∈ Sk then the Edelman-Green correspondence is a bijection

RFn(w)
∼−→

⊔
T of shape λ

{T} × SSYTn(λ) (*)

for a finite set of tableaux T with increasing rows and columns and with row(T ) a reduced word for w.

Stanley symmetric functions. We gave RFn(w) the GL(n) crystal structure that makes (*) into
a crystal isomorphism where {T} × SSYTn(λ) ∼= SSYTn(λ). We then defined the Stanley symmetric
polynomial of w ∈ Sk as Fw(x1, x2, . . . , xn) = ch(RFn(w)). This is Schur positive since RFn(w) is a
Stembridge GL(n) crystal. The Stanley symmetric function of w ∈ Sk is the symmetric power series

Fw = lim
n→∞

Fw(x1, x2, . . . , xn).

The permutation w0 = k · · · 321 ∈ Sk has Fw0
= sδ and |R(w0)| = |SYT(δ)| for δ = (k − 1, . . . , 3, 2, 1).

2 String patterns

This lecture corresponds to Chapter 11 in Bump and Schilling’s book.

Let (Φ,Λ) be a Cartan type with simple roots {αi : i ∈ I}. Write W for the Weyl group of Φ.

Recall that W = 〈si : i ∈ I〉 where si is the reflection through αi mapping x 7→ x− 〈x, α∨i 〉αi.

The group W is finite and it contains a unique longest element w0 mapping Φ+ → Φ−.

In type An−1 we have W = Sn and w0 = n · · · 321.

Let i = (i1, . . . , iN ) be a reduced word for w0. That is, a sequence of minimal length with w0 = si1 · · · siN .

Now suppose C is a seminormal crystal of Cartan type (Φ,Λ). Fix an element v ∈ C.

We define a sequence of integers aj = aj(v, i) ≥ 0 as follows.

• First let a1 = a1(v, i) be the maximal integer with ea1i1 (v) 6= 0. Note that a1 = εi1(v).
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• Then let a2 be the maximal integer with ea2i2 e
a1
i1

(v) 6= 0.

...

• Then let aN be the maximal integer with eaNiN · · · e
a2
i2
ea1i1 (v) 6= 0.

We call this the string pattern of v.

Some ad hoc terminology: i is a good word for C if eaNiN · · · e
a2
i2
ea1i1 (v) is always a highest weight element.

We will show eventually that if C is normal then any reduced word for w0 is a good word.

Our goal today is to prove this fact for GL(n) crystals.

The idea behind this construction is that the map v 7→ (a1, a2, . . . , aN ) gives us an embedding of C into
a polyhedral cone in NN . It will turn out that no matter which i is used, the set of lattice points in the
resulting polyhedral cone can be given the structure of a crystal.

The resulting infinite crystal (which does not depend on i) is one realization of the crystal B∞ for general
Cartan types. We briefly encountered B∞ for Cartan type GL(2) in Lecture 5. The string patterns also
indicate a way of embedding each finite normal crystal into B∞. This will be explored in Lecture 16.

Assume i is a good word for the normal GL(n) crystal of semistandard tableaux SSYTn(λ).

In this Cartan type, we know from last time that N =
(
n
2

)
.

Let stringi : SSYTn(λ)→ NN be the map

stringi(v) = (a1(v, i), a2(v, i), . . . , aN (v, i)) .

Observation 2.1. The map stringi is injective: we can recover v from stringi(v).

Proof. Let Tλ ∈ SSYTn(λ) be the unique highest weight element (the tableau with all entries i in row i).

If stringi(v) = (a1, a2, . . . , aN ) then Tλ = eaNiN · · · e
a2
i2
ea1i1 (v), so v = fa1i1 f

a2
i2
· · · faNiN (Tλ).

We think of the sequence of elements

v0 = v, v1 = ea1i1 (v), v2 = ea2i2 e
a1
i1

(v), . . . , vN = eaNiN · · · e
a2
i2
ea1i1 (v) = Tλ

as points on a path through the crystal, which we call the stations of v.

Example 2.2. Suppose n = 3 so that W = S3 and take i = (1, 2, 1).

For this word we write string patterns (a1, a2, a3) as upper triangular matrices

[
a2 a3

a1

]
.

Let λ = (4, 2, 0) and consider v =
1 2 2 3

3 3
.

Then e2
1(v) =

1 1 1 3

3 3
while e3

1(v) = 0 so a1(v, i) = 2.

We similarly compute that a2(v, i) = 3 as e3
2e

2
1(v) =

1 1 1 2

2 2
.

Then a3(v, i) = 1 since e1
1e

3
2e

2
1(v) =

1 1 1 1

2 2
= Tλ.
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Thus we have stringi(v) = (2, 3, 1) =

[
3 1

2

]
and the stations of v are

v0 =
1 2 2 3

3 3
; v1 =

1 1 1 3

3 3
; v2 =

1 1 1 2

2 2
; v3 =

1 1 1 1

2 2
.

Going from v0 to v1 replaces all 2’s in the first row by 1’s.

Going from v1 to v2 replaces all 3’s in the first two rows by 2’s.

Finally going from v2 to v3 replaces all 2’s in the first two rows by 1’s.

There is a particularly good choice of a good word for GL(n) crystals. Namely, let

Ω = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . . , n− 1, n− 2, . . . , 3, 2, 1).

This is formed by concatenating the decreasing sequences (i, i− 1, i− 2, . . . , 3, 2, 1) for i = 1, 2, . . . , n− 1.

Proposition 2.3. If i = (i1, i2, . . . , iN ) is a reduced word for w0 ∈ Sn then so is (n−i1, n−i2, . . . , n−iN ).

Proof. If si = (i, i+ 1) then w0siw
−1
0 = (w0(i), w0(i+ 1)) = (n+ 1− i, n− i) = sn−i.

Thus if w0 = si1 · · · siN then w0 = w0w0w
−1
0 = w0si1w

−1
0 · · ·w0siNw

−1
0 = sn−i1 · · · sn−iN .

Corollary 2.4. The word Ω is a reduced word for w0 ∈ Sn.

Proof. Recall from last time that there is a unique tableau with strictly increasing rows and columns

whose row reading word is a reduced word for w0 ∈ Sn. When n = 4 this tableau is T =

1 2 3

2 3

3

.

If (i1, i2, . . . , iN ) is the row reading word for this tableau then Ω = (n− i1, n− i2, . . . , n− iN ).

For example, when n = 4 we have row(T ) = 323123 and Ω = 121321.

Let λ be a partition with at most n nonzero parts.

As in our example, we write string patterns for i = Ω as upper triangular arrays

stringΩ(T ) =


. . .

...
a4 a5 a6

a2 a3

a1

 .
Fix T ∈ SSYTn(λ) and define aij for i ≥ j such that

stringΩ(T ) =


. . .

...
a31 a32 a33

a21 a22

a11

 .

Proposition 2.5. The following properties hold:

(i) The number aij is equal to the number of entries i+ 1 in the top i+ 1− j rows of T .

(ii) The word Ω is a good word for SSYTn(λ).
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Proof. Renumber the sequence of stations T1, T2, . . . TN as T11, T21, T22, T31,. . . as we did with the aij .

We will check the following description of Tij . First, T11 is obtained from T by replacing all the 2’s in
the first row by 1’s. Then T21 is obtained from T11 by replacing all 3’s in the first two rows of T11 by 2’s.
Then T22 is obtained by replacing all 2’s in the first row of T21 by 1’s.

The general pattern is that Tij is obtained from its predecessor by replacing all entries equal to i+ 2− j
in the first i+ 1− j rows by i+ 1− j.

We explain why this suffices to prove (i) and (ii).

According to our description, the number of replacements in going to Tij from the previous station is the
number of entries in that station equal to i+ 2− j. However, the locations of these entries were occupied
by i+ 1 in T . Thus this replacement changes aij entries, where aij is the number of entries equal to i+ 1
in T . This proves (i).

It is also clear that in the final tableau Tn−1,n−1, the entries in the ith row are all equal to i, so this
tableau is the unique highest weight element. This shows that Ω is a good word as claimed in (ii).

It remains to prove the proposed description of Tij . This is a somewhat technical, but straightforward
calculation using the signature rule for crystal operators on tableaux. The full details are in Bump and
Schilling’s book (see their Proposition 11.2) but we’ll skip them in this lecture.

Proposition 2.6. Let λ be a partition with at most 3 nonzero parts.

Then both reduced words (1, 2, 1) and (2, 1, 2) for w0 = 321 ∈ S3 are good words for SSYT3(λ).

Proof. The previous result shows that Ω = (1, 2, 1) is a good word. We use a symmetry argument to
deduce that the other word (2, 1, 2) is also good.

The A2 root system has an automorphism interchanging roots α1 = e1 − e2 and α2 = e2 − e3.

Let λ 7→ λ′ be the corresponding automorphism of the weight lattice.

If C is an A2 crystal then we may defined another crystal C′ with the same elements but with weight map
wt′(v) = wt(v)′ and with the indices of the crystal operators ei and fi interchanged.

This operation preserves the Stembridge axioms so the new crystal C′ is a Stembridge crystal if and only
if C is Stembridge. Assume this is the case. Then we know that (1, 2, 1) is a good word for C′, and this
implies that (2, 1, 2) is a good word for C.

Last time we saw Matsumoto’s theorem for Sn. We will need the following generalization.

Let W = 〈s1, s2, . . . , sn〉 be the Weyl group of Φ.

A reduced word for w ∈W is a minimal length sequence (i1, i2, . . . , il) with w = si1si2 · · · sil .

Define m(i, j) to be the order of the product sisj ∈W . For Weyl groups this is always finite.

The reduced word graph of w ∈W is a simple graph whose vertices are the reduced words for w. An edge
connects two reduced words in the graph when one word contains a consecutive subsequence (si, sj , si, . . . )
with m(i, j) terms and the other word is formed by changing this subsequence to (sj , si, sj , . . . ).

Theorem 2.7. The reduced word graph for w ∈W is always connected.

If Φ is simply-laced then m(i, j) = 2 when αi and αj are orthogonal and otherwise m(i, j) = 3 if i 6= j.
In this case we can transform one reduced word for w into any other by a sequence of moves that either
swap commuting indices (i, j) 7→ (j, i) or perform short braid relations (i, j, i) 7→ (j, i, j).
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Proposition 2.8. Suppose C is a Stembridge crystal for a simply-laced Cartan type. If C has a good
word, then every reduced word for the longest element w0 ∈W is also good.

Proof. By Matsumoto’s theorem, it is sufficient to show that if two words i and i′ are adjacent in the
reduced word graph for w0, and i is a good word, then i′ is also good. So we can assume that either

i = (i1, . . . , ir, i, j, i, ir+4, . . . , iN ) and i′ = (i1, . . . , ir, j, i, j, ir+4, . . . , iN )

when m(i, j) = 3 or

i = (i1, . . . , ir, i, j, ir+4, . . . , iN ) and i′ = (i1, . . . , ir, j, i, ir+4, . . . , iN )

when m(i, j) = 2. We will just give the argument for the first case since the second case is similar.

Let v ∈ C and write v0 = v, v1 = ea1i1 (v), v2 = ea2i2 e
a1
i1

(v), . . . , vN = eaNiN · · · e
a2
i2
ea1i1 (v) for the stations of v

with respect to i. Similarly let v = v′0, v′1, v′2, . . . , v′N be the stations of v with respect to i′.

Assume i is a good word. Then vN is a highest weight element.

Since the first r entries of i and i′ agree, we have v′r = vr It suffices to show that v′r+3 = vr+3.

For this, we branch the crystal to the Levi subsystem A2 be discarding all edges in the crystal graph
except those labeled by i or j. Let D be the connected component of the branched crystal containing vr.
This is a Stembridge crystal with some highest weight element u.

Our previous proposition shows that both (i, j, i) and (j, i, i) are good words for D. But this means that
vr+3 and v′r+3 must both be equal to u, so v′r+3 = vr+3 as needed.

Since i and i′ agree at all letters after r+ 3, we have v′N = vN which is a highest weight element. Using a
similar argument for the other case (but branching to A1 ×A1) we conclude that i′ is a good word.

Theorem 2.9. Let C be a connected normal GL(n) crystal. (Recall that C is necessarily isomorphic to
a twist of SSYTn(λ) for some λ.) Then every reduced word for w0 ∈ Sn is a good word for C.

Proof. This follows since Ω is a good word and the reduced word graph is connected.

3 Gelfand-Tsetlin patterns

Suppose λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) is a partition with at most n nonzero parts.

Assume µ = (µ1 ≥ µ2 ≥ . . . µn−1 ≥ 0) is a partition with at most n− 1 nonzero parts.

The partitions λ and µ interleave if λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn.

Theorem 3.1. Let λ be a partition with at most n nonzero parts.

Then SSYTn(λ) has a GL(n− 1) subcrystal isomorphic to SSYTn−1(µ) if and only if λ and µ interleave.

When this occurs, SSYTn(λ) contains a unique a GL(n− 1) subcrystal isomorphic to SSYTn−1(µ).

Proof. Assume T ∈ SSYTn(λ) is a highest weight element of the branched crystal. This occurs if and
only if ei(T ) = 0 for all 1 ≤ i ≤ n− 2. From the signature rule for the crystal operators, this means that
the first row of T can contain only 1’s and n’s; the second row can contain only 2’s and n’s, and so forth.

Thus, after eliminating all n’s from the tableau T , a tableau T ′ in the alphabet [n − 1] remains. If µ
is the shape of T ′, then the λ/µ must be a horizontal strip, i.e., a skew shape whose diagram never has
multiple boxes in the same column, since T cannot have two entries n in the same column. It is easy to
see that this is equivalent to assuming that λ and µ interleave.
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Since µ is also the GL(n− 1) weight of T , we see that the connected component of the branched crystal
containing T is isomorphic to SSYTn−1(µ). There is only one such component since it is clear that our
original GL(n− 1) highest weight tableau T is uniquely determined by µ and λ.

A Gelfand-Tsetlin pattern of size n is a triangular array

Γ =



λ11 λ12 λ13 · · · λ1n

λ21 λ22 · · · λ2,n−1

λ31 · · · λ3,n−2

. . . . .
.

λn1


such that each row is a partition and the rows interleave.

Let λ be a partition with at most n parts.

We describe a bijection between Gelfand-Tsetlin patterns Γ whose top row is the partition λ and the
crystal SSYTn(λ). Given T ∈ SSYTn(λ), we construct Γ as follows.

The first row of Γ is λ. Removing the boxes labeled n from T gives another tableau T ′ with entries in

[n− 1]. The shape of T ′ is the second row of Γ. Then removing the boxes labeled n− 1 from T ′ gives
another tableau T ′′ whose shape is the next row of Γ, and so forth.

For example, there are 8 semistandard tableau of shape λ = (2, 1, 0) with entries in {1, 2, 3}. The
corresponding Gelfand-Tsetlin patterns are

1 1

2
↔

 2 1 0
2 1

2

 1 2

2
↔

 2 1 0
2 1

1


1 1

3
↔

 2 1 0
2 0

2

 1 3

2
↔

 2 1 0
1 1

1


1 2

3
↔

 2 1 0
2 0

1

 1 3

3
↔

 2 1 0
1 0

1


2 2

3
↔

 2 1 0
2 0

0

 2 3

3
↔

 2 1 0
1 0

0

 .

In view of the theorem, we may interpret the rows of the Gelfand-Tsetlin pattern associated to T as
the height weights for the sequence of branched crystals under the branching from the GL(n) crystal
SSYTn(λ) to crystals for GL(n− 1), GL(n− 2), etc., that contain T .

The string pattern can also be read off from the Gelfand-Tsetlin pattern. We explain the n = 3 case.

Proposition 3.2. Let n = 3. If the Gelfand-Tsetlin pattern associated to T is λ1 λ2 λ3

a b
c


then the string pattern is

string(1,2,1)(T ) =

[
λ1 + λ2 − a− b λ1 − a

a− c

]
.
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