1 Last time: \mathcal{B}_{∞} for arbitrary Cartan types

Fix a Cartan type (Φ, Λ) with simple roots $\left\{\alpha_{i}: i \in I\right\}$.
For each index $i \in I$, the elementary crystal \mathcal{B}_{i} is the set of formal elements $u_{i}(n)$ for all $n \in \mathbb{Z}$.
The weight map of \mathcal{B}_{i} is $\mathbf{w t}\left(u_{i}(n)\right)=n \alpha_{i}$ and the crystal graph is the infinite path

$$
\cdots \xrightarrow{i} u_{i}(2) \xrightarrow{i} u_{i}(1) \xrightarrow{i} u_{i}(0) \xrightarrow{i} u_{i}(-1) \xrightarrow{i} \cdots
$$

The string lengths of \mathcal{B}_{i} satisfy $\varphi_{i}\left(u_{i}(n)\right)=n$ and $\varepsilon_{i}\left(u_{i}(n)\right)=-n$, with all other values $-\infty$.

Fix a reduced expression $w_{0}=s_{i_{N}} \cdots s_{i_{2}} s_{i_{1}}$ for the longest element in the Weyl group W.
Define $\mathcal{A}:=\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ and write \prec for the partial order on \mathcal{A} that is the transitive closure of the relation with $x \prec e_{i}(x)$ whenever $x \in \mathcal{A}$ and $i \in I$ are such that $e_{i}(x) \neq 0$. Then let

$$
\mathfrak{C}:=\left\{x \in \mathcal{A}: x \preceq u_{\infty}\right\} \quad \text { where } u_{\infty}:=u_{i_{1}}(0) \otimes u_{i_{2}}(0) \otimes \cdots \otimes u_{i_{N}}(0) \in \mathcal{A} .
$$

Any other choice of reduced expression leads to an isomorphic crystal $\mathcal{A}^{\prime} \cong \mathcal{A}$ with $\mathfrak{C}^{\prime} \cong \mathfrak{C}$.
The crystal \mathcal{B}_{∞} is given by \mathfrak{C} with all operators inherited from \mathcal{A}, except we set $e_{i}(x)=0$ when $\varepsilon_{i}(x)=0$.
Theorem 1.1. The crystal \mathcal{B}_{∞} is a weak normal crystal with $\varepsilon_{i}(x)=\max \left\{k \geq 0: e_{i}^{k}(x) \neq 0\right\}$.
Moreover, \mathcal{B}_{∞} has a unique highest weight element given by u_{∞}, which has $\mathbf{w t}\left(u_{\infty}\right)=0$.
Finally, every reduced word for $w_{0} \in W$ is a good word for \mathcal{B}_{∞}.

2 Today: the \star-involution of \mathcal{B}_{∞}

Choose a Cartan type (Φ, Λ) with simple roots $\left\{\alpha_{i}: i \in I\right\}$ and Weyl group $W=\left\langle s_{i}: i \in I\right\rangle$.
Fix a reduced word $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ for the longest element $w_{0} \in W$.
This choice produces two different embeddings $\mathcal{B}_{\infty} \hookrightarrow \mathbb{Z}^{N}$.
First, \mathcal{B}_{∞} is isomorphic to a subcrystal of $\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ and we define

$$
\begin{equation*}
\iota_{1}(x)=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{Z}^{N} \tag{2.1}
\end{equation*}
$$

for $x=u_{i_{1}}\left(-a_{1}\right) \otimes u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{\infty}$.
Second, we have the embedding

$$
\begin{equation*}
\iota_{2}(x)=\operatorname{string}_{\mathbf{i}}(x)=\left(b_{1}, b_{2}, \ldots, b_{N}\right) \tag{2.2}
\end{equation*}
$$

Here $b_{1}=\varepsilon_{i_{1}}(x), b_{2}=\varepsilon_{i_{2}}\left(e_{i_{1}}^{b_{1}}(x)\right), b_{3}=\varepsilon_{i_{3}}\left(e_{i_{2}}^{b_{2}} e_{i_{1}}^{b_{1}}(x)\right)$, and so forth.
These embeddings are related by a weight-preserving bijection $\star: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ which is our main topic of interest today. This map will be written $x \mapsto x^{\star}$, it will have order two, and it will hold that

$$
\iota_{1}\left(x^{\star}\right)=\iota_{2}(x) \quad \text { for all } x \in \mathcal{B}_{\infty} .
$$

Although the definitions of ι_{1} and ι_{2} depend on the choice of reduced word \mathbf{i}, the bijection \star will be independent of this choice. Once \star has been given, we can define new crystal operators of \mathcal{B}_{∞} by

$$
\begin{equation*}
e_{i}^{\star}(x):=e_{i}\left(x^{\star}\right)^{\star}, \quad f_{i}^{\star}(x):=f_{i}\left(x^{\star}\right)^{\star}, \quad \varepsilon_{i}^{\star}(x):=\varepsilon_{i}\left(x^{\star}\right), \quad \text { and } \quad \varphi_{i}^{\star}(x):=\varphi_{i}\left(x^{\star}\right) \tag{2.3}
\end{equation*}
$$

These operators will give the set \mathcal{B}_{∞} a second crystal structure.
The new operators e_{i}^{\star} and f_{i}^{\star} will commute with e_{j} and f_{j} when $i \neq j$ (but not generally when $i=j$).

3 Quick derivations in type A_{2}

As motivation and to start out with a more concrete discussion, we first describe the \star map for type A_{2}. Define $\tau, \theta: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by the formulas

$$
\tau(a, b, c)=(\max (a-b+2 c, c), b, \min (a, b-c)) \quad \text { and } \quad \theta(a, b, c)=(\max (c, b-a), a+c, \min (a, b-c))
$$

Lemma 3.1. The maps τ and θ have order two and commute. They also preserve the set

$$
C=\left\{(a, b, c) \in \mathbb{Z}^{3}: a \geq 0, b \geq c \geq 0\right\}
$$

Proof. We have already see that the map θ has order 2 and preserves C.
It can be checked directly that τ also has order 2 and $\theta \tau(a, b, c)=\tau \theta(a, b, c)=(b-c, a+c, c)$.
To see that τ preserves C, let $C_{1}=\{(a, b, c) \in C: a+c \geq b\}$ and $C_{2}=\{(a, b, c) \in C: a+c<b\}$.
Then check that $\tau\left(C_{1}\right)=C_{1}$ and $\tau\left(C_{2}\right)=C_{2}$.
We can construct \mathcal{B}_{∞} in type A_{2} as the subcrystal of elements

$$
u(a, b, c):=u_{1}(-a) \otimes u_{2}(-b) \otimes u_{1}(-c) \in \mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{B}_{1}
$$

with $(a, b, c) \in C$. Recall that we redefine $e_{i}(x)=0$ if $\varepsilon_{i}(x)=0$ for $x \in \mathcal{B}_{\infty}$.
Proposition 3.2. Relative to this realization of \mathcal{B}_{∞}, we have $\operatorname{string}_{(1,2,1)}(u(a, b, c))=\tau(a, b, c)$.
Proof. Let $(a, b, c) \in C$ and $x=u(a, b, c)$. Then $\mathbf{w t}(x)=-(a+c) \alpha_{1}-b \alpha_{2}$ where $\alpha_{i}=\mathbf{e}_{i}-\mathbf{e}_{i+1}$.
Let $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\operatorname{string}_{(1,2,1)}(x)$. Then $u_{\infty}=e_{1}^{c^{\prime}} e_{2}^{b^{\prime}} e_{1}^{a^{\prime}}(x)$ so $\mathbf{w t}(x)=-\left(a^{\prime}+c^{\prime}\right) \alpha_{1}-b^{\prime} \alpha_{2}$.
Therefore $a^{\prime}+c^{\prime}=a+c$ and $b^{\prime}=b$. By definition $a^{\prime}=\varepsilon_{1}(x)$ and by the formulas for string lengths in tensor products we have $a^{\prime}=\max (a-b+2 c, c)$. The desired formula for $c^{\prime}=a+c-a^{\prime}$ follows.

We now define $\star: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ by $u(a, b, c)^{\star}=u\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ where $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\tau(a, b, c)$.
Corollary 3.3. Continue to assume we are in Cartan type A_{2}. Then the \star map just given has order 2 and $\iota_{1}\left(x^{\star}\right)=\iota_{2}(x)$ for all $x \in \mathcal{B}_{\infty}$, where ι_{1} and ι_{2} are the embeddings 2.1 and 2.2).

Proof. The \star map has order 2 since τ has order 2. If $x=u(a, b, c)$ for $(a, b, c) \in C$ and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=$ $\tau(a, b, c)$, so that $x^{\star}=u\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then $\iota_{1}\left(x^{\star}\right)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ and $\iota_{2}(x)=\operatorname{string}_{(1,2,1)}(x)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$.

We could also realize \mathcal{B}_{∞} in type A_{2} as a subcrystal of $\mathcal{B}_{2} \otimes \mathcal{B}_{1} \otimes \mathcal{B}_{2}$.
In this case we would define $x \mapsto x^{\star}$ by the same formula.
The map $u(a, b, c) \mapsto u\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ for $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\theta(a, b, c)$ is an isomorphism $\mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{B}_{1} \xrightarrow{\sim} \mathcal{B}_{2} \otimes \mathcal{B}_{1} \otimes \mathcal{B}_{2}$.
The \star maps commute with this isomorphism since $\tau \theta=\theta \tau$.
Also, we showed in a previous lecture that $\operatorname{string}_{(2,1,2)}(x)=\theta\left(\operatorname{string}_{(1,2,1)}(x)\right)$.
It follows that we still have $\iota_{1}\left(x^{\star}\right)=\iota_{2}(x)$ for all $x \in \mathcal{B}_{\infty} \subset \mathcal{B}_{2} \otimes \mathcal{B}_{1} \otimes \mathcal{B}_{2}$.
In this sense, the definition of \star is independent of the choice of reduced word used to define \mathcal{B}_{∞} and ι_{1}.

4 Constructing * for general types

Now let (Φ, Λ) be an arbitrary Cartan type.
If \star were given, then the formulas (2.3) would give us a second crystal structure on the set \mathcal{B}_{∞}.
Our approach to defining \star in general is first to construct these operators $e_{i}^{\star}, f_{i}^{\star}, \varepsilon_{i}^{\star}, \varphi_{i}^{\star}$.
We will then identify \star as the unique crystal isomorphism that interchanges these two structures on \mathcal{B}_{∞}.
Proposition 4.1. There exists a unique morphism of crystals $\psi_{i}: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ such that

$$
\psi_{i}\left(u_{\infty}\right)=u_{i}(0) \otimes u_{\infty}
$$

Choose a reduced word $\left(i_{1}, \ldots, i_{N}\right)$ for $w_{0} \in W$ such that $i_{1}=i$ and identify $\mathcal{B}_{\infty} \subset \mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$.
If $x=u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{\infty}$ then $\psi_{i}(x)=u_{i}\left(-a_{1}\right) \otimes u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$.
Proof. The embedding ψ_{i} is unique if it exists since u_{∞} generates \mathcal{B}_{∞} via applications of the f_{j} crystal operators. We can embed $\mathcal{B}_{i} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{i}$ by

$$
u_{i}(-a) \mapsto \begin{cases}u_{i}(-a) \otimes u_{i}(0) & \text { if } a \geq 0 \\ u_{i}(0) \otimes u_{i}(-a) & \text { otherwise }\end{cases}
$$

On the other hand, \mathcal{B}_{∞} is defined as the set of elements

$$
x=u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}
$$

such that $x \preceq u_{\infty}=u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}(0)$.
Since $i_{1}=i$, the map ψ_{i} is given by tensoring $\mathcal{B}_{i} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{i}$ with $N-1$ copies of the identity morphism.

Lemma 4.2. Suppose that $i_{1}=i$ and $x=u_{i_{1}}\left(-a_{1}\right) \otimes u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{\infty}$.
Then the element $y=u_{i_{1}}(0) \otimes u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$ is also in \mathcal{B}_{∞}.
Proof. This holds since $\psi_{i}(x)=u_{i}\left(-a_{1}\right) \otimes y \in \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$.
Define \mathcal{B}^{i} to be the subset of \mathcal{B}_{∞} consisting of the elements $x \in \mathcal{B}_{\infty}$ with $\psi_{i}(x)=u_{i}(0) \otimes x$.
Proposition 4.3. If $x \in \mathcal{B}^{i}$ and $e_{j}(x) \neq 0$ for some $j \in I$ then $e_{j}(x) \in \mathcal{B}^{i}$.
If $x \in \mathcal{B}^{i}$ then $\varphi_{i}(x) \geq 0$, and we have $\varphi_{i}(x)>0$ if and only if $f_{i}(x) \in \mathcal{B}^{i}$.
Proof. For the first property, note that if $x \in \mathcal{B}^{i}$ then $\psi_{i}(x)=u_{i}(0) \otimes x$, so $\psi_{i}\left(e_{j}(x)\right)=e_{j}\left(u_{i}(0) \otimes x\right)$.
This cannot be $e_{j}\left(u_{i}(0)\right) \otimes x$ which is $u_{i}(1) \otimes x$ if $j=i$ and 0 otherwise, since

$$
\psi_{i}\left(e_{j}(x)\right) \preceq \psi_{i}\left(u_{\infty}\right)=u_{i}(0) \otimes u_{\infty}
$$

Hence we must have $\psi_{i}\left(e_{j}(x)\right)=u_{i}(0) \otimes e_{j}(x)$ which means that $e_{j}(x) \in \mathcal{B}^{i}$.

For the second property, note that if $x \in \mathcal{B}^{i}$ then $x=u_{i_{1}}(0) \otimes z$ for $z=u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$.
The usual formulas for string lengths in tensor products give $\varphi_{i}(x)=\max \left(0, \varphi_{i}(z)\right) \geq 0$.
Suppose $\varphi_{i}(x)>0$. Then $\varphi_{i}(z)>0$ and $f_{i}(x)=u_{i}(0) \otimes f_{i}(z)$.
Since $f_{i}(x) \preceq x \preceq u_{\infty}$, we have $f_{i}(x) \in \mathcal{B}_{\infty}$ and clearly $f_{i}(x) \in \mathcal{B}^{i}$.
But if $\varphi_{i}(x)=0$ then $f_{i}(x)=u_{i}(-1) \otimes z \notin \mathcal{B}^{i}$.

We can make \mathcal{B}^{i} into a crystal by redefining $f_{i}(x)=0$ if $\varphi_{i}(x)=0$ for $x \in \mathcal{B}^{i}$.
Also, let $\mathcal{B}_{i}^{+}=\left\{u_{i}(-a): a \geq 0\right\}$. To make this set into a crystal, we redefine $e_{i}\left(u_{i}(0)\right)=0$.
Finally, say that a crystal is i-seminormal

$$
\varphi_{i}(x)=\max \left\{k \geq 0: f_{i}^{k}(x) \neq 0\right\} \quad \text { and } \quad \varepsilon_{i}(x)=\max \left\{k \geq 0: e_{i}^{k}(x) \neq 0\right\}
$$

for all elements x.
Proposition 4.4. The following properties hold:
(i) The crystal \mathcal{B}^{i} is upper seminormal and i-seminormal.
(ii) The inclusion map $\mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ is a strict crystal morphism.
(iii) The map ψ_{i} induces an isomorphism between \mathcal{B}_{∞} and $\mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$.

Proof sketch. Part (i) follows since \mathcal{B}_{∞} is upper seminormal and since $\mathcal{B}^{i} \sqcup\{0\}$ is stable under e_{i}.
To show part (ii), one needs to check that the two definitions of $f_{i}(x)$, viewing $x \in \mathcal{B}^{i}$ or $x \in \mathcal{B}_{\infty}$, do not affect the computation of $f_{i}\left(u_{i}(-a) \otimes x\right)$ in the tensor products $\mathcal{B}_{i}^{+} \otimes \mathcal{B}_{i}$ and $\mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$. This is fairly straightforward.
For part (iii), it is clear that $\psi_{i}\left(\mathcal{B}_{\infty}\right) \subset \mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$ and it suffices to show that ψ_{i} is surjective. One can check this by showing that $\mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$ has a unique highest weight element given by $u_{i}(0) \otimes u_{\infty}$.

Although all of the constructions so far have depended on a particular realization of \mathcal{B}_{∞} as a subcrystal $\mathcal{B}_{\infty} \subset \mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ for a reduced word $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ for the longest element $w_{0} \in W$ (satisfying $i_{1}=i$), everything is equivariant with respect to canonical isomorphism between realizations of \mathcal{B}_{∞} for different reduced words. So in this sense $\mathcal{B}^{i}, \mathcal{B}_{i}^{+}$, and ψ_{i} are independent of \mathbf{i}.

The modified crystal operators $e_{i}^{\star}, f_{i}^{\star}, \varepsilon_{i}^{\star}, \varphi_{i}^{\star}$ are now given as follows.
Proposition 4.5. Let $x \in \mathcal{B}_{\infty}$ and $y \in \mathcal{B}^{i}$ such that $\psi_{i}(x)=u_{i}(-a) \otimes y$.
Define $\varepsilon_{i}^{\star}(x)=a$ and $\varphi_{i}^{\star}(x)=a+\left\langle\mathbf{w t}(x), \alpha_{i}^{\vee}\right\rangle$.
Define $e_{i}^{\star}(x)$ and $f_{i}^{\star}(x)$ by requiring that

$$
\psi_{i}\left(e_{i}^{\star}(x)\right)=\left\{\begin{array}{ll}
u_{i}(-(a-1)) \otimes y & \text { if } a>0 \\
0 & \text { if } a=0
\end{array} \quad \text { and } \quad \psi_{i}\left(f_{i}^{\star}(x)\right)=u_{i}(-(a+1)) \otimes y\right.
$$

These operators $e_{i}^{\star}, f_{i}^{\star}, \varepsilon_{i}^{\star}, \varphi_{i}^{\star}$ give the set \mathcal{B}_{∞} an alternative crystal structure with the same weight map.
Proof. The crystal axioms and the fact that $e_{i}^{\star}(x)$ and $f_{i}^{\star}(x)$ belong to $\mathcal{B}_{\infty} \sqcup\{0\}$ are easy to check using Proposition 4.3

We write $\mathcal{B}_{\infty}^{\star}$ to refer to this alternate crystal structure in place of the usual one on \mathcal{B}_{∞}.
Proposition 4.6. If $i \neq j$ then the operators e_{i}^{\star} and f_{i}^{\star} commute with e_{j} and f_{j}.
We also have $\varepsilon_{j}\left(f_{i}^{\star}(x)\right)=\varepsilon_{j}(x)$ for all $x \in \mathcal{B}_{\infty}$.
Proof. This is a corollary of the fact that ψ_{i} induces an isomorphism $\mathcal{B}_{\infty} \rightarrow \mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$.
Since $\varepsilon_{j}\left(u_{i}(-a)\right)=-\infty$ we have $e_{j}\left(u_{i}(-a) \otimes x\right)=u_{i}(-a) \otimes e_{j}(x)$ for $u_{i}(-a) \otimes x \in \mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$.
A similar formula holds for f_{j}. On the other hand, e_{i}^{\star} and f_{i}^{\star} just decrement or increment a without affecting x, so these operators commute with e_{j} and f_{j}.

We have $\varepsilon_{j}\left(f_{i}^{\star}(x)\right)=\varepsilon_{j}(x)$ since \mathcal{B}_{∞} is upper seminormal.

Proposition 4.7. If $x \in \mathcal{B}_{\infty}^{\star}$ is a highest weight element then $x=u_{\infty}$.
Proof. Let $Y=\left\{x \in \mathcal{B}_{\infty}: e_{i}^{\star}(x)=0\right.$ for all $\left.i\right\}=\bigcap_{i \in I} \mathcal{B}^{i}$ be the set of highest weight elements in $\mathcal{B}_{\infty}^{\star}$.
We have seen that if $x \in \mathcal{B}^{i}$ and $y \in \mathcal{B}_{\infty}$ and $x \preceq y$ then $y \in \mathcal{B}^{i}$. Thus if $x \in Y$ and $x \preceq y$ then $y \in Y$.
Suppose $x \in Y$ and $x \neq u_{\infty}$. Then we must have $x=f_{i}\left(u_{\infty}\right)$ for some i so

$$
\psi_{i}(x)=f_{i}\left(u_{i}(0) \otimes u_{\infty}\right)=u_{i}(-1) \otimes u_{\infty}
$$

which means $\varepsilon_{i}^{\star}(x)=1$, which is a contradiction.
Let $\mathcal{B}^{\star i}=\left\{x \in \mathcal{B}_{\infty}: e_{i}(x)=0\right\}$.
Proposition 4.8. The following properties hold:
(i) If $x \in \mathcal{B}^{\star i}$ and $e_{j}^{\star}(x) \neq 0$ for any $j \in I$ then $e_{j}^{\star}(x) \in \mathcal{B}^{\star i}$.
(ii) If $x \in \mathcal{B}^{\star i}$ then $\varphi_{i}^{\star}(x) \geq 0$, with strict inequality if and only if $f_{i}^{\star}(x) \in \mathcal{B}^{\star i}$.

Proof idea. This is similar to Proposition 4.3. though the argument is a little more technical. See Proposition 14.11 in Bump and Schilling's book for the full details.

Now we make $\mathcal{B}^{\star i}$ into a crystal with crystal operators e_{i}^{\star} and f_{i}^{\star}, by redefining $f_{i}^{\star}(x)=0$ if $\varphi_{i}^{\star}(x)=0$. Then $\mathcal{B}^{\star i}$ is a subcrystal of $\mathcal{B}_{\infty}^{\star}$ that is upper seminormal and i-seminormal.
Let \mathcal{B}_{i}^{\star} be the same as the crystal \mathcal{B}_{i}, but we denote the crystal operations as $\varepsilon_{i}^{\star}, \varphi_{i}^{\star}, e_{i}^{\star}, f_{i}^{\star}$ and its elements as $u_{i}^{\star}(-a)$ for $a \in \mathbb{Z}$. Define $\mathcal{B}_{i}^{\star+}$ to be the subcrystal of elements $u_{i}^{\star}(-a) \in \mathcal{B}_{i}^{\star}$ with $a \geq 0$.

Next, let $\psi_{i}^{\star}: \mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i}^{\star+} \otimes \mathcal{B}^{\star i}$ be the map given as follows.
Let $x \in \mathcal{B}_{\infty}^{\star}$ and $a=\varepsilon_{i}(x)$ and $y=e_{i}^{a}(x)$. We have $e_{i}(y)=0$ so $y \in \mathcal{B}^{\star i}$, and we define

$$
\psi_{i}^{\star}(x)=u_{i}^{\star}(-a) \otimes y
$$

Proposition 4.9. Let $x \in \mathcal{B}_{\infty}$ be such that $\psi_{i}(x)=u_{i}(-t) \otimes y$ and $\psi_{i}^{\star}(x)=u_{i}^{\star}(-v) \otimes z$.
Then $\varepsilon_{i}^{\star}(x)-\varphi_{i}(y)=\varepsilon_{i}(x)-\varphi_{i}^{\star}(z)$.
Proof idea. The argument for general types is a rather long and technical calculation, involving the Stembridge axioms in simply-laced types and passage to virtual crystals in non-simply laced types. Such complications arise because we have not yet shown that ψ_{i}^{\star} is a crystal morphism, so we can only use the fact that ψ_{i} is a morphism.

The full proof is after Proposition 14.12 in Bump and Schilling's book.
We finish today's lecture by the stating the following key results. We will talk about the proofs next time, along with properties of the resulting \star involution.

Proposition 4.10. The map $\psi_{i}^{\star}: \mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i}^{\star+} \otimes \mathcal{B}^{\star i}$ is a morphism for the \star crystal structure.
Theorem 4.11. The crystal $\mathcal{B}_{\infty}^{\star}$ is isomorphic to \mathcal{B}_{∞}. Hence, there exists a unique weight-preserving bijection $\vartheta: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ such that for every $i \in I$ we have

$$
\varepsilon_{i}^{\star} \circ \vartheta=\varepsilon_{i}, \quad \varphi_{i}^{\star} \circ \vartheta=\varphi_{i}, \quad e_{i}^{\star} \circ \vartheta=\vartheta \circ e_{i}, \quad \text { and } \quad f_{i}^{\star} \circ \vartheta=\vartheta \circ f_{i} .
$$

Moreover, the map ϑ has order two.

We now define the \star-involution of \mathcal{B}_{∞} by the formula $x \mapsto x^{\star}:=\vartheta(x)$.

