
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 16

1 Last time: string patterns

Let (Φ,Λ) be a Cartan type with simple roots {αi : i ∈ I}. Write W for the Weyl group of Φ.

Let i = (i1, . . . , iN ) be a reduced word for the longest element w0 ∈W .

Given an element v in a seminormal crystal C of Cartan type (Φ,Λ):

• First let a1 = a1(v, i) be the maximal integer with ea1i1 (v) 6= 0. Note that a1 = εi1(v).

• Then let a2 be the maximal integer with ea2i2 e
a1
i1

(v) 6= 0.

...

• Then let aN be the maximal integer with eaNiN · · · e
a2
i2
ea1i1 (v) 6= 0.

The sequence stringi(v) = (a1, a2, . . . , aN ) is the string pattern of v.

The reduced word i is a good word for C if eaNiN · · · e
a2
i2
ea1i1 (v) is always a highest weight element.

Our main result last time was the following theorem:

Theorem 1.1. If (Φ,Λ) is Cartan type GL(n) so that W = Sn, and the crystal C is normal, then every
reduced word for w0 = n · · · 321 ∈ Sn is a good word for C.

2 Weyl group actions

Fix a normal crystal C of Cartan type (Φ,Λ). Continue to assume Φ has simple roots {αi : i ∈ I}.

Our next step is to define an action of the Weyl group W = 〈si : i ∈ I〉 on C.

Recall that there is an action of W on the weight lattice Λ satisfying six = x− 〈x, α∨i 〉αi for i ∈ I.

Back in Lecture 5, we introduced maps σi : C → C for i ∈ I by the formula

σi(c) =

{
fki (c) if k ≥ 0

e−ki (c) if k < 0.
where k = 〈wt(c), α∨i 〉.

We showed that σi reverses each i-root string in C and that wt(σi(c)) = si ·wt(c) for each c ∈ C.

Our goal now is to show that the formula si : c 7→ σi(c) extends to a W -action on C.

This action will automatically satisfy wt(w · c) = w ·wt(c) for all w ∈W and c ∈ C.

The maps σi do not commute the crystal operators, so W won’t act as crystal automorphisms, however.

The general form of Matsumuto’s theorem says that W is generated by S = {si : i ∈ I} subject to the
relations s2 = 1 and sts · · · = tst · · · , both sides have |st| factors, for s, t ∈ S. We know already that each
σ2
i = 1, so we just need to show that σiσjσi · · · = σjσiσj · · · where both sides have |sisj | factors.

Since are working with two operators at a time, we may assume that (Φ,Λ) has rank two, i.e., type
A1 × A1, A2, C2, or G2. The A1 × A1 case is trivial and we will handle the C2 and G2 cases by using
virtual crystals to leverage the simply-laced case. So the A2 case will form the major part of our argument.

Proposition 2.1. Let λ be a partition with at most three nonzero parts and suppose T ∈ SSYT3(λ).

If the string patterns string(1,2,1)(T ) = (a1, a2, a3) and string(2,1,2)(T ) = (b1, b2, b3) then

(b1, b2, b3) = (max(a3, a2 − a1), a1 + a3,min(a2 − a3, a1)) .
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Proof. From last time, we know that a1 is the number of 2’s in the first row of T , a2 is the number of 3’s
in the first two rows, and a3 is the number of 3’s in the first row.

Thus, if R1, R2, and R3 are the three rows of T (considered as words in B⊗mn ), then

a1 = ε1(R1), a2 = ε2(R1) + ε2(R2), and a3 = ε2(R1).

Write U ∈ SSYT3(λ) for the unique highest weight element. Then T = fa11 fa22 fa31 (U) = f b12 f b21 f b32 (U).

Therefore wt(T ) = λ− (a1 + a3)(e1 − e2)− a2(e2 − e3) = λ− (b1 + b3)(e2 − e3)− b2(e1 − e2).

Comparing the last two expressions gives b2 = a1 + a3 and a2 = b1 + b3.

Since b1 = ε2(T ) = ε2(R2 ⊗ R1) = max (ε2(R1), ε2(R1) + ε2(R2)− ϕ2(R1)) and ϕ2(R1) = ε1(R1) = a1,
we have b1 = max(a3, a2 − a1). Finally, b3 = a2 − b1 = a2 −min(a3, a2 − a1) = max(a2 − a3, a1).

For N ∈ Z, define maps ΣN : Z3 → Z3 and θ : Z3 → Z3 by

ΣN (a, b, c) = (N − a+ b− 2c, b, c) and θ(a, b, c) = (max(c, b− a), a+ c,min(b− c, a))

so that in the previous proposition we have (b1, b2, b3) = θ(a1, a2, a3).

Proposition 2.2. The composition θ ◦ ΣM ◦ θ ◦ ΣN has order 3 for all M,N ∈ Z.

Proof. One can check that Σ2
M = Σ2

N = θ2 = 1, so we just need to show that ΣM ◦ θ ◦ΣN ◦ θ ◦ΣM ◦ θ =
θ ◦ ΣN ◦ θ ◦ ΣM ◦ θ ◦ ΣN . This is a straightforward exercise in algebra.

We may now prove that the i-string reversing maps σi satisfy the nontrivial type A2 braid relation.

Proposition 2.3. Let λ be a partition with at most three nonzero parts and suppose T ∈ SSYT3(λ).

Then σ1σ2σ1(T ) = σ2σ1σ2(T ).

Proof. Let N = λ1 − λ2 and M = λ2 − λ3. Write string(T ) in place of string(1,2,1)(T ).

The idea is to show that string(σ1(T )) = ΣN (string(T )) and string(σ2(T )) = (θ ◦ ΣM ◦ θ)(string(T )).

If this holds then string ◦ (σ1σ2)3 = (θ ◦ ΣM ◦ θ ◦ ΣN )3 ◦ string = string, which implies that (σ1σ2)3 = 1
since the map string : SSYT3(λ)→ Z3 is injective.

If string(T ) = (a, b, c) then we must have string(σ1(T )) = (a′, b, c) since σ1(T ) lies in the 1-root string
through T . One can determine a′ from the identity wt(σ1(T )) = s1(wt(T )) = wt(T ) − 〈wt(T ), α∨1 〉α1.
There are some details to work out, but this leads to the formula string(σ1(T )) = ΣN (string(T )).

One can show similarly that string(2,1,2)(σ2(T )) = ΣM (string(2,1,2)(T )).

The second needed identity then follows by noting that string(1,2,1)(T ) = θ ◦ string(2,1,2)(T ).

This lets us conclude that if C is a normal GL(3) crystal then there is a unique action of S3 on C with
si · c = σi(c) for i ∈ {1, 2}. We extend this to normal crystals of arbitrary Cartan types as follows.

Lemma 2.4.

(C2) Let ŝi = (i, i+ 1) ∈ S4 for i ∈ {1, 2, 3}. Then the elements

s1 := ŝ1ŝ3 s2 := ŝ2

satisfy the type C2 Coxeter relations s2
i = 1 and s1s2s1s2 = s2s1s2s1.
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(G2) Let ŝi = (i, i+ 1) ∈ S5 for i ∈ {1, 2, 3, 4}. Then the elements

s1 := ŝ1ŝ3ŝ4 s2 := ŝ2

satisfy the type G2 Coxeter relations s2
i = 1 and s1s2s1s2s1s2 = s2s1s2s1s2s1.

Proof. This is straightforward: just write down s1 and s2 in cycle notation to verify the relations.

Putting everything together:

Theorem 2.5. Let C be a normal crystal for a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I} and
Weyl group W = 〈si : i ∈ I〉. Then there exists a unique action of W on C in which

si · c = σi(c) for each i ∈ I and c ∈ C.

Proof. We just need to check that the σi operators satisfy the braid relations. We know that σ2
i = 1.

We may assume that (Φ,Λ) has type A1 ×A1, A2, C2, or G2.

In type A1 × A1 a normal crystal must be a disjoint union of rectangles so any two operators σi and σj
commute as needed. In type A2 the needed relations hold by the previous proposition.

This lets us conclude that in any simply-laced type the σi operators satisfy the same braid relations as
the simple generators si ∈W .

Assume we are in type C2. We may assume that C is a virtual crystal for a type A3 crystal Ĉ. Then σ̂1σ̂3

acts as σ1 on C (since the roots α1 and α3 are orthogonal in the A3 root system) while σ̂2 acts as σ2. We

need to check ((σ̂1σ̂3)σ̂2)
4

= 1 but this holds since ((ŝ1ŝ3)ŝ2)
4

= 1 by the lemma.

The G2 case is similar. We may assume that C is a virtual crystal for a type D4 crystal Ĉ. Then σ̂1σ̂3σ̂4

acts as σ1 on C (since the roots α1, α3, and α4 are orthogonal in the D4 root system) while σ̂2 acts as
σ2, and the braid relation we need to check holds by the lemma.

3 Motivation for B∞

For each Cartan type, there is a crystal B∞. The tensor products Tλ ⊗ B∞ are analogous to the Verma
modules of the corresponding Lie group of Lie algebra. Verma modules are infinite-dimensional “univer-
sal” highest weight modules that can have finite-dimensional irreducible quotients. The crystal B∞ is a
similar “universal” object that is related to arbitrary normal crystals by crystal morphisms.

Here is a more thorough explanation of this analogy. Let G be a complex analytic Lie group with root
system Φ and weight lattice Λ. Let g be the Lie algebra of G.

For a weight µ ∈ Λ let P (µ) be the number of ways to choose nonnegative integers kα ∈ N for α ∈ Φ+

such that µ =
∑
α∈Φ+ kαα. The function P : Λ→ N is the Kostant partition function, and we have∑

µ∈Λ

P (µ)t−µ =
∏
α∈Φ+

(1− t−α)−1.

Let b = t⊕ n+ be the Lie algebra of a Borel subgroup B, where t is the Lie algebra of a maximal torus
T ⊂ B and n+ is the Lie algebra of the unipotent radical N+ of B. If G = GL(n,C) then g = Matn×n(C)
and we can think of b, t, and n+ as the sets of upper triangular, diagonal, and strictly upper triangular
matrices, respectively.

Identify Λ with the group of regular characters of T , so that by differentiating we can evaluate λ ∈ Λ
as a linear map t → C. Extend this linear map to a map b → C that is zero on n+ and let Cλ be a
1-dimensional complex vector space on which b acts as λ. The Verma module of λ ∈ Λ is then

M(λ) = U(g)⊗U(b) Cλ.

3



MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 16

Here U(g) denotes the universal enveloping algebra. The U(g)-module M(λ) has a quotient that is the
irreducible representation of g with highest weight λ. One can show that the character of M(λ) is∑

µ∈Λ

P (µ)tλ−µ = tλ
∏
α∈Φ+

(1− t−α)−1. (*)

The crystal B∞ is a “crystal basis” for M(0), and the tensor product Tλ ⊗ B∞ also has character (*).

Understanding B∞ will help us to prove a refined Demazure character formula next week.

4 Elementary crystals

We will construct B∞ as a subset of tensor products of certain elementary crystals Bi.

Fix a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}. Then fix an index i ∈ I.

Define Bi as a set to consist of the formal elements ui(n) for all n ∈ Z.

The weight of each element is wt(ui(n)) = nαi and the crystal graph is the infinite path

· · · i−−→ ui(2)
i−−→ ui(1)

i−−→ ui(0)
i−−→ ui(−1)

i−−→ · · ·

so fi(ui(n)) = ui(n− 1) and ej and fj act as zero if i 6= j.

The crystal Bi is not seminormal and its string lengths are

ϕj (ui(n)) =

{
n if i = j

−∞ otherwise
and εj (ui(n)) =

{
−n if i = j

−∞ otherwise.

Recall that if λ ∈ Λ then Tλ = {tλ} is the 1-element crystal with wt(tλ) = λ.

All crystal operators act as zero on Tλ and the string lengths only take value −∞.

If λ is orthogonal to all simple roots that Tλ ⊗ C ∼= C ⊗ Tλ ∼= ( C twisted by λ ).

Without this orthogonality condition, the crystals Tλ ⊗ C and C ⊗ Tλ may not be isomorphic.

This is easy to forget since the maps x 7→ tλ⊗x and x 7→ x⊗ tλ are bijections C → Tλ⊗C and C → C⊗Tλ
that both shift weights by λ and commute with the relevant crystal operators.

However, the formulas for the string lengths of the tensor products are different: we have{
ϕj(tλ ⊗ x) = ϕj(x) + 〈λ, α∨j 〉
εj(tλ ⊗ x) = εj(x)

compared to

{
ϕj(x⊗ tλ) = ϕj(x)

εj(x⊗ tλ) = εj(x)− 〈λ, α∨j 〉.

One always has Tλ ⊗ Tµ ∼= Tλ+µ.

The different ways of tensoring the elementary crystal Bi with Tλ have the following relationship:

Proposition 4.1. If λ ∈ Λ then Tλ ⊗ Bi ∼= Bi ⊗ Tsiλ where si denotes the usual generator of W .

Proof. The desired isomorphism is tλ ⊗ ui(n) 7→ ui(n+ 〈λ, α∨i 〉)⊗ tsiλ.

Proposition 4.2. It holds that Bi ⊗ Bi ∼=
⊕

k∈Z Bi ⊗ Tkαi
∼=

⊕
k∈Z Tkαi ⊗ Bi.

Proof. The second two decompositions are isomorphic because si(αi) = −αi.

An isomorphism from Bi ⊗ Bi to the second direct sum is given by

ui(−n)⊗ ui(−m) 7→ t−(n+m−k)αi
⊗ ui(−k)

where k = max(n+ 2m,m).
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5 Constructing B∞ for simply-laced types

Complete proofs of the results in this section can be found in §12.2 of Bump and Schilling’s book.

We’ll skip some of the more technical details in this lecture.

Again write θ : Z3 → Z3 for the self-inverse bijection θ(a, b, c) = (max(c, b− a), a+ c,min(b− c, a)).

Proposition 5.1. Fix indices i, j ∈ I and suppose αi and αj are simple roots.

(i) If αi and αj are orthogonal then the map x⊗y 7→ y⊗x is a crystal isomorphism Bi⊗Bj
∼−→ Bj⊗Bi.

Moreover, in this case the crystal operators ei, ej , fi, fj do not take the value 0 on Bi ⊗ Bj .

(ii) If 〈αi, α∨j 〉 = −1 then the map

Θ(ui(−a)⊗ uj(−b)⊗ ui(−c)) = uj(−a′)⊗ ui(−b′)⊗ uj(−c′) where (a′, b′, c′) = θ(a, b, c)

is a crystal isomorphism Bi ⊗ Bj ⊗ Bi
∼−→ Bj ⊗ Bi ⊗ Bj .

Proof sketch. Part (i) is an easier version of (ii). The map Θ is certainly a bijection and it’s easy to check
that it is weight preserving. Comparing the general formulas for tensor products with the fairly simple
operators for elementary crystals, one checks that Θ preserves the string lengths and commutes with all
crystal operators.

We now specialize to Cartan type A2, so our index set for the simple roots is I = {1, 2}.

Let C = {(a, b, c) ∈ Z3 : a ≥ 0 and b ≥ c ≥ 0}. If (a, b, c) ∈ C then θ(a, b, c) ∈ C.

Given a, b, c ∈ Z define u(a, b, c) = u1(−a)⊗ u2(−b)⊗ u1(−c) ∈ B1 ⊗ B2 ⊗ B1.

Now let C = {u(a, b, c) : (a, b, c) ∈ C}.

Proposition 5.2. For Cartan type A2, if v ∈ C then fi(v) ∈ C and εi(v) ≥ 0 for all i ∈ I, while ei(v) ∈ C
if and only if εi(v) > 0.

Proof. Let (a′, b′, c′) = θ(a, b, c). Then ε1(u(a, b, c)) = max(c, a−b+2c) = b′−c′ and ε2(u(a, b, c)) = b−c.
Both values are nonnegative if (a, b, c) ∈ C = θ(C), so εi(v) ≥ 0 for all v ∈ C.

For the remaining assertions, one checks that e2(u(a, b, c)) = u(a, b−1, c) and f2(u(a, b, c)) = u(a, b+1, c).
This implies that e2(v) ∈ C if and only if ε2(v) > 0, and that f2(v) ∈ C for all v ∈ C.

We obtain similar statements for e1 and f1 by applying θ and using the previous proposition.

In Cartan type A2, we define B∞ to be the set C ⊂ B1 ⊗ B2 ⊗ B1 but with the ei crystal operators
redefined to have ei(v) = 0 if εi(v) = 0. The crystal operators fi, string lengths εi and ϕi, and weight
map wt have the same formulas as for B1 ⊗ B2 ⊗ B1.

With the new definition of ei, it now holds that εi(v) = max{k ≥ 0 : eki (x) 6= 0}.

Part of the crystal graph of B∞ for Cartan type A2 is shown below:
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u(0, 0, 0)

u(1, 0, 0) u(0, 1, 0)

u(2, 0, 0) u(1, 1, 0) u(0, 1, 1) u(0, 2, 0)

u(3, 0, 0) u(2, 1, 0) u(1, 2, 0) u(1, 1, 1) u(0, 2, 1) u(0, 3, 0)

u(4, 0, 0) u(3, 1, 0) u(2, 2, 0) u(1, 3, 0) u(1, 2, 1) u(2, 1, 1) u(0, 2, 2) u(0, 3, 1) u(0, 4, 0)

...
...

...
...

...
...

...
...

...
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1
2

1
2 1

2
1
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1
2

1
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We turn next to the construction of B∞ for arbitrary simply-laced types.

From this point on we assume our Cartan type (Φ,Λ) is simply-laced, though not necessarily of type A.

Proposition 5.3. Let w ∈W be an element of the Weyl group. Suppose

w = siN · · · si2si1 = sjN · · · sj2sj1

are two reduced expressions. Then there is a crystal isomorphism

Bi1 ⊗ · · · ⊗ BiN
∼−→ Bj1 ⊗ · · · ⊗ BjN

mapping ui1(0)⊗ · · · ⊗ uiN (0) 7→ uj1(0)⊗ · · · ⊗ ujN (0).

Proof. By Matsumoto’s theorem, the desired isomorphism is obtained by composing the isomorphisms in
Proposition 5.1, padded appropriately with copies of the identity map on unaffected tensor factors.

A weak Stembridge crystal satisfies the Stembridge axioms but is not required to be seminormal.

Theorem 5.4. Let w0 ∈W be the longest element and suppose w0 = siN · · · si2si1 is a reduced expres-
sion. Then the tensor product Bi1 ⊗ · · · ⊗ BiN is a weak Stembridge crystal.

Proof sketch. One must check the Stembridge axioms. The axioms corresponding to orthogonal simple
roots are relatively straightforward. For the remaining axioms, a key step is to reduce to the A2 case by
showing that each connected component of Bi1 ⊗ · · · ⊗ BiN is isomorphic to Tλ ⊗ Bi ⊗ Bj ⊗ Bi for some
λ where 〈αi, α∨j 〉 = −1. Tensoring with Tλ does not affect the Stembridge axioms so one is left to verify
that Bi ⊗ Bj ⊗ Bi is a weak Stembridge crystal. This is a tractable calculation.

Fix a reduced expression w0 = siN · · · si2si1 for the longest element in W and define A := Bi1 ⊗· · ·⊗BiN .

Write ≺ for the partial order on A that is the transitive closure of the relation with x ≺ ei(x) whenever
x ∈ A and i ∈ I are such that ei(x) 6= 0. Then let

C := {x ∈ A : x � u∞} where u∞ := ui1(0)⊗ · · · ⊗ uiN (0) ∈ A.

The set C consists of the elements that we can reach by following directed paths starting at u∞ in the
crystal graph for A. This construction is independent of the choice of reduced expression; another choice
of reduced expression leads to an isomorphic crystal A′ ∼= A and the isomorphism in Proposition 5.3
maps the analogous subset C′ ⊂ A′ to C.

Proposition 5.5. If x ∈ C then εi(x) ≥ 0 for all i ∈ I and if εi(x) > 0 then ei(x) ∈ C.
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Proof sketch. The proof is similar to the A2 case, though we must use the formula for the string lengths
εi of N -fold tensor products, and sometimes appeal to the Stembridge axioms. If we fix i ∈ I, then we
may choose the reduced word for w0 so that iN = i. This simplifies the argument that εi(x) ≥ 0.

Here, finally, is the definition of B∞ for arbitrary simply-laced types: as a set, we have B∞ = C.

The crystal operators fi, string lengths εi and ϕi, and weight map wt for B∞ are inherited from A.

The value of ei(x) is the same as for A if εi(x) > 0, but if εi(x) = 0 then we set ei(x) = 0.

Theorem 5.6. For these operators, the set B∞ is a weak Stembridge crystal that is upper seminormal
in the sense that εi(v) = max{k ≥ 0 : eki (x) 6= 0} for all v ∈ B∞ and i ∈ I.

Proof sketch. The claim that C is upper seminormal is immediate from the previous proposition. We
have already noted that the crystal A is weakly Stembridge. This fact plus upper seminormality makes
it easy to check that C is a crystal satisfying the Stembridge axioms.

A key property is that we can embed any weak Stembridge crystal in an appropriate twist of B∞:

Theorem 5.7. Let C be a connected weak Stembridge crystal (of a simple-laced Cartan type) whose
unique highest weight element uλ has wt(uλ) = λ. Then there exists a unique injective crystal morphism
ψ : C → Tλ ⊗ B∞ with ψ(uλ) = tλ ⊗ u∞.

Proof sketch. The argument is similar to how one shows that there exists an isomorphism between con-
nected Stembridge crystals with the same highest weight.

The tensor product Tλ ⊗ B∞ remains a weak Stembridge crystal.

Let Ω be the set of all subsets S of C such that uλ ∈ S, if x ∈ S and ei(x) 6= 0 then ei(x) ∈ S, and
there exists a subset S′ ⊂ Tλ ⊗ B∞ and a weight-preserving bijection x 7→ x′ from S to S′ mapping
uλ 7→ tλ ⊗ u∞ such that if x ∈ S then ei(x) 6= 0 if and only if ei(x

′) 6= 0 and (ei(x))′ = ei(x
′).

The set Ω is nonempty since {uλ} ∈ Ω. We choose S ∈ Ω to be maximal and argue by contradiction that
S = C. One derives a contradiction by assuming that S is proper and then showing that we can extend
the map x 7→ x′ to a larger set S t {z} ∈ Ω.

Corollary 5.8. Let λ ∈ Λ+ be any dominant weight and let Bλ be a normal (i.e., Stembridge) crystal
for a simply-laced Cartan type with unique highest weight λ. Then there exists a unique injective crystal
morphism ψλ : Bλ → Tλ ⊗ B∞ that sends the unique highest weight element to tλ ⊗ u∞

Next time, well discuss B∞ for non-simply-laced Cartan types and Demazure crystals.
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