1 Last time: string patterns

Let (Φ, Λ) be a Cartan type with simple roots $\left\{\alpha_{i}: i \in I\right\}$. Write W for the Weyl group of Φ.
Let $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ be a reduced word for the longest element $w_{0} \in W$.
Given an element v in a seminormal crystal \mathcal{C} of Cartan type (Φ, Λ) :

- First let $a_{1}=a_{1}(v, \mathbf{i})$ be the maximal integer with $e_{i_{1}}^{a_{1}}(v) \neq 0$. Note that $a_{1}=\varepsilon_{i_{1}}(v)$.
- Then let a_{2} be the maximal integer with $e_{i_{2}}^{a_{2}} e_{i_{1}}^{a_{1}}(v) \neq 0$.
- Then let a_{N} be the maximal integer with $e_{i_{N}}^{a_{N}} \cdots e_{i_{2}}^{a_{2}} e_{i_{1}}^{a_{1}}(v) \neq 0$.

The sequence $\operatorname{string}_{\mathbf{i}}(v)=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ is the string pattern of v.
The reduced word \mathbf{i} is a good word for \mathcal{C} if $e_{i_{N}}^{a_{N}} \cdots e_{i_{2}}^{a_{2}} e_{i_{1}}^{a_{1}}(v)$ is always a highest weight element.
Our main result last time was the following theorem:
Theorem 1.1. If (Φ, Λ) is Cartan type $\mathrm{GL}(n)$ so that $W=S_{n}$, and the crystal \mathcal{C} is normal, then every reduced word for $w_{0}=n \cdots 321 \in S_{n}$ is a good word for \mathcal{C}.

2 Weyl group actions

Fix a normal crystal \mathcal{C} of Cartan type (Φ, Λ). Continue to assume Φ has simple roots $\left\{\alpha_{i}: i \in I\right\}$.
Our next step is to define an action of the Weyl group $W=\left\langle s_{i}: i \in I\right\rangle$ on \mathcal{C}.
Recall that there is an action of W on the weight lattice Λ satisfying $s_{i} x=x-\left\langle x, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$ for $i \in I$.
Back in Lecture 5 , we introduced maps $\sigma_{i}: \mathcal{C} \rightarrow \mathcal{C}$ for $i \in I$ by the formula

$$
\sigma_{i}(c)=\left\{\begin{array}{ll}
f_{i}^{k}(c) & \text { if } k \geq 0 \\
e_{i}^{-k}(c) & \text { if } k<0 .
\end{array} \quad \text { where } k=\left\langle\mathbf{w t}(c), \alpha_{i}^{\vee}\right\rangle .\right.
$$

We showed that σ_{i} reverses each i-root string in \mathcal{C} and that $\mathbf{w t}\left(\sigma_{i}(c)\right)=s_{i} \cdot \mathbf{w t}(c)$ for each $c \in \mathcal{C}$.
Our goal now is to show that the formula $s_{i}: c \mapsto \sigma_{i}(c)$ extends to a W-action on \mathcal{C}.
This action will automatically satisfy $\mathbf{w t}(w \cdot c)=w \cdot \mathbf{w t}(c)$ for all $w \in W$ and $c \in \mathcal{C}$.
The maps σ_{i} do not commute the crystal operators, so W won't act as crystal automorphisms, however.

The general form of Matsumuto's theorem says that W is generated by $S=\left\{s_{i}: i \in I\right\}$ subject to the relations $s^{2}=1$ and sts $\cdots=t s t \cdots$, both sides have $|s t|$ factors, for $s, t \in S$. We know already that each $\sigma_{i}^{2}=1$, so we just need to show that $\sigma_{i} \sigma_{j} \sigma_{i} \cdots=\sigma_{j} \sigma_{i} \sigma_{j} \cdots$ where both sides have $\left|s_{i} s_{j}\right|$ factors.
Since are working with two operators at a time, we may assume that (Φ, Λ) has rank two, i.e., type $A_{1} \times A_{1}, A_{2}, C_{2}$, or G_{2}. The $A_{1} \times A_{1}$ case is trivial and we will handle the C_{2} and G_{2} cases by using virtual crystals to leverage the simply-laced case. So the A_{2} case will form the major part of our argument.

Proposition 2.1. Let λ be a partition with at most three nonzero parts and suppose $T \in \operatorname{SSYT}_{3}(\lambda)$. If the string patterns $\operatorname{string}_{(1,2,1)}(T)=\left(a_{1}, a_{2}, a_{3}\right)$ and $\operatorname{string}_{(2,1,2)}(T)=\left(b_{1}, b_{2}, b_{3}\right)$ then

$$
\left(b_{1}, b_{2}, b_{3}\right)=\left(\max \left(a_{3}, a_{2}-a_{1}\right), a_{1}+a_{3}, \min \left(a_{2}-a_{3}, a_{1}\right)\right)
$$

Proof. From last time, we know that a_{1} is the number of 2 's in the first row of T, a_{2} is the number of 3 's in the first two rows, and a_{3} is the number of 3 's in the first row.

Thus, if R_{1}, R_{2}, and R_{3} are the three rows of T (considered as words in $\mathbb{B}_{n}^{\otimes m}$), then

$$
a_{1}=\varepsilon_{1}\left(R_{1}\right), \quad a_{2}=\varepsilon_{2}\left(R_{1}\right)+\varepsilon_{2}\left(R_{2}\right), \quad \text { and } \quad a_{3}=\varepsilon_{2}\left(R_{1}\right)
$$

Write $U \in \operatorname{SSYT}_{3}(\lambda)$ for the unique highest weight element. Then $T=f_{1}^{a_{1}} f_{2}^{a_{2}} f_{1}^{a_{3}}(U)=f_{2}^{b_{1}} f_{1}^{b_{2}} f_{2}^{b_{3}}(U)$.
Therefore $\mathbf{w t}(T)=\lambda-\left(a_{1}+a_{3}\right)\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)-a_{2}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)=\lambda-\left(b_{1}+b_{3}\right)\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)-b_{2}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)$.
Comparing the last two expressions gives $b_{2}=a_{1}+a_{3}$ and $a_{2}=b_{1}+b_{3}$.
Since $b_{1}=\varepsilon_{2}(T)=\varepsilon_{2}\left(R_{2} \otimes R_{1}\right)=\max \left(\varepsilon_{2}\left(R_{1}\right), \varepsilon_{2}\left(R_{1}\right)+\varepsilon_{2}\left(R_{2}\right)-\varphi_{2}\left(R_{1}\right)\right)$ and $\varphi_{2}\left(R_{1}\right)=\varepsilon_{1}\left(R_{1}\right)=a_{1}$, we have $b_{1}=\max \left(a_{3}, a_{2}-a_{1}\right)$. Finally, $b_{3}=a_{2}-b_{1}=a_{2}-\min \left(a_{3}, a_{2}-a_{1}\right)=\max \left(a_{2}-a_{3}, a_{1}\right)$.

For $N \in \mathbb{Z}$, define maps $\Sigma_{N}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ and $\theta: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ by

$$
\Sigma_{N}(a, b, c)=(N-a+b-2 c, b, c) \quad \text { and } \quad \theta(a, b, c)=(\max (c, b-a), a+c, \min (b-c, a))
$$

so that in the previous proposition we have $\left(b_{1}, b_{2}, b_{3}\right)=\theta\left(a_{1}, a_{2}, a_{3}\right)$.

Proposition 2.2. The composition $\theta \circ \Sigma_{M} \circ \theta \circ \Sigma_{N}$ has order 3 for all $M, N \in \mathbb{Z}$.
Proof. One can check that $\Sigma_{M}^{2}=\Sigma_{N}^{2}=\theta^{2}=1$, so we just need to show that $\Sigma_{M} \circ \theta \circ \Sigma_{N} \circ \theta \circ \Sigma_{M} \circ \theta=$ $\theta \circ \Sigma_{N} \circ \theta \circ \Sigma_{M} \circ \theta \circ \Sigma_{N}$. This is a straightforward exercise in algebra.

We may now prove that the i-string reversing maps σ_{i} satisfy the nontrivial type A_{2} braid relation.
Proposition 2.3. Let λ be a partition with at most three nonzero parts and suppose $T \in \operatorname{SSYT}_{3}(\lambda)$.
Then $\sigma_{1} \sigma_{2} \sigma_{1}(T)=\sigma_{2} \sigma_{1} \sigma_{2}(T)$.
Proof. Let $N=\lambda_{1}-\lambda_{2}$ and $M=\lambda_{2}-\lambda_{3}$. Write $\operatorname{string}(T)$ in place of $\operatorname{string}_{(1,2,1)}(T)$.
The idea is to show that string $\left(\sigma_{1}(T)\right)=\Sigma_{N}(\operatorname{string}(T))$ and $\operatorname{string}\left(\sigma_{2}(T)\right)=\left(\theta \circ \Sigma_{M} \circ \theta\right)(\operatorname{string}(T))$.
If this holds then string $\circ\left(\sigma_{1} \sigma_{2}\right)^{3}=\left(\theta \circ \Sigma_{M} \circ \theta \circ \Sigma_{N}\right)^{3} \circ$ string $=$ string, which implies that $\left(\sigma_{1} \sigma_{2}\right)^{3}=1$ since the map string : $\operatorname{SSYT}_{3}(\lambda) \rightarrow \mathbb{Z}^{3}$ is injective.
If string $(T)=(a, b, c)$ then we must have string $\left(\sigma_{1}(T)\right)=\left(a^{\prime}, b, c\right)$ since $\sigma_{1}(T)$ lies in the 1-root string through T. One can determine a^{\prime} from the identity $\mathbf{w t}\left(\sigma_{1}(T)\right)=s_{1}(\mathbf{w} \mathbf{t}(T))=\mathbf{w} \mathbf{t}(T)-\left\langle\mathbf{w} \mathbf{t}(T), \alpha_{1}^{\vee}\right\rangle \alpha_{1}$. There are some details to work out, but this leads to the formula string $\left(\sigma_{1}(T)\right)=\Sigma_{N}(\operatorname{string}(T))$.
One can show similarly that string ${ }_{(2,1,2)}\left(\sigma_{2}(T)\right)=\Sigma_{M}\left(\operatorname{string}_{(2,1,2)}(T)\right)$.
The second needed identity then follows by noting that $\operatorname{string}_{(1,2,1)}(T)=\theta \circ \operatorname{string}_{(2,1,2)}(T)$.
This lets us conclude that if \mathcal{C} is a normal GL(3) crystal then there is a unique action of S_{3} on \mathcal{C} with $s_{i} \cdot c=\sigma_{i}(c)$ for $i \in\{1,2\}$. We extend this to normal crystals of arbitrary Cartan types as follows.

Lemma 2.4.

(C2) Let $\widehat{s}_{i}=(i, i+1) \in S_{4}$ for $i \in\{1,2,3\}$. Then the elements

$$
s_{1}:=\widehat{s}_{1} \widehat{s}_{3} \quad s_{2}:=\widehat{s}_{2}
$$

satisfy the type C_{2} Coxeter relations $s_{i}^{2}=1$ and $s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1}$.
(G2) Let $\widehat{s}_{i}=(i, i+1) \in S_{5}$ for $i \in\{1,2,3,4\}$. Then the elements

$$
s_{1}:=\widehat{s}_{1} \widehat{s}_{3} \widehat{s}_{4} \quad s_{2}:=\widehat{s}_{2}
$$

satisfy the type G_{2} Coxeter relations $s_{i}^{2}=1$ and $s_{1} s_{2} s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1} s_{2} s_{1}$.
Proof. This is straightforward: just write down s_{1} and s_{2} in cycle notation to verify the relations.
Putting everything together:
Theorem 2.5. Let \mathcal{C} be a normal crystal for a Cartan type (Φ, Λ) with simple roots $\left\{\alpha_{i}: i \in I\right\}$ and Weyl group $W=\left\langle s_{i}: i \in I\right\rangle$. Then there exists a unique action of W on \mathcal{C} in which

$$
s_{i} \cdot c=\sigma_{i}(c) \quad \text { for each } i \in I \text { and } c \in \mathcal{C} .
$$

Proof. We just need to check that the σ_{i} operators satisfy the braid relations. We know that $\sigma_{i}^{2}=1$.
We may assume that (Φ, Λ) has type $A_{1} \times A_{1}, A_{2}, C_{2}$, or G_{2}.
In type $A_{1} \times A_{1}$ a normal crystal must be a disjoint union of rectangles so any two operators σ_{i} and σ_{j} commute as needed. In type A_{2} the needed relations hold by the previous proposition.

This lets us conclude that in any simply-laced type the σ_{i} operators satisfy the same braid relations as the simple generators $s_{i} \in W$.
Assume we are in type C_{2}. We may assume that \mathcal{C} is a virtual crystal for a type A_{3} crystal $\widehat{\mathcal{C}}$. Then $\widehat{\sigma}_{1} \widehat{\sigma}_{3}$ acts as σ_{1} on \mathcal{C} (since the roots α_{1} and α_{3} are orthogonal in the A_{3} root system) while $\widehat{\sigma}_{2}$ acts as σ_{2}. We need to check $\left(\left(\widehat{\sigma}_{1} \widehat{\sigma}_{3}\right) \widehat{\sigma}_{2}\right)^{4}=1$ but this holds since $\left(\left(\widehat{s}_{1} \widehat{s}_{3}\right) \widehat{s}_{2}\right)^{4}=1$ by the lemma.
The G_{2} case is similar. We may assume that \mathcal{C} is a virtual crystal for a type D_{4} crystal $\widehat{\mathcal{C}}$. Then $\widehat{\sigma}_{1} \widehat{\sigma}_{3} \widehat{\sigma}_{4}$ acts as σ_{1} on \mathcal{C} (since the roots α_{1}, α_{3}, and α_{4} are orthogonal in the D_{4} root system) while $\widehat{\sigma}_{2}$ acts as σ_{2}, and the braid relation we need to check holds by the lemma.

3 Motivation for \mathcal{B}_{∞}

For each Cartan type, there is a crystal \mathcal{B}_{∞}. The tensor products $\mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ are analogous to the Verma modules of the corresponding Lie group of Lie algebra. Verma modules are infinite-dimensional "universal" highest weight modules that can have finite-dimensional irreducible quotients. The crystal \mathcal{B}_{∞} is a similar "universal" object that is related to arbitrary normal crystals by crystal morphisms.

Here is a more thorough explanation of this analogy. Let G be a complex analytic Lie group with root system Φ and weight lattice Λ. Let \mathfrak{g} be the Lie algebra of G.

For a weight $\mu \in \Lambda$ let $P(\mu)$ be the number of ways to choose nonnegative integers $k_{\alpha} \in \mathbb{N}$ for $\alpha \in \Phi^{+}$ such that $\mu=\sum_{\alpha \in \Phi^{+}} k_{\alpha} \alpha$. The function $P: \Lambda \rightarrow \mathbb{N}$ is the Kostant partition function, and we have

$$
\sum_{\mu \in \Lambda} P(\mu) t^{-\mu}=\prod_{\alpha \in \Phi^{+}}\left(1-t^{-\alpha}\right)^{-1}
$$

Let $\mathfrak{b}=\mathfrak{t} \oplus \mathfrak{n}_{+}$be the Lie algebra of a Borel subgroup B, where \mathfrak{t} is the Lie algebra of a maximal torus $T \subset B$ and \mathfrak{n}_{+}is the Lie algebra of the unipotent radical N_{+}of B. If $G=\mathrm{GL}(n, \mathbb{C})$ then $\mathfrak{g}=\operatorname{Mat}_{n \times n}(\mathbb{C})$ and we can think of $\mathfrak{b}, \mathfrak{t}$, and \mathfrak{n}_{+}as the sets of upper triangular, diagonal, and strictly upper triangular matrices, respectively.

Identify Λ with the group of regular characters of T, so that by differentiating we can evaluate $\lambda \in \Lambda$ as a linear map $\mathfrak{t} \rightarrow \mathbb{C}$. Extend this linear map to a map $\mathfrak{b} \rightarrow \mathbb{C}$ that is zero on \mathfrak{n}_{+}and let \mathbb{C}_{λ} be a 1 -dimensional complex vector space on which \mathfrak{b} acts as λ. The Verma module of $\lambda \in \Lambda$ is then

$$
M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}
$$

Here $U(\mathfrak{g})$ denotes the universal enveloping algebra. The $U(\mathfrak{g})$-module $M(\lambda)$ has a quotient that is the irreducible representation of \mathfrak{g} with highest weight λ. One can show that the character of $M(\lambda)$ is

$$
\begin{equation*}
\sum_{\mu \in \Lambda} P(\mu) t^{\lambda-\mu}=t^{\lambda} \prod_{\alpha \in \Phi^{+}}\left(1-t^{-\alpha}\right)^{-1} \tag{*}
\end{equation*}
$$

The crystal \mathcal{B}_{∞} is a "crystal basis" for $M(0)$, and the tensor product $\mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ also has character (*).
Understanding \mathcal{B}_{∞} will help us to prove a refined Demazure character formula next week.

4 Elementary crystals

We will construct \mathcal{B}_{∞} as a subset of tensor products of certain elementary crystals \mathcal{B}_{i}.
Fix a Cartan type (Φ, Λ) with simple roots $\left\{\alpha_{i}: i \in I\right\}$. Then fix an index $i \in I$.
Define \mathcal{B}_{i} as a set to consist of the formal elements $u_{i}(n)$ for all $n \in \mathbb{Z}$.
The weight of each element is $\mathbf{w t}\left(u_{i}(n)\right)=n \alpha_{i}$ and the crystal graph is the infinite path

$$
\cdots \xrightarrow{i} u_{i}(2) \xrightarrow{i} u_{i}(1) \xrightarrow{i} u_{i}(0) \xrightarrow{i} u_{i}(-1) \xrightarrow{i} \cdots
$$

so $f_{i}\left(u_{i}(n)\right)=u_{i}(n-1)$ and e_{j} and f_{j} act as zero if $i \neq j$.
The crystal \mathcal{B}_{i} is not seminormal and its string lengths are

$$
\varphi_{j}\left(u_{i}(n)\right)=\left\{\begin{array}{ll}
n & \text { if } i=j \\
-\infty & \text { otherwise }
\end{array} \quad \text { and } \quad \varepsilon_{j}\left(u_{i}(n)\right)= \begin{cases}-n & \text { if } i=j \\
-\infty & \text { otherwise }\end{cases}\right.
$$

Recall that if $\lambda \in \Lambda$ then $\mathcal{T}_{\lambda}=\left\{t_{\lambda}\right\}$ is the 1-element crystal with $\mathbf{w t}\left(t_{\lambda}\right)=\lambda$.
All crystal operators act as zero on \mathcal{T}_{λ} and the string lengths only take value $-\infty$.
If λ is orthogonal to all simple roots that $\mathcal{T}_{\lambda} \otimes \mathcal{C} \cong \mathcal{C} \otimes \mathcal{T}_{\lambda} \cong(\mathcal{C}$ twisted by $\lambda)$.
Without this orthogonality condition, the crystals $\mathcal{T}_{\lambda} \otimes \mathcal{C}$ and $\mathcal{C} \otimes \mathcal{T}_{\lambda}$ may not be isomorphic.
This is easy to forget since the maps $x \mapsto t_{\lambda} \otimes x$ and $x \mapsto x \otimes t_{\lambda}$ are bijections $\mathcal{C} \rightarrow \mathcal{T}_{\lambda} \otimes \mathcal{C}$ and $\mathcal{C} \rightarrow \mathcal{C} \otimes \mathcal{T}_{\lambda}$ that both shift weights by λ and commute with the relevant crystal operators.
However, the formulas for the string lengths of the tensor products are different: we have

$$
\left\{\begin{array} { l }
{ \varphi _ { j } (t _ { \lambda } \otimes x) = \varphi _ { j } (x) + \langle \lambda , \alpha _ { j } ^ { \vee } \rangle } \\
{ \varepsilon _ { j } (t _ { \lambda } \otimes x) = \varepsilon _ { j } (x) }
\end{array} \quad \text { compared to } \quad \left\{\begin{array}{l}
\varphi_{j}\left(x \otimes t_{\lambda}\right)=\varphi_{j}(x) \\
\varepsilon_{j}\left(x \otimes t_{\lambda}\right)=\varepsilon_{j}(x)-\left\langle\lambda, \alpha_{j}^{\vee}\right\rangle
\end{array}\right.\right.
$$

One always has $\mathcal{T}_{\lambda} \otimes \mathcal{T}_{\mu} \cong \mathcal{T}_{\lambda+\mu}$.
The different ways of tensoring the elementary crystal \mathcal{B}_{i} with \mathcal{T}_{λ} have the following relationship:
Proposition 4.1. If $\lambda \in \Lambda$ then $\mathcal{T}_{\lambda} \otimes \mathcal{B}_{i} \cong \mathcal{B}_{i} \otimes \mathcal{T}_{s_{i} \lambda}$ where s_{i} denotes the usual generator of W.
Proof. The desired isomorphism is $t_{\lambda} \otimes u_{i}(n) \mapsto u_{i}\left(n+\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle\right) \otimes t_{s_{i} \lambda}$.

Proposition 4.2. It holds that $\mathcal{B}_{i} \otimes \mathcal{B}_{i} \cong \bigoplus_{k \in \mathbb{Z}} \mathcal{B}_{i} \otimes \mathcal{T}_{k \alpha_{i}} \cong \bigoplus_{k \in \mathbb{Z}} \mathcal{T}_{k \alpha_{i}} \otimes \mathcal{B}_{i}$.
Proof. The second two decompositions are isomorphic because $s_{i}\left(\alpha_{i}\right)=-\alpha_{i}$.
An isomorphism from $\mathcal{B}_{i} \otimes \mathcal{B}_{i}$ to the second direct sum is given by

$$
u_{i}(-n) \otimes u_{i}(-m) \mapsto t_{-(n+m-k) \alpha_{i}} \otimes u_{i}(-k)
$$

where $k=\max (n+2 m, m)$.

5 Constructing \mathcal{B}_{∞} for simply-laced types

Complete proofs of the results in this section can be found in $\S 12.2$ of Bump and Schilling's book.
We'll skip some of the more technical details in this lecture.
Again write $\theta: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ for the self-inverse bijection $\theta(a, b, c)=(\max (c, b-a), a+c, \min (b-c, a))$.
Proposition 5.1. Fix indices $i, j \in I$ and suppose α_{i} and α_{j} are simple roots.
(i) If α_{i} and α_{j} are orthogonal then the map $x \otimes y \mapsto y \otimes x$ is a crystal isomorphism $\mathcal{B}_{i} \otimes \mathcal{B}_{j} \xrightarrow{\sim} \mathcal{B}_{j} \otimes \mathcal{B}_{i}$. Moreover, in this case the crystal operators $e_{i}, e_{j}, f_{i}, f_{j}$ do not take the value 0 on $\mathcal{B}_{i} \otimes \mathcal{B}_{j}$.
(ii) If $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=-1$ then the map

$$
\Theta\left(u_{i}(-a) \otimes u_{j}(-b) \otimes u_{i}(-c)\right)=u_{j}\left(-a^{\prime}\right) \otimes u_{i}\left(-b^{\prime}\right) \otimes u_{j}\left(-c^{\prime}\right) \quad \text { where }\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\theta(a, b, c)
$$

is a crystal isomorphism $\mathcal{B}_{i} \otimes \mathcal{B}_{j} \otimes \mathcal{B}_{i} \xrightarrow{\sim} \mathcal{B}_{j} \otimes \mathcal{B}_{i} \otimes \mathcal{B}_{j}$.
Proof sketch. Part (i) is an easier version of (ii). The map Θ is certainly a bijection and it's easy to check that it is weight preserving. Comparing the general formulas for tensor products with the fairly simple operators for elementary crystals, one checks that Θ preserves the string lengths and commutes with all crystal operators.

We now specialize to Cartan type A_{2}, so our index set for the simple roots is $I=\{1,2\}$.
Let $C=\left\{(a, b, c) \in \mathbb{Z}^{3}: a \geq 0\right.$ and $\left.b \geq c \geq 0\right\}$. If $(a, b, c) \in C$ then $\theta(a, b, c) \in C$.
Given $a, b, c \in \mathbb{Z}$ define $u(a, b, c)=u_{1}(-a) \otimes u_{2}(-b) \otimes u_{1}(-c) \in \mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{B}_{1}$.
Now let $\mathfrak{C}=\{u(a, b, c):(a, b, c) \in C\}$.
Proposition 5.2. For Cartan type A_{2}, if $v \in \mathfrak{C}$ then $f_{i}(v) \in \mathfrak{C}$ and $\varepsilon_{i}(v) \geq 0$ for all $i \in I$, while $e_{i}(v) \in \mathfrak{C}$ if and only if $\varepsilon_{i}(v)>0$.

Proof. Let $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\theta(a, b, c)$. Then $\varepsilon_{1}(u(a, b, c))=\max (c, a-b+2 c)=b^{\prime}-c^{\prime}$ and $\varepsilon_{2}(u(a, b, c))=b-c$. Both values are nonnegative if $(a, b, c) \in C=\theta(C)$, so $\varepsilon_{i}(v) \geq 0$ for all $v \in \mathfrak{C}$.
For the remaining assertions, one checks that $e_{2}(u(a, b, c))=u(a, b-1, c)$ and $f_{2}(u(a, b, c))=u(a, b+1, c)$. This implies that $e_{2}(v) \in \mathfrak{C}$ if and only if $\varepsilon_{2}(v)>0$, and that $f_{2}(v) \in \mathfrak{C}$ for all $v \in \mathfrak{C}$.

We obtain similar statements for e_{1} and f_{1} by applying θ and using the previous proposition.
In Cartan type A_{2}, we define \mathcal{B}_{∞} to be the set $\mathfrak{C} \subset \mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{B}_{1}$ but with the e_{i} crystal operators redefined to have $e_{i}(v)=0$ if $\varepsilon_{i}(v)=0$. The crystal operators f_{i}, string lengths ε_{i} and φ_{i}, and weight map wt have the same formulas as for $\mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{B}_{1}$.
With the new definition of e_{i}, it now holds that $\varepsilon_{i}(v)=\max \left\{k \geq 0: e_{i}^{k}(x) \neq 0\right\}$.
Part of the crystal graph of \mathcal{B}_{∞} for Cartan type A_{2} is shown below:

We turn next to the construction of \mathcal{B}_{∞} for arbitrary simply-laced types.
From this point on we assume our Cartan type (Φ, Λ) is simply-laced, though not necessarily of type A.
Proposition 5.3. Let $w \in W$ be an element of the Weyl group. Suppose

$$
w=s_{i_{N}} \cdots s_{i_{2}} s_{i_{1}}=s_{j_{N}} \cdots s_{j_{2}} s_{j_{1}}
$$

are two reduced expressions. Then there is a crystal isomorphism

$$
\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}} \xrightarrow{\sim} \mathcal{B}_{j_{1}} \otimes \cdots \otimes \mathcal{B}_{j_{N}}
$$

mapping $u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}(0) \mapsto u_{j_{1}}(0) \otimes \cdots \otimes u_{j_{N}}(0)$.
Proof. By Matsumoto's theorem, the desired isomorphism is obtained by composing the isomorphisms in Proposition 5.1. padded appropriately with copies of the identity map on unaffected tensor factors.

A weak Stembridge crystal satisfies the Stembridge axioms but is not required to be seminormal.
Theorem 5.4. Let $w_{0} \in W$ be the longest element and suppose $w_{0}=s_{i_{N}} \cdots s_{i_{2}} s_{i_{1}}$ is a reduced expression. Then the tensor product $\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ is a weak Stembridge crystal.

Proof sketch. One must check the Stembridge axioms. The axioms corresponding to orthogonal simple roots are relatively straightforward. For the remaining axioms, a key step is to reduce to the A_{2} case by showing that each connected component of $\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ is isomorphic to $\mathcal{T}_{\lambda} \otimes \mathcal{B}_{i} \otimes \mathcal{B}_{j} \otimes \mathcal{B}_{i}$ for some λ where $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=-1$. Tensoring with \mathcal{T}_{λ} does not affect the Stembridge axioms so one is left to verify that $\mathcal{B}_{i} \otimes \mathcal{B}_{j} \otimes \mathcal{B}_{i}$ is a weak Stembridge crystal. This is a tractable calculation.

Fix a reduced expression $w_{0}=s_{i_{N}} \cdots s_{i_{2}} s_{i_{1}}$ for the longest element in W and define $\mathcal{A}:=\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$.
Write \prec for the partial order on \mathcal{A} that is the transitive closure of the relation with $x \prec e_{i}(x)$ whenever $x \in \mathcal{A}$ and $i \in I$ are such that $e_{i}(x) \neq 0$. Then let

$$
\mathfrak{C}:=\left\{x \in \mathcal{A}: x \preceq u_{\infty}\right\} \quad \text { where } u_{\infty}:=u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}(0) \in \mathcal{A} .
$$

The set \mathfrak{C} consists of the elements that we can reach by following directed paths starting at u_{∞} in the crystal graph for \mathcal{A}. This construction is independent of the choice of reduced expression; another choice of reduced expression leads to an isomorphic crystal $\mathcal{A}^{\prime} \cong \mathcal{A}$ and the isomorphism in Proposition 5.3 maps the analogous subset $\mathfrak{C}^{\prime} \subset \mathcal{A}^{\prime}$ to \mathfrak{C}.

Proposition 5.5. If $x \in \mathfrak{C}$ then $\varepsilon_{i}(x) \geq 0$ for all $i \in I$ and if $\varepsilon_{i}(x)>0$ then $e_{i}(x) \in \mathfrak{C}$.

Proof sketch. The proof is similar to the A_{2} case, though we must use the formula for the string lengths ε_{i} of N-fold tensor products, and sometimes appeal to the Stembridge axioms. If we fix $i \in I$, then we may choose the reduced word for w_{0} so that $i_{N}=i$. This simplifies the argument that $\varepsilon_{i}(x) \geq 0$.

Here, finally, is the definition of \mathcal{B}_{∞} for arbitrary simply-laced types: as a set, we have $\mathcal{B}_{\infty}=\mathfrak{C}$.
The crystal operators f_{i}, string lengths ε_{i} and φ_{i}, and weight map wt for \mathcal{B}_{∞} are inherited from \mathcal{A}.
The value of $e_{i}(x)$ is the same as for \mathcal{A} if $\varepsilon_{i}(x)>0$, but if $\varepsilon_{i}(x)=0$ then we set $e_{i}(x)=0$.
Theorem 5.6. For these operators, the set \mathcal{B}_{∞} is a weak Stembridge crystal that is upper seminormal in the sense that $\varepsilon_{i}(v)=\max \left\{k \geq 0: e_{i}^{k}(x) \neq 0\right\}$ for all $v \in \mathcal{B}_{\infty}$ and $i \in I$.

Proof sketch. The claim that \mathfrak{C} is upper seminormal is immediate from the previous proposition. We have already noted that the crystal \mathcal{A} is weakly Stembridge. This fact plus upper seminormality makes it easy to check that \mathfrak{C} is a crystal satisfying the Stembridge axioms.

A key property is that we can embed any weak Stembridge crystal in an appropriate twist of \mathcal{B}_{∞} :
Theorem 5.7. Let \mathcal{C} be a connected weak Stembridge crystal (of a simple-laced Cartan type) whose unique highest weight element u_{λ} has $\mathbf{w t}\left(u_{\lambda}\right)=\lambda$. Then there exists a unique injective crystal morphism $\psi: \mathcal{C} \rightarrow \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ with $\psi\left(u_{\lambda}\right)=t_{\lambda} \otimes u_{\infty}$.

Proof sketch. The argument is similar to how one shows that there exists an isomorphism between connected Stembridge crystals with the same highest weight.

The tensor product $\mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ remains a weak Stembridge crystal.
Let Ω be the set of all subsets S of \mathcal{C} such that $u_{\lambda} \in S$, if $x \in S$ and $e_{i}(x) \neq 0$ then $e_{i}(x) \in S$, and there exists a subset $S^{\prime} \subset \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ and a weight-preserving bijection $x \mapsto x^{\prime}$ from S to S^{\prime} mapping $u_{\lambda} \mapsto t_{\lambda} \otimes u_{\infty}$ such that if $x \in S$ then $e_{i}(x) \neq 0$ if and only if $e_{i}\left(x^{\prime}\right) \neq 0$ and $\left(e_{i}(x)\right)^{\prime}=e_{i}\left(x^{\prime}\right)$.

The set Ω is nonempty since $\left\{u_{\lambda}\right\} \in \Omega$. We choose $S \in \Omega$ to be maximal and argue by contradiction that $S=\mathcal{C}$. One derives a contradiction by assuming that S is proper and then showing that we can extend the map $x \mapsto x^{\prime}$ to a larger set $S \sqcup\{z\} \in \Omega$.

Corollary 5.8. Let $\lambda \in \Lambda^{+}$be any dominant weight and let \mathcal{B}_{λ} be a normal (i.e., Stembridge) crystal for a simply-laced Cartan type with unique highest weight λ. Then there exists a unique injective crystal morphism $\psi_{\lambda}: \mathcal{B}_{\lambda} \rightarrow \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$ that sends the unique highest weight element to $t_{\lambda} \otimes u_{\infty}$

Next time, well discuss \mathcal{B}_{∞} for non-simply-laced Cartan types and Demazure crystals.

